首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Durum wheat is an important crop widely distributed which grain is used in the elaboration of diverse food products. Most notably, durum wheat is used for the production of high quality pasta all around the world, but also for bread, couscous or bulgur, among other products. The end-use quality of these products is heavily determined by the grain quality characteristics, which depend on the wheat variety cultivated, the environmental effects and GxE interactions. The present study was conducted using a collection of 46 commercial durum wheat varieties to describe the phenotypic variation of the main target traits determining wheat quality, ascertain the effects of drought stress (very common in durum areas) on grain quality traits, and to assess the relationship between allelic variations of glutenins composition and gluten properties. Overall the varieties from Australia, USA and Italy showed the best performance in terms of grain quality. Additionally, the effects of drought stress on grain quality traits were analyzed: some traits were favored due to a higher protein concentration but others, such as flour yellowness were not affected by drought stress. The analysis of the varieties' glutenins composition showed the positive or negative effect of some alleles on different quality traits.  相似文献   

2.
The effects of drought and heat stress on quality parameters of wheat (Triticum aestivum) cultivars were studied under field conditions in a 2-year trial (2009–2010) in northwest Mexico. Under no stress conditions, rapid small-scale parameters [protein (GP; FP) content, SDS sedimentation (SDSS), mixograph peak time (MPT), swelling index of glutenin (SIG), and lactic acid retention capacity (LARC)] showed significant relationship with gluten strength (alveograph energy, W) and bread loaf volume (LV). SIG and LARC were better than SDSS and MPT for predicting W, while SDSS was better than W and SIG for predicting bread LV. Most quality traits were primarily controlled by genotype (G), although environment (E) and G × E also had significant effects. Heat and drought stress showed contrasting effects on LARC, MPT, alveograph parameters [tenacity (P), extensibility (L), P/L ratio, W] and LV. Increase in P and decrease in L resulted in higher tenacity (larger P/L), which may explain the smaller loaf volume under drought stress. In contrast, decrease in P and increase in L, may explain the improved bread volume observed under heat stress. It is advisable to select for wheat quality under both favorable and abiotic stress conditions to identify genotypes with quality stability across environments.  相似文献   

3.
Grain protein concentration (GPC) affects wheat nutritional value and several critical parameters for bread and pasta quality. A gene designated Gpc-B1, which is not functional in common and durum wheat cultivars, was recently identified in Triticum turgidum ssp. dicoccoides. The functional allele of Gpc-B1 improves nitrogen remobilization from the straw increasing GPC, but also shortens the grain filling period resulting in reduced grain weight in some genetic backgrounds. We developed isogenic lines for the Gpc-B1 introgression in six hexaploid and two tetraploid wheat genotypes to evaluate its effects on bread-making and pasta quality. In common wheat, the functional Gpc-B1 introgression was associated with significantly higher GPC, water absorption, mixing time and loaf volume, whereas in durum wheat, the introgression resulted in significant increases in GPC, wet gluten, mixing time, and spaghetti firmness, as well as a decrease in cooking loss. On the negative side, the functional Gpc-B1 introgression was associated in some varieties with a significant reduction in grain weight, test weight, and flour yield and significant increases in ash concentration. Significant gene × environment and gene × genotype interactions for most traits stress the need for evaluating the effect of this introgression in particular genotypes and environments.  相似文献   

4.
Environmental conditions during grain-fill can affect the duration of protein accumulation and starch deposition, and thus play an important role in grain yield and flour quality of wheat. Two bread-, one durum- and one biscuit wheat were exposed to extreme low (−5.5 °C for 3 h) and high (32 °C/15 °C day/night for three days) temperatures during grain filling under controlled conditions for two consecutive seasons. Flour protein content was increased significantly in one bread wheat, Kariega, under heat stress. Cold stress significantly reduced SDS sedimentation in both bread wheats. Kernel weight and diameter were significantly decreased at both stress treatments for the two bread wheats. Kernel characteristics of the biscuit wheat were thermo stable. Kernel hardness was reduced in the durum wheat for the heat treatment. Durum wheat had consistently low SDS sedimentation values and the bread wheat high values. Across the two seasons, the starch content in one bread wheat was significantly reduced by both high and low temperatures, as is reflected in the reduction of weight and diameter of these kernels. In the durum wheat, only heat caused a significant reduction in starch content, which is again reflected in the reduction of kernel weight and diameter.  相似文献   

5.
Samples of Canadian amber durum wheat varieties, of various protein content and a composite of export cargo samples, were milled to yield straight-grade and patent flours by reducing semolina and processed into yellow alkaline noodles (YAN). Samples of Canada Hard White Spring (CWHWS) and Canada Western Red Spring (CWRS) were included for comparative purposes. YAN from durum wheat displayed a colour advantage over CWRS and CWHWS YAN. The durum YAN displayed an approximate 9–20 unit greater b* (yellowness) value than CWRS and CWHWS at 2 and 24 h after preparation. This relates to greater yellow pigment and flavonoid contents in the durum flours. All durum wheat YAN exhibited excellent noodle brightness, which was retained over time due to lower levels of the enzymes polyphenol oxidase (PPO) and peroxidase (POD). Durum noodles displayed significantly fewer specks than CWRS and were comparable to CWHWS. Durum wheat YAN cooking quality was equal to or slightly superior to CWRS and CWHWS. Durum wheat flour refinement imparted no significant effects on cooked noodle texture (maximum cutting stress, recovery, resistance to compression). However, the various texture parameters improved with durum wheat protein content and gluten strength.  相似文献   

6.
A rising global population necessitates continued genetic improvement of wheat (Triticum spp.), but not without monitoring of unintended consequences to processors and consumers. Our objectives were to re-establish trends of genetic progress in agronomic and milling traits using a generational meter stick as the timeline rather than cultivar release date, and to measure correlated responses in flour quality and human wheat-sensitivity indicators. Grain yield and kernel size showed stepwise increases over cycles, whereas wheat protein content decreased by 1.1 g/100 g. Reduced protein content, however, did not result in lower dough strength pertinent to bread baking. A novel method of directly testing gluten elasticity via the compression-recovery test indicated a general increase in gluten strength, whereas the ratio of total polymeric to total monomeric proteins remained stable. Also showing no change with genetic progress in yield were flour levels of gluten epitopes within the key immunotoxic 33-mer peptide. The oligosaccharide fructan, present in milled and wholemeal flours, increased with increasing grain yield potential. While yield improvement in U.S. bread wheat was not accompanied by a decline in gluten strength or systematic shift in a key wheat sensitivity parameter, the unanticipated rise in total fructans does implicate potentially new dietary concerns.  相似文献   

7.
Samples of Canadian amber durum wheat varieties, of various protein content and a composite of export cargo samples, were milled to yield straight-grade and patent flours by reducing semolina and processed into yellow alkaline noodles (YAN). Samples of Canada Hard White Spring (CWHWS) and Canada Western Red Spring (CWRS) were included for comparative purposes. YAN from durum wheat displayed a colour advantage over CWRS and CWHWS YAN. The durum YAN displayed an approximate 9–20 unit greater b* (yellowness) value than CWRS and CWHWS at 2 and 24 h after preparation. This relates to greater yellow pigment and flavonoid contents in the durum flours. All durum wheat YAN exhibited excellent noodle brightness, which was retained over time due to lower levels of the enzymes polyphenol oxidase (PPO) and peroxidase (POD). Durum noodles displayed significantly fewer specks than CWRS and were comparable to CWHWS. Durum wheat YAN cooking quality was equal to or slightly superior to CWRS and CWHWS. Durum wheat flour refinement imparted no significant effects on cooked noodle texture (maximum cutting stress, recovery, resistance to compression). However, the various texture parameters improved with durum wheat protein content and gluten strength.  相似文献   

8.
Durum wheat is a crop of great economic relevance for Mediterranean regions, especially in developing countries. A decreasing trend in durum production is expected in the near future because of several factors, in particular environmental constraints due to climate change and variability. The aim of this work was to test the predictive performance of CERES-Wheat model, implemented in DSSAT software systems, under Mediterranean climate condition and soil types of Southern Sardinia, Italy. CERES-Wheat model was calibrated for three durum wheat Italian varieties (Creso, Duilio, and Simeto) using a 30-year data set (1974–2004) and a trial and error iterative procedure. Then, the model was validated and evaluated using several statistics. The model showed a quite good performance in predicting grain yield and anthesis date, with errors comparable with those reported by other studies conducted on bread and durum wheat. Predictions of grain weight and grain number did not match very well observations, confirming the difficulties of CERES-Wheat in estimating grain yield components. The results of this study suggest the need of specific field experiments and further model evaluations and improvements to better understand model simulation results of grain yield components of durum wheat.  相似文献   

9.
The effects of particle size of granulars (semolina and flour combined), gluten strength, protein composition and fermentation time on the breadmaking performance were compared for eleven durum wheat genotypes of diverse strength from North America and Italy grown in the same environment. All genotypes were γ-gliadin 45 types (low-molecular weight glutenin subunit 2 patterns) associated with superior pasta-making quality. Three cultivars with high-molecular weight glutenin subunit 20 exhibited relatively weak gluten, confirming that this subunit is associated with weakness in durum wheat. Gluten strength as measured by a range of technological tests was directly and strongly related to the proportion of insoluble glutenin (IG) in granulars protein as determined by a spectrophotometric procedure. Reducing the particle size of granulars by gradual reduction shortened development time in both the farinograph and mixograph. Reducing granulars also increased starch damage and, accordingly, farinograph water absorption, but remix-to-peak baking absorption was unaffected due to increased fermentation loss for finer granulars. Neither loaf volume, nor remix-to-peak mixing time were affected by the particle size of the granulars indicating that regrinding is not an asset for baking provided there is adequate gassing power. Loaf volume was directly related to gluten strength and IG content, and inversely related to residue protein, a non-gluten containing fraction. When fermentation time was reduced from the standard 165 to 90 min and 15 min, all genotypes exhibited a progressive increase in loaf volume. Therefore, regardless of strength, short fermentation time is preferred when high volume durum wheat bread is desired. Some of the stronger durum genotypes exhibited remix-to-peak bread volume comparable to that expected of good quality bread wheat, indicating that there is potential to select for genotypes with improved baking quality in conventional breeding programs by screening for high content of insoluble glutenin.  相似文献   

10.
Five different Glu-B1 HMW-GS patterns were identified among a collection of diverse durum wheat genotypes grown in 2001 in two locations in western Canada. The durum wheat lines exhibited a wide range of dough and gluten strength characteristics as measured by alveograph and 2 g mixograph parameters, gluten index (GI), and protein composition as measured by unextractable polymeric protein (UPP) content and the ratio of high-molecular weight (HMW) glutenin subunits (GS) to low-molecular weight (LMW) GS. HMW-GS subunits patterns represented within the genotypes were 6+8, 7+8, 7+16, 14+15 and 20. Two of the genotypes expressed Glu-A1 HMW-GS 2* in combination with other HMW-GS. Approximately 95% of the durum genotypes were γ-gliadin 45 types. Analysis of variance indicated that genotype was a greater source of variation in all measurements than was growing location, with the exception of protein content which showed less variation contributed by genotype and more contributed by location than for other quality parameters. UPP was strongly associated with all strength measurements. All of the γ-gliadin 42 types were low in UPP and weak. Among the γ-gliadin 45 types, those possessing HMW-GS 20 were typically in the lower half of the UPP and strength range. There was no clear evidence of an association between any of the other HMW-GS patterns and gluten strength. The majority exhibited HMW to LMW-GS ratios that were within the relatively narrow range of 0.15–0.25, yet there were wide variations in dough strength among genotypes within that range. Increasing proportions of HMW-GS resulting in ratios of greater than 0.30 were generally associated with weak dough and gluten and low UPP content.  相似文献   

11.
Biotic and abiotic stresses are major limiting factors for high crop productivity worldwide. A landrace collection consisting of 380 durum wheat(Triticum turgidum L. var. durum) entries originating in several countries along with four check varieties were evaluated for biotic stresses:yellow rust(Puccinia striiformis Westendorf f. sp. tritici) and wheat stem sawfly(WSS) Cephus cinctus Norton(Hymenoptera: Cephidae), and abiotic stresses: cold and drought. The main objectives were to(i) quantify phenotypic diversity and identify variation in the durum wheat landraces for the different stresses and(ii) characterize the agronomic profiles of landraces in reaction to the stresses. Significant changes in reactions of landraces to stresses were observed.Landraces resistant to each stress were identified and agronomically characterized.Percentage reduction due to the stresses varied from 11.4%(yellow rust) to 21.6%(cold stress) for 1000-kernel weight(TKW) and from 19.9(yellow rust) to 91.9%(cold stress) for grain yield. Landraces from Asia and Europe showed enhanced genetic potential for both grain yield and cold tolerance under highland rainfed conditions of Iran. The findings showed that TKW and yield productivity could be used to assess the response of durum wheat landraces to different stresses. In conclusion, landraces showed high levels of resistance to both biotic and abiotic stresses, and selected landraces can serve in durum wheat breeding for adaptation to cold and drought-prone environments.  相似文献   

12.
Despite the great variety of physicochemical and rheological tests available for measuring wheat flour, dough and gluten quality, the US wheat marketing system still relies primarily on wheat kernel hardness and growing season to categorize cultivars. To better understand and differentiate wheat cultivars of the same class, the tensile strength, and stress relaxation behavior of gluten from 15 wheat cultivars was measured and compared to other available physicochemical parameters, including but not limited to protein content, glutenin macropolymer content (GMP) and bread loaf volume. In addition, a novel gluten compression–relaxation (Gluten CORE) instrument was used to measure the degree of elastic recovery of gluten for 15 common US wheat cultivars. Gluten strength ranged from 0.04 to 0.43 N at 500% extension, while the degree of recovery ranged from 5 to 78%. Measuring gluten strength clearly differentiated cultivars within a wheat class; nonetheless it was not a good predictor of baking quality on its own in terms of bread volume. Gluten strength was highly correlated with mixograph mixing times (r = 0.879) and degree of recovery (r = 0.855), suggesting that dough development time was influenced by gluten strength and that the CORE instrument was a suitable alternative to tensile testing, since it is less time intensive and less laborious to use.  相似文献   

13.
灌浆期涝渍害对弱筋小麦籽粒产量及品质的影响   总被引:2,自引:0,他引:2  
长江中下游是我国主要的弱筋小麦产区,该区小麦生育后期涝渍害频发,严重影响小麦的高产和稳产。为探明涝渍害对弱筋小麦产量及品质的影响,以优质弱筋小麦品种扬麦13、扬麦15、扬麦22为材料,采用人工模拟涝渍害的田间试验方法,研究了灌浆期涝渍害对弱筋小麦籽粒产量及其构成要素、蛋白质含量、湿面筋含量、SDS沉淀值、吹泡仪参数、溶剂保持力SRC和粉质仪参数等主要品质指标的影响。结果表明:(1)灌浆期涝渍害导致小麦产量显著下降,有效穗数和穗粒数降低是引起扬麦13减产的主要因子,扬麦15和扬麦22的有效穗数、穗粒数和千粒重均降低导致减产。(2)涝渍害处理的扬麦13和扬麦22的湿面筋含量较对照显著上升,蛋白质含量和SDS沉淀值在处理间无显著差异。涝渍害处理7 d对供试小麦吹泡仪参数影响较大,扬麦13和扬麦15的L值和W值在涝渍害处理7 d后均显著提升,扬麦13的水SRC较对照显著下降。涝渍害处理7 d对供试小麦的粉质仪参数无显著影响。(3)供试的3个弱筋小麦品种籽粒品质受基因型的影响大于涝渍害。  相似文献   

14.
为探究氮肥在不同土壤肥力条件下对小麦的增产提质效应,以强筋小麦品种丰德存麦5号和中筋小麦品种百农207为供试材料,分别在三个地点设置0、180 、240和300 kg·hm-2 四个施氮水平,研究了不同施氮量对冬小麦籽粒产量和品质的影响。结果表明,地点、品种和施氮量均对小麦产量有显著影响,其中地点的影响最大,其次是施氮量,品种最小。在高肥力麦田,施氮量为180 kg·hm-2时产量最高,中高肥力麦田和低肥力麦田均以施氮量为240 kg·hm-2时产量最高。不施氮肥条件下,品质指标以高肥力麦田较高,低肥力麦田最低,表明基础肥力高有利于改善小麦品质。施用氮肥均显著提高了小麦籽粒中的蛋白质含量、蛋白质产量、沉淀值和湿面筋含量,延长了形成时间和稳定时间,各试验点表现一致。利用主成分分析将小麦品质性状转化为蛋白质因子和面粉粉质因子,结果表明,在低肥力麦田,施氮量对蛋白质因子的增强效应较大,在中高肥力麦田,施氮量能均衡提高蛋白质因子和粉质因子;在高肥力麦田,施氮量对小麦粉质因子的增强效应较大。不论土壤肥力高低,均以施氮量为240 kg·hm-2时小麦品质性状最优。  相似文献   

15.
为了解河北省主推强筋小麦品种的籽粒品质和面包加工品质,评选优质面包小麦品种,对河北省9个强筋小麦品种的31个籽粒品质和8个面包加工品质指标进行了测定。结果表明,除千粒重、容重、籽粒硬度、出粉率、面粉色泽L*值、面粉色泽b*值、面粉白度、籽粒蛋白质含量、湿面筋含量、糊化温度、吸水率外,其余被测指标的变异系数均大于10%,说明河北省强筋小麦品种多数品质性状的遗传多样性比较丰富。藁优9415、冀师02-1、藁优2018和金麦1号4个小麦品种制作的面包达到国家优质面包标准。面包评分与面团拉伸曲线面积和最大拉伸阻力极显著正相关,与形成时间、稳定时间、粉质质量指数、延伸度和拉伸阻力显著正相关,与面包质构的粘聚性极显著正相关,与面包质构的硬度、胶着性、咀嚼度、坚实度均极显著负相关。  相似文献   

16.
The present study addresses the influence of ageing on the bread-making performances of durum wheat semolina by bread image analysis. Bread loaves were produced from semolina samples stored in 4 different packaging materials for up to 150 days. Sampling and bread-making trials were performed every 15 days. Results showed that ageing does affect durum wheat semolina bread-making performances, highlighting that storage time, rather than the type of packaging material, is the main factor determining quality changes in the final bread samples. In particular, a change in the crust colour parameters and a reduction of the bread slice area and height by 20–35% were observed with increasing semolina storage time, along with a slight increase of crust % area. The change in farinographic parameters of dough suggests that the observed reduction of technological quality might be due to increased stiffness and reduced extensibility of gluten occurring in aged semolina. Unlike common wheat flours, which usually improve their technological features during ageing, durum wheat semolina is negatively affected in its quality by storage. The study highlights the importance of considering bread-making performances among the quality parameters to be taken into account for the shelf life evaluation of durum wheat semolina.  相似文献   

17.
宽幅硬茬播种对冬小麦生长、产量及品质的效应   总被引:3,自引:0,他引:3  
为了解小麦宽幅硬茬播种的效应,2011-2012年在陕西凤翔县农技中心试验站,以中麦349为试验材料,比较分析了宽幅硬茬(玉米收获后不犁地直接播种,播幅10cm,行宽30cm)、宽幅软茬(玉米收获犁地后播种,播幅10cm,行宽30cm)和条播(玉米收获犁地后进行传统的15cm等行距条播)三种种植方式对小麦苗生长、产量及籽粒和面粉品质相关指标的影响。结果表明,与条播相比,宽幅硬茬播种可改善小麦个体生长和抗倒伏性能,增产12.6%,并显著提高籽粒容重、硬度及沉淀值、湿面筋含量、吸水率、面团最大抗延力等籽粒和面粉品质的指标值,但对面粉蛋白质含量和面团延展性没有显著影响。宽幅软茬播种较条播对小麦生长、产量及品质也具显著促进或改善作用,但总体效果不如宽幅硬茬。  相似文献   

18.
为了解人工合成六倍体小麦(Synthetic hexapliod wheats,SHW)导入对普通小麦品质的影响及其潜在利用价值,2004~2005年,对重组近交系群体(人工合成六倍体小麦Syn-CD780×普通小麦品种CY12)的主要品质指标进行了检测.结果表明,籽粒硬度、籽粒蛋白质含量、降落值、湿面筋含量、吸水率、形成时间和稳定时间等7个品质参数的群体平均值都介于两个亲本之间,只有降落值和面团稳定时间2个参数的群体平均值高于Syn-CD780.在131个株系中,有15个株系的综合品质指标较为突出.非遮雨处理的籽粒硬度和吸水率显著低于遮雨处理,而籽粒蛋白质含量、降落值、湿面筋含量和稳定时间等4个品质指标则相反,表明遮雨与否对小麦品质参数的影响较大.Syn-CD780在小麦品质改良上有一定的潜在利用价值.  相似文献   

19.
为明确郑麦1860的品质及加工适用性,对2020-2021年河南省29个地点收获的郑麦1860的籽粒性状、磨粉品质、面团流变学特性、淀粉糊化特性和面条加工品质指标进行了测定与分析。结果表明,郑麦1860为优质中强筋面条小麦品种,特点是籽粒大、容重高、出粉率高,面条弹性好、色泽白亮、褐变较轻。在不同地点间郑麦1860的多数品质性状变异程度小,品质表现较稳定;相比较而言,其粉质参数、拉伸参数变异程度较大,淀粉糊化特性和面筋特性变异程度次之,籽粒品质性状、磨粉品质和面条加工参数变异程度较小。籽粒硬度、粒径、容重与出粉率呈显著正相关;容重、籽粒蛋白质含量、面粉灰分含量与面条总评分呈显著负相关;面粉色泽L*值、吸水率、峰值黏度、低谷黏度、终值黏度、回生值与面条总评分呈显著正相关。综上所述,籽粒蛋白质含量、面粉色泽和淀粉糊化特性是影响郑麦1860面条品质的主要因素。郑麦1860制作的面条感官评分高、品质稳定,在豫北、豫东和豫南等区域种植均适合制作优质面条。  相似文献   

20.
MFB多功能抗旱剂对小麦产量与品质的影响   总被引:7,自引:2,他引:5  
试验结果表明,小麦拔节期叶面喷施MFB多功能抗旱剂可使小麦产量提高6.8%-22.9%,平均增产达13.95%,与对照相比差异显著。喷施MFB多功能抗旱剂还可改善小麦籽粒营养品质,与对照相比,小麦粗蛋白含量、面筋含量和赖氨酸含量分别增加0.98、3.77和0.07个百分点。小麦增产的原因是喷施MFB多功能抗旱剂可使小麦千粒重、穗数和穗粒数增加,并使小麦抗逆性增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号