首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the influence of in situ exopolysaccharides (EPS) and organic acids on dough rheology and wheat bread quality. Dextran forming Weissella cibaria MG1 was compared to reuteran forming Lactobacillus reuteri VIP. For in situ production of EPS, sourdoughs were supplemented with 15% sucrose. Control sourdoughs were prepared with the same strain but without sucrose. W. cibaria MG1 and L. reuteri VIP formed 5.1 and 5.8 g kg−1 dextran and reuteran, respectively. Formation of EPS from sucrose led to production of high amounts of acetate by L. reuteri VIP, but only small amounts were detected in W. cibaria MG1 sourdough. EPS containing sourdough or control sourdough was incorporated at 10% and 20% in wheat dough. EPS significantly influenced the rheological properties of the dough, with dextran exhibiting the strongest impact. The addition of dextran enriched W. cibaria MG1 sourdough significantly increased CO2 production, whereas increased acidity in reuteran containing dough reduced gas production. The quality of wheat bread was enhanced when 10% of L. reuteri-sucrose sourdough was added. The positive effect of reuteran was masked by increased acidification after 20% sourdough addition. Incorporation of dextran enriched sourdough (10% and 20%) provided mildly acidic wheat bread with improved bread quality.  相似文献   

2.
Glycemic responses to most of the conventional breads are high, including breads made of wholemeal flour. Baking technology is known to affect these responses. The aim of the present study was to investigate effects of xylanase enzyme treatment and sourdough fermentation in wholemeal wheat bread baking on postprandial glucose and insulin responses and on in vitro protein digestibility. The wheat breads were made of 100% flour from peeled kernels by a straight dough or sourdough fermentation method, and with or without using xylanase during mixing of dough. Standard white wheat bread was used as a reference. All test bread portions contained 50 g available carbohydrate and were served in random order to eleven insulin resistant subjects. Blood samples for measuring glucose and insulin concentrations were drawn over 4 h. The sourdough wholemeal wheat bread resulted in the lowest postprandial glucose and insulin responses among the four tested breads (treatment × time; p = 0.000 and p = 0.022, respectively). There were differences in solubility and depolymerisation of protein and arabinoxylan among the breads but these did not fully explain the in vivo findings. In conclusion, the health effects of wholemeal wheat bread can be further improved by using sourdough process in breadmaking.  相似文献   

3.
Freezing deteriorates the baking quality of frozen bread dough. This study revealed the protective effects of zein-based ice nucleation films (INFs) on the baking quality of frozen dough. INFs were prepared by immobilizing biogenic ice nucleators on the surface of zein films, which consequently revealed ice nucleation activity and increased the ice nucleation temperature of water from −15 °C to −6.7 °C. By using these films to wrap frozen dough during five freeze/thaw cycles, the specific volume of bread was increased by up to 25% compared to the bread from control frozen dough. The reason was attributed to 40% more viable yeast cells preserved by INFs. In addition, zein-based INFs also reduced the water loss by frozen dough resulting in higher water content in bread crumb. Combining the protective effects on both specific volume and water content from zein-based INFs, the obtained bread showed 68% lower firmness and fracturability and 2.4 times higher resilience compared to the control. The INFs were also superior in that for zein-based INFs, biogenic ice nucleators showed desirable affinity with the surface to sustain at least fifteen repetitive uses on freezing water.  相似文献   

4.
Improvements in both the miniaturisation and heat compensation of pressure transducers made it possible to measure pressures as low as 5 kPa inside bread dough during baking (ΔT = 80 °C). Additional calibration was found to be necessary to decrease it below 0.18 kPa according to the variations in temperature encountered during baking. Two probes with both a thermocouple and a miniature pressure transducer were used to reveal pressure gradients inside bread dough during baking and post-cooling. During baking, increase in pressure (up to 1.1 kPa) was mainly attributed to the mechanical restrictions exerted on the dough by the stiffened surface layers. Pressure build-up due to the stiffening of bubble walls could not be detected. Various effects of the rupture in the bubble walls are reported. Sudden falls in pressure observed up to 70 °C were attributed to the bubble coalescence phenomenon. Evidence of an open porous structure was provided by the balance in pressure through the dough before the end of baking and the almost simultaneous lowering of pressure (−0.15 kPa) throughout the crumb during cooling. The slight lowering of pressure during post-cooling was also evidence of lower permeability of the crust compared to the crumb.  相似文献   

5.
During baking, bread dough undergoes an expansion followed by a slight contraction at the end of baking. The contraction during baking has been evidenced by some authors. However, there is a limited amount of literature about the contraction of the crumb during the chilling phase and also during the freezing phase in the case of freezing. A study has been carried out to better understand the impact of the baking degree on the contraction of the crumb during chilling after baking and during freezing. The volume of the samples has been evaluated with a laser volumeter. Breads (70 g dough) were baked until reaching 75 °C, 85 °C, 95 °C, 98 °C and then 98 °C for 10 min. Results showed that a longer baking resulted in a lower contraction of the bread. The volume change was between 25% and 2.5% for baking at 75 °C—0 min dwell and 98 °C—10 min dwell, respectively. The contraction was compared to the contraction of degassed bread crumb samples, which was more important. SEM pictures showed that the degree of baking also corresponded to a very different structure of the crumb. For the longer baking, the starch granules were fully gelatinized and no ghosts of starch granules were visible. The magnitude of the contraction was thus associated with the degree of baking and with the degree of starch granule destructuration.  相似文献   

6.
Consumption of whole-wheat based products is encouraged due to their important nutritional elements that benefit human health. However, the use of whole-wheat flour is limited because of the poor processing and end-product quality. Bran was postulated as the major problem in whole wheat breadmaking. In this study, four major bran components including lipids, extractable phenolics (EP), hydrolysable phenolics (HP), and fiber were evaluated for their specific functionality in flour, dough and bread baking. The experiment was done by reconstitution approach using the 24 factorial experimental layout. Fiber was identified as a main component to have highly significant (P < 0.05) and negative influence on most breadmaking characteristics. Although HP had positive effect on farinograph stability, it was identified as another main factor that negatively impacted the oven spring and bread loaf volume. Bran oil and EP seemed to be detrimental to most breadmaking characteristics. Overall, statistical analysis indicates that influence of the four bran components are highly complex. The bran components demonstrate multi-way interactions in regards to their influence on dough and bread-making characteristics. Particularly, Fiber appeared to have a high degree of interaction with other bran components and notably influenced the functionality of those components in whole wheat bread-making.  相似文献   

7.
Thermodynamic properties of bread dough (fusion enthalpy, apparent specific heat, initial freezing point and unfreezable water) were measured at temperatures from −40 °C to 35 °C using differential scanning calorimetry. The initial freezing point was also calculated based on the water activity of dough. The apparent specific heat varied as a function of temperature: specific heat in the freezing region varied from (1.7–23.1) J g−1 °C−1, and was constant at temperatures above freezing (2.7 J g−1 °C−1). Unfreezable water content varied from (0.174–0.182) g/g of total product. Values of heat capacity as a function of temperature were correlated using thermodynamic models. A modification for low-moisture foodstuffs (such as bread dough) was successfully applied to the experimental data.  相似文献   

8.
This article presents a novel method for making gluten-free bread using mesoscopically structured whey protein. The use of the meso-structured protein is based on the hypothesis that the gluten structure present in a developed wheat dough features a particle structure on a mesoscopic length scale (100 nm–100 μm). Whey protein particles were prepared by cold gelation of soluble whey protein aggregates during phase separation. The addition of a 2.4% whey protein particle suspension to wheat starch resulted in a dough that could be baked into a leavened bread with a specific volume up to 3.7 ml/g and a bubble size comparable with a normal bread. The relevance for structuring the whey protein into mesoscopic particles was confirmed by tests in which only a homogeneous whey protein gel or a whey protein solution was used. The protein particle system gave better results after proving and baking compared with these systems.  相似文献   

9.
Since protein aggregation and formation of a continuous protein matrix in rye dough is very limited, an enzyme-induced protein aggregation method to improve the baking properties was investigated. The effects of microbial transglutaminase (TG) on the properties of rye dough were studied by rheological tests, confocal laser scanning microscopy (CSLM), standard-scale baking tests and crumb texture profile analysis. Addition of TG in the range of 0-4000 Ukg−1 rye flour modified the rheological properties of rye flour dough, resulting in a progressive increase of the complex shear modulus (|G∗|) and in a decrease of the loss factor (tan δ) due to protein cross-linking or aggregation. CLSM image analysis illustrated a TG-induced increase of the size of rye protein complexes. Standard baking tests showed positive effects on loaf volume and crumb texture of rye bread with TG applied up to 500 Ukg−1 rye flour. Higher levels of TG (500 U ≤ TG ≤ 4000 U) had detrimental effects on loaf volume. Increasing TG concentration resulted in an increase of crumb springiness and hardness. In conclusion, the results of this work demonstrated that TG can be used to improve the bread making performance of rye dough by creating a continuous protein network.  相似文献   

10.
Bread with 48.5% soy ingredients was assessed for quality during frozen storage of the dough. Soy protein was hypothesized to prevent water migration during frozen storage, thereby producing dough that would exhibit fewer structural changes than traditional wheat bread. Wheat and soy bread were baked from dough that was fresh or frozen (−20 °C, 2 or 4 wks). Dough and bread were assessed for physical properties including moisture content, percent “freezable” and “unfreezable” water, dough extensibility, and bread texture. The bread was subjected to an untrained sensory panel. The soy bread was denser, chewier, and had a higher moisture content than wheat bread. When baked from fresh or frozen dough, soy bread was rated “moderately acceptable” or higher by 70% of panelists. Soy minimized changes in dough extensibility and resistive force to extension, leading to minimal changes in bread hardness. Although consumers could distinguish between bread baked from soy dough that was fresh or frozen for 4 wks, sensorial and textural data suggested that the rate at which the quality of the soy dough deteriorated was slower than that of wheat dough. In conclusion, the dough of consumer-acceptable soy bread retained quality characteristics during frozen storage slightly better than wheat dough.  相似文献   

11.
Whole wheat bread represents an important source of dietary fibre and micronutrients such as minerals and vitamins (B1, B2, B6). Thus it is important to control losses of vitamins during milling and breadmaking. The classical (yeast) breadmaking process is a relatively severe, leading to a 48% loss of thiamine in white bread. Longer fermentation times (white bread) led to higher thiamine concentrations (2.5 μg/g) than shorter fermentations (1.4 μg/g). In whole wheat bread, separate yeast or sourdough fermentations maintained vitamin B1 levels close to that of the original flour (5.5 μg/g). Whole wheat breadmaking with yeast (from kneading to final bread), in long fermentations, resulted in a 30% enrichment in riboflavin. The pyridoxine concentration of whole wheat flour is 5-fold higher than white flour, but classical fermentations resulted in a severe depletion in pyridoxine (−47%). The use of mixed fermentation conditions (yeast plus sourdough) had no synergistic impact on B vitamin levels. The classical breadmaking protocol is time-saving but does not result in maximal vitamin retention. Highest levels of B vitamins were achieved by long yeast fermentations.  相似文献   

12.
In this study, the impact of sourdough fermentation on the biochemical, rheological and bread-making performances of buckwheat flour was investigated. In order to assess the effects of the solely acidification, a chemically acidified batter with the same pH of the sourdough was prepared. Extensive hydrolysis of the globulin fraction and release of small polypeptides occurred upon fermentation. A major reduction in the extent of interactions was observed in the sourdough, mainly due to the modification of the major structural components of buckwheat during the fermentation. The hydrolysis of proteins and, possibly, starch was in turn responsible for the major decrease in elasticity observed in the sourdough. In the batters destined for bread-making, the presence of acids was the major cause for reduced elasticity and increased strength, which could be related to the enhanced water-holding capacity of the proteins and/or protein/starch complexes. The addition of sourdough induced dramatic inhibition of the CO2 production by the baker’s yeasts during proofing, resulting in lower volume and harder crumb of the sourdough bread. On the other hand, the solely acidification induced hardening of the starch gel upon cooking, which was responsible for lower volume and irregular crumb grain in buckwheat bread.  相似文献   

13.
The impact of 48 h sprouted quinoa (SQ) was assessed in bread-making. Wheat flour (WF) was replaced with SQ at different levels (i.e., 10:90, 20:80 and 30:70, SQ:WF ratio). Once the optimal replacement level of SQ was identified, the bread-making performance of this ingredient was compared with those of pearled quinoa (PQ), commonly used in bread-making.Starch pasting properties and gluten aggregation behavior were not strongly affected at 20:80 level. Regardless the replacement level, SQ caused an increase in dough water absorption and in softening degree, and a decrease in stability, suggesting weakening of the gluten network. During leavening, SQ improved dough development and gas production, due to increased sugar content (i.e. maltose, sucrose and D-glucose). The best bread-making performance (highest bread specific volume and lowest crumb firmness) was obtained at 20:80 replacement level. Compared to PQ, SQ exhibited the best leavening capacity (high dough development, gas production and gas retention) and bread properties (high specific volume and low crumb firmness), likely due to its higher sugar content. Moreover, 20SQ bread was characterized by a decreased bitterness assessed by electronic-tongue. In conclusion, sprouting might be considered a valid alternative to pearling to improve the characteristics of quinoa enriched bread  相似文献   

14.
The potential of sourdough to improve bread quality of barley and oat enriched wheat breads may depend on the characteristics of the added flour (cereal type, variety, extraction rate). We compared the effect of different barley flours and oat bran (substitution level 40%), unfermented and as sourdoughs (20% of total flour), on composite wheat dough and bread characteristics by combining empirical rheological analyses (DoughLab, SMS/Kieffer Dough and Gluten Extensibility Rig) with small-scale baking of hearth loaves. Whole grain barley flour sourdough increased resistance to extension (Rmax) of the dough and improved the form ratio of hearth loaves compared to unfermented whole grain barley flour. However, sourdough showed little effect on the breads prepared with sifted barley flour or oat bran. The breads made with oat bran showed highest bread volume, lowest crumb firmness and highest β-glucan calcofluor weight average molecular weight (MW). The heat treatment of oat bran inactivated endogenous enzymes resulting in less β-glucan degradation. High MW β-glucans will increase the viscosity of the doughs water phase, which in turn may stabilise gas cells and may therefore be the reason for the higher bread volume of the oat bran breads observed in our study.  相似文献   

15.
To limit nutritional losses and optimise bread processing, heat damage indices (furosine, glucosylisomaltol, hydroxymethylfurfural), sugars, α-amylase, β-amylase and colour were monitored during bread manufacturing from refined flour of three einkorn, three bread and one durum wheat samples. The heat damage indices increased only during the baking step. Furosine was significantly lower in einkorn (on average, 9.3 ± 5.33 and 25.3 ± 10.70 mg/100 g protein in crumb and crust, respectively) than in bread wheat (31.6 ± 3.05 and 115.6 ± 13.53) and durum wheat (36.2 ± 2.82 and 165.0 ± 3.17). Glucosylisomaltol and hydroxymethylfurfural were detected only in the crust, with lower levels in einkorn (on average, 2.3 ± 1.78 and 10.0 ± 7.79 mg/kg DM, respectively) than in bread wheat (13.1 ± 5.57 and 42.8 ± 10.64) and durum wheat (18.9 ± 1.11 and 57.2 ± 0.80). The different behaviour of einkorn was probably related to its moderate β-amylase activity, and thus the low maltose content of its dough. Colour was correlated with heat damage, as einkorn breads were lighter than the others.The results show that einkorn bread undergoes lower heat damage than analogous products from durum and bread wheat, thus probably better preserving its nutritional value.  相似文献   

16.
The stability of vitamers: thiamine, riboflavin, nicotinic acid, nicotinamide, pantothenic acid, pyridoxine and pyridoxal, as well as soluble and insoluble dietary fiber was studied in a rye sourdough bread process. The vitamer concentrations were measured in raw materials (rye flours, white and red rye malt, yeast) and the rye sourdough breads made from them by means of LC–MS and stable isotope dilution assay. The content of dietary fiber was determined using a standard enzymatic-gravimetric method. During baking, the concentration of vitamins decreased by 20–45% in the case of thiamine, 25–50% in the case of nicotinic acid, 45–65% in the case of pyridoxal in both breads, 50% in the case of riboflavin and 15% in the case of pyridoxine only in fine rye bread. In contrast, the content of nicotinamide increased during processing by ten fold, presumably due to microbial activity during sourdough fermentation. The ratio of soluble to insoluble dietary fiber increased during rye sourdough processing.  相似文献   

17.
The concerns for a healthy diet in terms of the consumption of baked products as fibre-enriched ones have been highlighted by increased consumers demand, food legislation and targeting manufacturers offer to healthy food. The objective of this study was to assess the effect of some inulin-type products added in bread-making aimed at producing functional bakery goods. In this purpose some physico-chemical characteristics and technological properties of the Romanian wheat flour half-white with addition of 5%, 10%, 15% and 20% inulin commercial products (% basis flour) were evaluated. Rheological behaviour was investigated using mixolab Chopin and baking tests for fibre-enriched products were performed. Changes of the rheological behaviour were noticed, in terms of a general decreasing trend of dough machinability due to enzymatic reactions probably influenced by changing the ratio of the main compounds and their interactions. Overall the bread loaves characteristics mainly affected by inulin addition were the volume and crust colour.Results indicated that inulin potential as fibre enrichment in wheat bread is limited, 15% Fibruline DS being a maximum percent to be used in bread-making of half-white flour, a dosage above being critically for dough rheological behaviour and the quality of high-fibre bread.  相似文献   

18.
The rheological characteristics of gluten-free doughs and their effect on the quality of biologically leavened bread were studied in amaranth, chickpea, corn, millet, quinoa and rice flour. The rheological characteristics (resistance to extension R, extensibility E, R/E modulus, extension area, stress at the moment of dough rupture) were obtained by uniaxial dough deformation. Specific loaf volume of laboratory prepared gluten-free breads was in significant positive correlation with dough resistance (r = 0.86), dough extensibility (r = 0.98) and peak stress at the moment of dough rupture (r = 0.96). Even if the correlation between R/E modulus and the characteristics of loaf quality were not significant, the breads with the highest specific loaf volume were prepared from flours with R/E closer to the wheat check sample (18 N?mm-1). The results showed, in general, good baking flours exhibited stronger resistance to extension and greater extensibility, but differences found were not directly related to the results of baking tests.  相似文献   

19.
Freezing deteriorates the baking quality of frozen bread dough by causing lethal injury to yeast cells and depolymerization to the gluten network. To investigate the potential of biogenic ice nucleators in frozen food applications, the effect of extracellular ice nucleators (ECINs) from Erwinia herbicola on the baking quality of frozen dough upon three freeze/thaw cycles were investigated. With addition of ECINs to the activity of 2.4 × 106 units per gram of dough, hardening of bread crumb caused by three freeze/thaw cycles was alleviated by about 50% compared to the control. Additionally, the bread from frozen dough with added ECINs showed 50% larger specific volume compared to the control. The mechanism of cryoprotective effects from ECINs was possibly that ECINs helped in preserving the viability of yeast cells during freeze/thaw cycles. ECINs were able to improve the viability of log-phase and stationary-phase yeast cells in suspensions by about 100 and 10 fold, respectively, and viability of yeast in the frozen dough by 17%. This study revealed the potential of ECINs as a cryoprotectant for applications in the food and biotechnology industries.  相似文献   

20.
The influence the quality and shelf life of baked product has previously been reported to be effected by the time and temperature of the baking process. In this study, dough was baked at 219 °C by using different ovens (conventional, impingement or hybrid) or with doughs of different sizes (large or small) for varying times. During baking the temperature profile at the dough center was recorded. Texture, thermal properties and pasting characteristics of baked product with reference to baking conditions were investigated. Small breads baked in the hybrid oven had the highest heating rate (25.1 °C/min) while large breads baked in conventional oven had the lowest heating rate (6.0 °C/min). When the data are viewed as a function of heating rate in this study, the enthalpy of amylopectin recrystallization, rate of bread firmness and the amount of soluble amylose were all-lower at the slower heating rate. The differences observed in product firmness following storage are potentially a consequence of the extent of starch granule hydration, swelling, dispersion and extent of reassociation; all of which are affected by the heating rate during baking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号