首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Durum wheat (Triticum turgidum L. var. durum) is used predominantly for pasta products, but there is increasing interest in using durum for bread-making. The goal of this study was to assess the bread-making potential of 97Emmer19, an Emmer wheat (Triticum turgidum L. var. dicoccum) and in breeding lines derived from crosses of 97Emmer19 with adapted durum wheat cultivars. 97Emmer19 and its progeny were evaluated in 2005 and 2006 along with five durum wheat cultivars. Three bread wheat (Triticum aestivum L.) cultivars were included as checks to provide a baseline of bread making quality observed in high quality bread wheat cultivars. 97Emmer19 exhibited higher LV than all the durum wheat checks and approached the LV achieved with the bread wheat cultivar ‘AC Superb’. Breeding lines derived from 97Emmer19 had higher LV than those of the durum wheat checks, confirming that this trait was heritable. In general, durum wheat cultivars with elevated gluten strength and/or increased dough extensibility were noted to have higher LV. Dough extensibility appeared to be a more critical factor as gluten strength increased. These results indicate that there is potential to select for genotypes with improved baking quality in durum breeding programs.  相似文献   

2.
Cassava, Manihot esculenta Crantz subsp. Esculenta was a major food crop across Asia and Africa. The crop was a highly heterozygous perennial woody shrub cultivated from stem cuttings. Cassava improvement for starchy tuberous roots requires about 5-6 years from F1 hybrid seed germination to the selection of superior genotypes. Early selection with DNA markers could increase the number of elite genotypes identified. The aim here was to identify DNA markers associated with loci underlying plant and first branch height. In this study, 640 SSR primer pairs were used to screen for polymorphisms in two parental lines, cv. ‘Huaybong60’ (female) and cv. ‘Hanatee’ (male). There were 235 informative polymorphic markers used to genotype 100 individuals of an F1 mapping population. Genotype data was analyzed by JoinMap® version 3.0 software in order to construct a genetic linkage map. The map consisted of 156 linked SSR markers distributed across 25 linkage groups. The total length of the map was 845.2 cM (Kosambi cM) with 6.2 loci per linkage group, and an average distance between markers of 7.9 cM. Plant and first branch height of stem cuttings from the F1 mapping population were collected from individual lines planted in 2007-2009. Quantitative Trait Loci (QTL) underlying these traits were identified using mapQTL®/version 4.0. A total of seven QTL placed on four linkage groups were found for plant height. Of these, one major QTL was discovered on linkage group 2 near the marker SSRY155 with 17.9% of phenotypic variation explained (PVE). For first branch height, five QTL located on five linkage groups were identified. The two major QTL were located on linkage groups 2, and 20 at the loci SSRY323 and SSRY236 with 23.5% and 22.6% PVE, respectively. The QTL for plant and first branch height will serve as useful molecular markers in a cassava breeding program and may allow identification of the underlying genes in future.  相似文献   

3.
Quantitative trait loci (QTLs) responsible for gluten strength measured by SDS-sedimentation volume (SV), mixograph and grain protein content (GPC) were located on the molecular linkage map of a durum wheat recombinant inbred line population. QSv.macs-1B.1 flanked by Xgwm550–Glu-B3 was the most consistent QTL for SV identified in all the environments. The same QTL was also associated with mixograph peak energy, peak time and total energy. The Glu-B1 locus was at the center of another QTL responsible for SV, while, Glu-B2 influenced SV as well as mixograph peak energy and peak time. Apart from glutenin coding loci, QTLs influencing mixing parameters and GPC were located in three other marker intervals Xwmc48.2–Xpsp3030 (4B), Xgwm573–Xbarc231.1 (7A) and Xgwm46–Xgwm540.1 (7B). A total of 26 main effect QTLs and 10 digenic epistatic interactions (QQ) for quality traits were distributed over 11 chromosomes. Out of these, seven main effect QTLs and three QQ interactions were involved in interactions with environments (QE, QQE). The results indicated that along with chromosome 1B, chromosomes 4B, 7A and 7B are also important for improvement of gluten strength and GPC in durum wheat.  相似文献   

4.
Wheat kernel size and shape influence its flour yield and market price. A hexaploid wheat population of 185 recombinant inbred lines was evaluated for five kernel morphometric traits namely, 1000-kernel weight, kernel length, width, length–width ratio and factor form density in two diverse agro-climatic regions in India in five to eight year–location combinations. Additive main effects and multiplicative interaction analysis revealed significant contributions from genotype (G) and genotype × environment (G × E) effects for these traits. Quantitative trait locus (QTL) analysis by composite interval mapping (CIM) was performed using a linkage map of 251 SSR markers and 59 QTLs distributed on 16 chromosomes were identified. The majority of the QTLs were located on the D genome (44.07%) and the homeologous chromosomes of Group 2 (38.98%). Stable QTLs detected in three or more year–location combinations were identified for four traits. Multi-trait CIM showed 10 chromosomal regions harboring putative pleiotropic loci. Complexity in the genetic effects was further revealed by QTL analysis based on mixed-linear model that indicated 19 QTLs with significant individual effects (main-effect QTLs) and 14 QTL × QTL interactions. Five of these nineteen main-effect QTLs and one of the fourteen QTL × QTL interactions showed environmental influence.  相似文献   

5.
Starch granule (SG)-associated proteins are involved in starch synthesis and the interaction between SGs and the endosperm protein matrix. In this study, SG proteins were sequentially extracted with the chaotropic reagent, urea from 1 M to 4 M, and then profiled using an integrated proteomic approach including one- and two-dimensional electrophoresis, mass spectrometry and antibody-based enzyme-linked immunosorbent assay (ELISA). The results demonstrated that the SG-associated proteins were dominated by granule-bound starch synthase (GBSS), gliadin, low molecular weight glutenin subunits (LMW-GS), serine protease inhibitors, α-amylase inhibitors and puroindolines. A protein with an apparent molecular mass of 50 kDa, expressed in cultivar hard wheat Kukri but not in soft wheat Triller was identified as a novel member of the ‘S’ group of LMW-GS, designated as LMW-GS-‘S’. Further characterization using a broad wheat population revealed that LMW-GS-‘S’ was selectively expressed in hard wheat cultivars while deleted in all soft wheats tested. Its relationship with hardness was confirmed by its expression in tetraploid durum wheats, which are among the hardest wheats around the world. Monoclonal antibody (MAb) F8-14E6 against LMW-GS-‘S’ was developed and used in an ELISA to screen 90 Glu allele-defined doubled haploid Janz/Kukri wheat lines. The allele that encodes LMW-GS-‘S’ was mapped to GluB3h (p < 0.001).  相似文献   

6.
The effects of water stress on Fusarium foot and root rot in durum wheat were investigated in growth chamber, greenhouse and field tests in Tunisia. In the seedling stage, emergence of six durum wheat cultivars in the growth chamber was significantly reduced by inoculation with Fusarium culmorum and water stress (P<0.0001), with more disease under drier conditions. Additionally, the tiller number per mature plant, the 1000 grain weight and disease severity in mature stage were reduced by inoculation in greenhouse studies. In a field test, inoculation with F. culmorum significantly reduced the yield (P<0.001), by more than 17% for Om Rabiaa and 38% for Karim, the two cultivars tested. Yield was also significantly affected by precipitation and irrigation levels. The severity of the disease, estimated by the percentage of white heads, was separately affected by the cultivar (P<0.001) and inoculation (P = 0.0004). Percentage of white heads was 1.5 and 2 × higher in inoculated plants than non-inoculated for Om Rabiaa and Karim cultivars, respectively. Disease severity was highest in treatments with the greatest water stress. This is the first detailed study of water stress and F. culmorum on durum wheat in Tunisia, and indicates that cultivar resistance and irrigation management may be important in the management of Fusarium foot rot.  相似文献   

7.
A defining factor for the commercial value of durum wheat pasta is its amber colour, which depends on the semolina yellow pigment concentration and on the oxidative enzymatic activity. Among carotenoids controlling yellow colour, the presence of β-carotene is also important as precursors of vitamin A. The aim of the present study was to detect quantitative trait loci (QTL) for yellow pigment concentration, yellow index and individual carotenoid compounds (lutein, zeaxanthin, β-cryptoxanthin, α-carotene and β-carotene) in a durum segregant population. Total carotenoid concentration amounted to 37% of the yellow pigments, indicating unknown colour-producing compounds in the durum extracts. Lutein was the most abundant carotenoid, followed by zeaxanthin, α-carotene and β-carotene, while β-cryptoxanthin was a minor component. Phytoene synthase marker Psy-A1, 150 SSR and EST-SSR markers, and 345 DArT® markers, were used to construct the linkage map for subsequent QTL analysis. Clusters of QTL for total and/or one or more carotenoid compounds were detected on the same chromosome regions (2A, 3B, 5A and 7A) where QTL for yellow pigment concentration and yellow index were identified. The molecular markers associated to major QTL would be useful for marker-assisted selection programs to facilitate high carotenoid concentration with high nutritional carotenoid compounds in wheat grain.  相似文献   

8.
Volunteer winter cereals are found sporadically in maize (Zea mays L.) fields across southern Ontario. Seven field trials were conducted over a two-year period (2006 and 2007) at four locations to determine the efficacy of five acetolactate synthase (ALS)-inhibiting herbicides for the control of volunteer cereals applied at two post-emergence application timings (2–4 and 4–7 maize leaf tips). The volunteer cereals were a hard red winter wheat (Triticum aestivum L.) (‘Hyland AC Morley’), soft red winter wheat (‘Pioneer 25R47’), soft white winter wheat (‘Pioneer 25W41’), and a autumn rye (Secale cereale L.) (‘FR’) cultivar. Volunteer cereal competition in maize resulted in a yield reduction of up to 44%. Foramsulfuron, nicosulfuron, nicosulfuron/rimsulfuron provided greater than 70% control of the volunteer cereals at 56 days after treatment (DAT), while primisulfuron and rimsulfuron provided greater than 60% control. Volunteer cereal control with early and late application was greater than 82 and 61%, respectively. Hard red winter wheat was the most sensitive to the ALS-inhibiting herbicides with control of 84–93%. Soft red and soft white winter wheat cultivars were intermediate in sensitivity with control of 76–87%, while autumn rye was the least sensitive with control of at 56–71% control at 56 DAT. Maize yields were improved when volunteer cereals were controlled with the use of herbicides compared to the weedy control, but were lower than the weed-free control. Early herbicide application resulted in improved control of volunteer cereals and higher maize yield.  相似文献   

9.
Grain hardness is one of the most important quality characteristics of cultivated bread wheat (Triticum aestivum L.). A large deletion in the puroindoline a (Pina) gene or single nucleotide polymorphisms (SNPs) in the puroindoline b (Pinb) gene results in hard grain texture. So far, nine Pina alleles (Pina-D1aPina-D1b, Pina-D1kPina-D1q) and seventeen Pinb alleles (Pinb-D1aPinb-D1g, Pinb-D1pPinb-D1ab) have been identified in bread wheat. The major Pina and Pinb alleles identified in hard wheat cultivars are Pina-D1b, Pinb-D1b, Pinb-D1c and Pinb-D1d. In this study, a three-primer PCR system was employed to develop nine co-dominant STS markers for genotyping Pina-D1a and Pina-D1b, whereas temperature-switch (TS) PCR was used to develop six co-dominant SNP markers for genotyping the Pinb-D1a, Pinb-D1b, Pinb-D1c and Pinb-D1d alleles. These STS and TS-PCR markers were used to verify the grain hardness genotype of 100 wheat cultivars. The reliability and genotyping accuracy of TS-PCR markers were confirmed through sequencing of PCR products and a comparison with previously published results. Therefore, STS and TS-PCR markers offer a simple, cost-effective and reliable method for high-throughput genotyping Pina and Pinb alleles to select grain hardness in wheat quality breeding programs and for wheat market classification.  相似文献   

10.
为了解小麦品种潍麦8号抗叶锈基因在染色体上的位置,利用EST标记对潍麦8号2AS染色体上的抗叶锈病QTL进行检测和分子作图。2011-2013年,对抗病品种潍麦8号×感病品种郑州5389杂交得到的179个F2:3家系及其亲本进行成株期抗叶锈病鉴定,得到表型数据。前期研究已利用SSR标记在潍麦8号2AS染色体上检测到一个主效QTL,为了寻找与该QTL距离更近的标记,本试验通过35个位于2AS染色体上的EST标记检测亲本及其F2:3家系,结果表明,4个EST标记与抗叶锈病QTL连锁,该QTL位点被定位在BE444541和CD452782之间,区间距离为11.3cM,3年解释的遗传变异分别为63.59%、62.48%和62.43%。  相似文献   

11.
Low-molecular-weight glutenin subunits (LMW-GS) play a key role in determining the processing quality of the end-use products of common wheat. The objectives of this study were to identify genes at Glu-A3 locus, develop the STS markers, and establish multiplex PCR with the STS markers for Glu-A3 alleles. Gene-specific PCR primers were designed to amplify six near-isogenic lines (NILs) and Glenlea with different Glu-A3 alleles (a, b, c, d, e, f and g) defined by the protein electrophoretic mobility. Three Glu-A3 genes with complete coding sequence were cloned, designated as GluA3-1, GluA3-2 and GluA3-3, respectively. Seven dominant allele-specific STS (sequence tagged sites) markers were designed based on the SNPs (single nucleotide polymorphisms) among different allelic variants for the discrimination of the Glu-A3 protein alleles a, b, c, d, e, f and g. Four multiplex PCRs were established including Glu-A3b + Glu-A3f, Glu-A3d + Glu-A3f, Glu-A3d + Glu-A3g, and Glu-A3b + Glu-A3e. These markers and multiplex-PCR systems were validated on 141 CIMMYT wheat varieties and advanced lines with different Glu-A3 alleles, confirming that they can be efficiently used in marker-assisted breeding.  相似文献   

12.
A rising global population necessitates continued genetic improvement of wheat (Triticum spp.), but not without monitoring of unintended consequences to processors and consumers. Our objectives were to re-establish trends of genetic progress in agronomic and milling traits using a generational meter stick as the timeline rather than cultivar release date, and to measure correlated responses in flour quality and human wheat-sensitivity indicators. Grain yield and kernel size showed stepwise increases over cycles, whereas wheat protein content decreased by 1.1 g/100 g. Reduced protein content, however, did not result in lower dough strength pertinent to bread baking. A novel method of directly testing gluten elasticity via the compression-recovery test indicated a general increase in gluten strength, whereas the ratio of total polymeric to total monomeric proteins remained stable. Also showing no change with genetic progress in yield were flour levels of gluten epitopes within the key immunotoxic 33-mer peptide. The oligosaccharide fructan, present in milled and wholemeal flours, increased with increasing grain yield potential. While yield improvement in U.S. bread wheat was not accompanied by a decline in gluten strength or systematic shift in a key wheat sensitivity parameter, the unanticipated rise in total fructans does implicate potentially new dietary concerns.  相似文献   

13.
基于SRAP和SSR标记的小麦品质相关性状的QTL定位   总被引:2,自引:0,他引:2  
为了对小麦品质相关性状进行QTL定位,以两个品质性状差异较大的小麦品种西农981和陕麦159构建的169株F2群体和F2:3家系为材料,利用SRAP标记和SSR标记进行遗传图谱构建,并通过完备区间作图法对杨凌及三原两个环境下籽粒的粗蛋白质含量、淀粉含量、湿面筋含量和Zeleny沉降值进行QTL定位。结果表明,在两个环境下共检测到33个与品质性状相关的QTL,其中11个为粗蛋白含量QTL,分布于1A、3A、5A、6A、2B和4B染色体上,可解释表型效应的0.69%~2.48%;7个为淀粉含量QTL,分布于1A、6A、4B和2D染色体上,可解释表型变异的2.94%~6.99%;12个为湿面筋含量QTL,分布于1A、3A、5A、6A、2B、3B和4B染色体上,可解释表型变异的0.58%~2.37%;3个为Zeleny沉降值QTL,分布于3A、1B和3B染色体上,可解释表型变异的2.72%~11.31%。同时,在1A、3A、5A、6A、2B、4B染色体上存在粗蛋白质含量、淀粉含量和湿面筋含量QTL富集区,在后续研究中可重点关注。  相似文献   

14.
小麦新品种川农16的分子鉴定   总被引:4,自引:0,他引:4  
为有效利用基因资源,应用RAPD、STS和SSR等3种分子标记对小麦新品种川农16及其亲本和对照品种进行了分析鉴定。结果表明,供试材料在DNA水平上存在多态性。3种标记均能揭示川农16与对照品种在DNA水平上的遗传差异。川农16与双亲在相同位点的同源性也有差异,电泳带型表现出同父、同母、综合和不同于亲本的新带型等多种类型。其中,RAPD分析中共有22个引物(32.8%)和68条(42.8%)带纹、STS分析中有6个引物(50%)和21个引物一酶组合(17.5%)、而SSR分析中有11个位点(32.4%)能揭示材料间的差异。与RAPD和STS标记相比,SSR标记结合聚丙烯酰胺凝胶电泳和银染技术更适合于绘制小麦指纹图谱。  相似文献   

15.
Stagonospora nodorum blotch (SNB), caused by Phaeosphaeria nodorum, is one of the most devastating foliar diseases on wheat (Triticum aestivum L.) in the northern Great Plains of North America. This study was conducted, under controlled environmental conditions, to elucidate the genetics and map the resistance to SNB caused by spore inoculum and culture filtrate of P. nodorum isolate Sn2000. A hard red spring wheat population was developed from a cross between the susceptible cultivar Steele-ND and the resistant line ND 735 for this study. Two-leaf seedlings of the parents, F1 and F2 generations, and F2:6 recombinant-inbred lines (RILs) were inoculated with spore suspensions while independent two week old seedlings of segregating generations were infiltrated with culture filtrate. Disease reaction was assessed 8 days after inoculation based on a lesion-type scale while plants were evaluated for culture filtrate response four days after infiltration for the presence or absence of necrosis. Genetic analysis revealed that a single recessive gene, Tsn1, in ND 735 confers resistance to both spore suspension and culture filtrate of P. nodorum isolate Sn2000. Mapping analysis using Diversity Arrays Technology (DArT) and simple sequence repeat (SSR) markers indicates the gene, Tsn1, is located on the long arm of chromosome 5B and is flanked by the DArt markers wPt-8285 and wPt-3049 at a distance of 7.0 cM and 2.9 cM, respectively. This gene also controls resistance to tan spot caused by Pyrenophora tritici-repentis race 2. Results of this study reveal that wheat-P. nodorum interaction follows the toxin model of gene-for-gene hypothesis. Additionally, the finding of single gene control in the line ND 735 for both tan spot and SNB enhances the utility of the line ND 735 in wheat breeding program as a source of multiple disease resistance.  相似文献   

16.
17.
Heat and/or drought stress during cultivation are likely to affect the processing quality of durum wheat (Triticum turgidum L. ssp. durum). This work examined the effects of drought and heat stress conditions on grain yield and quality parameters of nine durum wheat varieties, grown during two years (2008–09 and 2009–10). Generally, G and E showed main effects on all the parameters whereas the effects of G × E were relatively small. More precipitation in Y09–10 may account for the large differences in parameters observed between crop cycles (Y08–09 and Y09–10). Combined results of the two crop cycles showed that flour protein content (FP) and SDS sedimentation volume (SDSS) increased under both stress conditions, but not significantly. In contrast the gluten strength-related parameters lactic acid retention capacity (LARC) and mixograph peak time (MPT) increased and decreased significantly under drought and heat stress, respectively. Drought and heat stress drastically reduced grain yield (Y) but significantly enhanced flour yellowness (FY). LARC and the swelling index of glutenin (SIG) could be alternative tests to screen for gluten strength. Genotypes and qualtiy parameters performed differently to drought and heat stress, which justifies screening durum wheat for both yield and quality traits under these two abiotic stress conditions.  相似文献   

18.
Grain protein concentration (GPC) affects wheat nutritional value and several critical parameters for bread and pasta quality. A gene designated Gpc-B1, which is not functional in common and durum wheat cultivars, was recently identified in Triticum turgidum ssp. dicoccoides. The functional allele of Gpc-B1 improves nitrogen remobilization from the straw increasing GPC, but also shortens the grain filling period resulting in reduced grain weight in some genetic backgrounds. We developed isogenic lines for the Gpc-B1 introgression in six hexaploid and two tetraploid wheat genotypes to evaluate its effects on bread-making and pasta quality. In common wheat, the functional Gpc-B1 introgression was associated with significantly higher GPC, water absorption, mixing time and loaf volume, whereas in durum wheat, the introgression resulted in significant increases in GPC, wet gluten, mixing time, and spaghetti firmness, as well as a decrease in cooking loss. On the negative side, the functional Gpc-B1 introgression was associated in some varieties with a significant reduction in grain weight, test weight, and flour yield and significant increases in ash concentration. Significant gene × environment and gene × genotype interactions for most traits stress the need for evaluating the effect of this introgression in particular genotypes and environments.  相似文献   

19.
Head smut of maize, caused by the fungus Sporisorium reiliana, is an important disease in the temperate maize-growing areas worldwide. In this study, we mapped and characterized quantitative trait loci (QTL) conferring resistance to S. reiliana using a F2:3 population of 184 families derived from a cross between Mo17 (resistant parent) and Huangzao4 (susceptible). The population was evaluated for resistance in replicated field trials with artificial inoculation of S. reiliana chlamydospores in Gongzhuling of Jilin Province and Harbin of Heilongjiang Province of China, two hot spots of head smut incidence, in 2003 and 2004. Genotypic and G × E variances for disease incidence were highly significant in the population. Heritability estimates for percentage disease incidence in the 2-location and 2-year evaluation ranged from 0.62 to 0.70. Composite interval mapping on a linkage map (1956.1 cM distance; 9.34 cM average interval) constructed with 84 SSR and 135 AFLP markers, identified five QTL, one each on chromosomes 1, 3 and 8 and two on chromosome 2, accounting for 5.0–43.7% of the phenotypic variance across four environments. One major QTL on chromosome 2 explaining up to 43.7% of the phenotypic variance can potentially be used in molecular marker-assisted selection for head smut resistance in maize.  相似文献   

20.
Five different Glu-B1 HMW-GS patterns were identified among a collection of diverse durum wheat genotypes grown in 2001 in two locations in western Canada. The durum wheat lines exhibited a wide range of dough and gluten strength characteristics as measured by alveograph and 2 g mixograph parameters, gluten index (GI), and protein composition as measured by unextractable polymeric protein (UPP) content and the ratio of high-molecular weight (HMW) glutenin subunits (GS) to low-molecular weight (LMW) GS. HMW-GS subunits patterns represented within the genotypes were 6+8, 7+8, 7+16, 14+15 and 20. Two of the genotypes expressed Glu-A1 HMW-GS 2* in combination with other HMW-GS. Approximately 95% of the durum genotypes were γ-gliadin 45 types. Analysis of variance indicated that genotype was a greater source of variation in all measurements than was growing location, with the exception of protein content which showed less variation contributed by genotype and more contributed by location than for other quality parameters. UPP was strongly associated with all strength measurements. All of the γ-gliadin 42 types were low in UPP and weak. Among the γ-gliadin 45 types, those possessing HMW-GS 20 were typically in the lower half of the UPP and strength range. There was no clear evidence of an association between any of the other HMW-GS patterns and gluten strength. The majority exhibited HMW to LMW-GS ratios that were within the relatively narrow range of 0.15–0.25, yet there were wide variations in dough strength among genotypes within that range. Increasing proportions of HMW-GS resulting in ratios of greater than 0.30 were generally associated with weak dough and gluten and low UPP content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号