首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term studies of changes in the properties of solonetzic soil complexes of the dry steppe zone under anthropogenic impacts (deep plowing, surface leveling, irrigation, and post-irrigation use) have been performed on the Privolzhskaya sand ridge and the Khvalyn and Ergeni plains. The natural morphology of solonetzic soils was strongly disturbed during their deep ameliorative plowing. At present, the soil cover consists of solonetzic agrozems (Sodic Protosalic Cambisols (Loamic, Aric, Protocalcic)), textural (clay-illuvial) calcareous agrozems (Eutric Cambisols (Loamic, Aric, Protocalcic)), agrosolonetzes (Endocalcaric Luvisols (Loamic, Aric, Cutanic, Protosodic), agrochestnut soils (Eutric Cambisols (Siltic, Aric)), and meadowchestnut soils (Haplic Кastanozems). No features attesting to the restoration of the initial profile of solonetzes have been found. The dynamics of soluble salts and exchangeable sodium differ in the agrosolonetzes and solonetzic agrozems. A rise in pH values takes place in the middle part of the soil profiles on the Khvalyn and Ergeni plains.  相似文献   

2.
The evolution of Russian concepts concerning the assessment of soil suitability for cultivation in relation to several campaigns on large-scale plowing of virgin steppe soils is examined. The major problems of agricultural land use in steppe areas—preservation of rainfed farming in the regions with increasing climatic risks, underestimation of the potential of arable lands in land cadaster assessments, and much lower factual yields in comparison with potential yields—are considered. It is suggested that the assessments of arable lands should be performed on the basis of the soil–ecological index (SEI) developed by I. Karmanov with further conversion of SEI values into nominal monetary values. Under conditions of land reforms and economic reforms, it is important to determine suitability of steppe chernozems for plowing and economic feasibility of their use for crop growing in dependence on macroeconomic parameters. This should support decisions on optimization of land use in the steppe zone on the basis of the principles suggested by V. Dokuchaev. The developed approach for assessing soil suitability for cultivation was tested in the subzone of herbaceous–fescue–feather grass steppes in the Cis-Ural part of Orenburg oblast and used for the assessment of soil suitability for cultivation in the southern and southeastern regions of Orenburg oblast.  相似文献   

3.
A detailed characterization of soils in the upper reaches of the Khoseda-Yu River (the Bol’shezemel’skaya tundra in the northeast of European Russia) is given. The classification position of these soils is considered. The specificity of soil formation under tundra communities and under forest groves within the tundra zone is examined. The polygenetic nature of the studied soils is shown; it is explained by the repeated shifts of zonal boundaries within the forest-tundra ecotone.  相似文献   

4.
The results of experimental studies of the postagrogenic transformation of loamy soddy-podzolic soils on the southern slope of the Klin-Dmitrov Moraine Ridge are discussed. A chronosequence of soils (arable soils (cropland)-soils under fallow with meadow vegetation-soils under secondary forests of different ages-soils under a conventionally initial native forest) was examined, and the stages of the postagrogenic transformation of the automorphic soddy-podzolic soils were identified. The differentiation of the former plow horizon into the A1 and A1A2 horizons (according to the differences in the humus content, texture, and acidity) served as the major criterion of the soil transformation. A stage of textural differentiation with clay depletion from the uppermost layer was identified in the soils of the 20- to 60-year-old fallows. The specificity of the postagrogenic transformation of the soils on the slopes was demonstrated. From the methodological point of view, it was important to differentiate between the chronosequences of automorphic and semihydromorphic soils of the leveled interfluves and the soils of the slopes. For this purpose, a series of maps reflecting the history of the land use and the soil cover pattern was analyzed. The cartographic model included the attribute data of the soil surveys, the cartographic sources (a series of historical maps of the land use, topographic maps, remote sensing data, and a digital elevation model), and two base maps: (a) the integral map of the land use and (b) the map of the soil combinations with the separation of the zonal automorphic, semihydromorphic, and erosional soil combinations. This scheme served as a matrix for the organization and analysis of the already available and new materials.  相似文献   

5.
Specific features of soil formation and soil cover patterns in mountain forests of the East Khubsugul region are discussed. A scheme of the vertical zonality of soils under mountain forests is given. It is shown that soils of the uppermost forest zone are permafrost-affected. Seasonally freezing soils under forest vegetation predominate at lower heights and in the southern part of the region near the boundary with the steppe zone. The major soil combinations under different types of forest vegetation are described. The morphological, physicochemical, and chemical characteristics of widespread forest soils are given.  相似文献   

6.
This study was carried out to evaluate the effects of deforestation on physical and chemical properties of soils under native forest in the Mediterranean region of northwestern Jordan. Land use/cover maps of 1953, 1978 and 2002 were interpreted and analysed within GIS to quantify the shift from forest to rainfed cultivation. Six sites were sampled in a non‐changed forest and in cultivated fields, three for each. Different soil properties of texture, bulk density, organic matter, total nitrogen, pH, cation exchange capacity (CEC), phosphorous and potassium were analysed. Results showed that many forests were changed into cultivated lands at a rate more than the reforestation. Subsequently, adverse effects on the studied physical and chemical properties were observed. The most affected properties were particle size distribution, bulk density of surface soil and subsoil. Organic matter and CEC decreased in cultivated soil as compared to the forest soil. Cultivated soils were found to exhibit a significantly lower status in physical and chemical soil properties as compared to forest soils. This general decline in the soil physical and chemical properties, in turn, contributed to soil erosion, reduction of soil fertility and land degradation. There is an urgent need to improve soil quality by developing sustainable land use practices to reduce the rate of soil degradation and to ensure long‐term sustainability of the farming system in the study area and in similar biophysical settings. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The impact of land use on soil organic matter was investigated. Five land cover types (pine forest, olive groves, wheat, wheat/maize cultivation systems, and a shrub pasture) belonging to three land-use categories from the same catchment in the island of Lesvos, Greece, were used. The soils developed under similar pedogenetic processes and accepted similar agricultural practices for at least 30 years. The results showed that the land-use and cover types ranged according to their total soil carbon (C) content as follows: forest > double cultivation > wheat > olive > pasture. Crop plantations contained 31 to 40% less C at their upper 0- to 45-cm layer than forest. Pasture had shallow soils with a small C accumulation but high C concentration, whereas olive groves had the lowest concentrations of both soil C and nitrogen (N). Olive grove soils were the most prone to degradation but possessed the greatest potential for C sequestration.  相似文献   

8.
The soil cover patterns in the Kabansk district (the Baikal region of the Buryat Republic), including the Selenga River delta, are analyzed. A soil map of this area has been developed on a scale of 1 : 500000. Stony organic soils are widespread in the tundra zone. Mountain-meadow soddy soils and tundra podburs (under dwarf pine) are formed at lower heights around lakes and in glacial valleys. Kabansk district includes taiga landscapes on the northern slopes of the Khamar-Daban Ridge with the predominance of podburs, podzols, soddy-taiga soils, and burozems. Agrolandscapes occur in the Nizhneselenginsk meadow-bog and forest-steppe natural region with a predominance of soddy forest, soddy gray forest, meadow, alluvial, meadow-bog, and bog soils. Data on the land evaluation in the agricultural part of the studied region are given.  相似文献   

9.
Normatives of changes in the physical properties of plowed typical and leached heavy loamy and light clayey chernozems under their intensive agricultural use are developed for two major provinces of the forest-steppe zone of European Russia. The limits of the optimal, permissible, and critical values of the physical properties of the plow layer for crop growth are determined. It is shown that the variation in the physical properties of the plow layer of chernozems is determined not only by the zonal-provincial features but also by the period and type of their use and the farming standards. In the plow layer, the natural differences in the physical properties of chernozems at the subtype level are significantly leveled by agrotechnical measures and the similar requirements of cultivated crops. Upon high farming standards, the physical properties of plowed chernozems on fields with high and moderate fertility levels remain close to the optimum or permissible values. The technogenic compaction of the plow layer of chernozems of different textures in the forest-steppe zone and the corresponding decrease in the yield of cereals are predicted on the basis of known models. The developed normatives of changes in the physical properties of cultivated chernozems can be applied to assess the modern state of the physical conditions of these soils and the tendencies of their alteration; they can serve as a basis for improving regional systems of land use.  相似文献   

10.
The postagrogenic dynamics of acidity and some parameters of humus status have been studied in relation to the restoration of zonal vegetation in southern taiga (podzolic and soddy-podzolic soils (Retisols)), coniferous-broadleaved (subtaiga) forest (gray forest soil (Luvic Phaeozem)), and forest-steppe (gray forest soil (Haplic Phaeozem)) subzones. The most significant transformation of the studied properties of soils under changing vegetation has been revealed for poor sandy soils of southern taiga. The degree of changes in the content and stocks of organic carbon, the enrichment of humus in nitrogen, and acidity in the 0- to 20-cm soil layer during the postagrogenic evolution decreases from north to south. The adequate reflection of soil physicochemical properties in changes of plant cover is determined by the climatic zone and the land use pattern. A correlation between the changes in the soil acidity and the portion of acidophilic species in the plant cover is revealed for the southern taiga subzone. A positive relationship is found between the content of organic carbon and the share of species preferring humus-rich soils in the forest-steppe zone.  相似文献   

11.
Data on soddy-podzolic soils with the second humus horizon in the southwestern part of Kirov oblast are discussed. These soils were first studied by the authors on mantle calcareous loams of the Yarano- Kokshagskaya Plain in the eastern part of the Central Russian southern-taiga province of medium-humus soddy-podzolic soils of European Russia. The aim of this study is to reconstruct the history of the development of soil properties and soil cover in automorphic landscapes of this region. Morphology, substantive properties of mineral and organic components, soil genesis and evolution are analyzed using a set of physical, chemical, physicochemical, biochemical, and geochronological methods. The results of our study attest to the relict character of second the humus horizon and polygenetic nature of the studied soils. These soils have passed through two essentially different evolutionary stages in the Holocene: the accumulative stage in the first half of the Holocene and the accumulative-eluvial stage of erasing evolution with preservation of some inherited features in the second half of the Holocene. According to their properties, the studied soils are analogous to the earlier studied southern-taiga Vyatka–Kama province of high-humus soddy-podzolic soils of the northeast. At present, plowing of these soils leads to a partial or complete destruction of the second humus horizon; thus, spontaneous degradation processes are complemented by the human-induced soil degradation. A tendency for a gradual disappearance of these soils from the soil cover under the influence of natural and anthropogenic factors has been noted. The materials presented in this paper may be useful for organization of specially protected soil areas in the southwestern part of the Vyatka River basin.  相似文献   

12.
Chernozem-like soils with light-colored acid eluvial horizons are widespread in the forest-steppe zone of European Russia. Their formation is related to gleying under the conditions of a stagnant-percolative water regime on leached rocks. It is closely associated with the evolution of salinized soils (Gedroits’s scheme). However, these soils have not been included in the soil classifications of the Soviet Union and Russia. Based on the principles of substantial-genetic classification, one of the authors of this article [3–5, 10] referred them to gleyed podzolic chernozem-like soils, which are considered as an individual genetic soil type. With respect to agroecological aspects, they are different from the leached chernozems in their low productivity and difficulty of tillage. This article covers the problems of genesis, classification, and melioration of gleyed podzolic chernozem-like soils in the north of the forest-steppe zone of European Russia and their possible association with dark-colored podbels.  相似文献   

13.
An assessment of the agronomic potential of arable lands in the forest-steppe zone of Russia (by the example of separate soil-agronomic districts) on the basis of the soil-agroclimatic index developed under the supervision of I.I. Karmanov is considered. The agricultural areas (64) separated on the territory of Russia and characterizing soil-agroclimatic conditions for cultivation of major and accompanying crops are differentiated into soil-agronomic districts (SADs) with due account for the administrative division of the country. A large diversity of agroclimatic and agronomical conditions creates the prerequisites for the inclusion of administrative regions into different SADs. The SADs concept implies a detailed analysis of information on the soil properties, geomorphic conditions, and farming conditions. The agronomic potential for major crops in the key SADs in the forest-steppe zone of the East European Plain (Voronezh and Penza oblasts) is high, though it is 25–30% lower than that in the North Caucasus (for winter wheat, sugar beet, sunflower, and spring barley) and in Kaliningrad oblast (for oats). In Western Siberia (Tyumen, Omsk, and Novosibirsk oblasts) and Eastern Siberia (Krasnoyarsk region and Irkutsk oblast), the agronomic potential of spring crops (wheat, barley, and oats) is only utilized by 35–45% in comparison with their European analogues. In the Far East with its monsoon climate and soil conditions (meadow podbels, brown forest soils), the crops characteristic of the European forest-steppe (soybean, rice, sugar beet) and the Trans-Ural forest-steppe (spring wheat) are cultivated. Their biological potential is utilized by only 50–60% in comparison with the European analogues. The materials of this study give us information on the degree of correspondence between the soilagroclimatic potential of the territory and the biological potential of cultivated crops. This is important in the context of improving the natural-agricultural zoning of Russia and its information support.  相似文献   

14.
A computer-based analysis of thin sections has been applied to study pore space in the plow horizons of loamy soils in European Russia and Ukraine. Differences in the morphology of soil macro-and mesopores are shown. It is argued that agrogenic impacts result in the convergence of the shape and orientation of macropores in plowed loamy soils of the forest, forest-steppe, and steppe zones. At the same time, this convergence is not observed for the soil mesopores.  相似文献   

15.
The surface properties (specific surface area and wetting heat) of the solid phase were estimated for the main soil types of European Russia: soddy-podzolic, alluvial, and gray forest soils; typical, leached, ordinary, and vertic chernozems; and soils of the solonetzic complex. It was found that the values of the specific surface area and wetting heat are indicative of particular features of the genetic horizon of each soil type. Changes in these soil properties under the effect of different anthropogenic impacts were studied. The bonding strength between the adsorbed water and the soil solid phase was characterized. It was shown that the water content at the potential of the first wetting film layer is close to the content of strongly bound water calculated from the wetting heat of the soils.  相似文献   

16.
Temperature regimes of eleven plots with tundra soils were studied in the northeastern part of European Russia within the discontinuous permafrost zone. The duration of soil temperature records ranged from 1 to 9 years. The selected plots were representative of the diversity of landscape and soil conditions in the study area. Virgin tundra soils, a cultivated soil under sown grassland, and soils of secondary biocenoses that developed in place of the former sown grasslands were studied. It was shown that the winter and mean annual temperatures in the permafrost-affected soils drastically differ from those in the soils without permafrost, though the summer temperatures in the root zone of both soil groups are relatively similar. The soil temperature regimes were classified according to Russian (Dimo, 1972) and American (Soil Taxonomy, 1999) classification systems. The degree of detail provided by the Russian system proved to be somewhat greater; at the same time, in contrast to the American system, it does not make it possible to distinguish the soils with warm permafrost in the discontinuous permafrost zone from the soils without permafrost at all.  相似文献   

17.
A sequence of dark gray forest soils developing under a virgin broadleaved forest and under croplands used for 100 and 150 years was studied in the southern part of the forest-steppe zone on the Central Russian Upland. The application of multiple study methods for these objects made it possible to trace the evolutionary changes in the soil properties during the 150-year-long period of regular plowing. Several important trends in the soil development under the impact of the cultivation were revealed: (a) an increase in the thickness of the humus layer (according to the measurements at 20 points for each of the objects), (b) an increase in the amount of mole tunnels, (c) a decrease in the coefficient of the textural differentiation of the soil profile (with respect to the clay content), (d) an increase in the contents and reserves of the major nutrients upon a stable pool of humus in the upper meter, and (e) some alkalization and carbonization of the profile. Powdery accumulations of carbonates and whitish calcareous coatings on the faces of prismatic peds appeared at a depth of more than 130 cm. The plowed soils contained thin deep fissures, the surface of which was covered by dark-colored clayey-humus coatings at the depth of 50–110 cm. The radiocarbon age of the humus in these coatings was 500–1000 years younger than the age of the humus in the soil mass between the fissures. This set of features attests to the evolution of the plowed dark gray forest soils into chernozems under the impact of plowing.  相似文献   

18.
Uncertainties in estimates of soil carbon (C) stocks and sequestration result from major gaps in knowledge of C storage in soils, land‐use history, the variability of field measurements, and different analytical approaches applied. In addition, there is a lack of long‐term datasets from relevant land‐use systems. As in many European countries, a national database on soil organic carbon (SOC) including all relevant information for the determination of soil C stocks is likewise missing in Germany. In this paper, we summarize and evaluate the present state of knowledge on organic‐C contents/pools in soils of Germany and discuss the need for the acquisition and access to new data on soil organic carbon. Despite the number of agricultural sites under permanent soil monitoring, regional surveys on SOC, comprehensive ecosystem studies, and long‐term field experiments, there is a striking lack of data in Germany particularly with regard to agricultural soils. Apart from a missing standardization of methods and homogeneous baseline values, the implementation of a periodic, nation‐wide soil inventory on agricultural soils is required in order to simultaneously record information on land use, land‐use change, and agricultural practice. In contrast, the existing national inventory of forest soils provides information on C‐stock changes in forest soils, although there is some concern with regard to the representativeness of the sampling design to adequately address the problem of spatial heterogeneity and temporal variability. It is concluded that the lack of comprehensiveness, completeness, actuality, data harmonization, and standardized sampling procedures will further prevent the establishment of a SOC database in Germany with regard to the monitoring of trends in soil C pools and fluxes and the assessment of long‐term C‐sequestration potentials of soils under different land use. A future soil inventory should represent the heterogeneity of organic matter through functionally different SOC pools, topsoil characteristics as well as content, pool, and flux data for the deeper mineral‐soil compartments.  相似文献   

19.
An analogous time series of fallow ecosystems (gray soils (Luvic Phaeozems) plowed and fallowed for 2, 7, 20, 60, and more than 120 years) in the broad-leaved forest zone of Orel oblast has been analyzed. Changes in carbon pool and CO2 emission in the course of postagrogenic succession during the vegetation and winter seasons have been estimated. The restoration of ecosystems on Luvic Phaeozems follows regularities revealed in analogous studies of southern taiga Podzols and forest-steppe Chernozems. Analogously to the other studied zonal chronosequences, total annual soil respiration on Luvic Phaeozems reaches the initial level of undisturbed ecosystems simultaneously with the restoration of phytomass reserve, although significantly earlier than the organic carbon reserve in soils is restored. According to regression models, among the zonal fallows in European Russia, including the southern taiga (Podzols), mixed forests (Luvisols), broadleaved forests (Luvic Phaeozems ), forest-steppe (Chernozems) and dry steppe (Calcisol–Solonetz soil complexes), the mean annual soil respiration is maximum in the zone of gray soils and Chernozems. The increase in soil respiration under artificial wetting (Birch effect) on fallows in the broad-leaved forest zone is minimum among the studied zonal chronosequences: 1.1 ± 0.6 (no effect), which corresponds to the optimal hydrothermal conditions in this zone.  相似文献   

20.
The history of transformation of soils and soil cover in the Tushinskii and Pokrovskoe-Streshnevo forest parks of Moscow is investigated. The peculiarities of the influence of anthropogenic activities on the soil cover and soils are examined with the use of maps and textual materials for a period of more than four centuries. The historical stages of anthropogenic disturbance are established, and different ways of anthropogenic transformation of the soil profiles are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号