首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Secondary seed dormancy has been linked to seedbank persistence of volunteer oilseed rape (Brassica napus) in western Canada. It has been suggested that there is a genetic component to secondary seed dormancy expression in oilseed rape, but little is known of its importance in relation to non‐genetic factors. In a series of experiments we investigated the relative importance of genotype, seed size, time of windrowing and pre‐ and post‐harvest environment on the expression of secondary seed dormancy. We found that genotype contributed between 44 and 82% to the total variation in secondary seed dormancy. A broad range in secondary seed dormancy expression was observed among 16 genotypes examined. Nevertheless, three‐quarters of the genotypes investigated exhibited relatively high potential for the expression of secondary seed dormancy (back‐transformed mean 71% dormant seeds). Seed size contributed 21% to the total variation, while the influence of seed maturity (harvest regime) on secondary seed dormancy expression was negligible. Despite diverging environmental conditions during the four growing seasons spanning these experiments, the influence of pre‐harvest environment on seed dormancy expression was relatively small and ranged from 0.1% to 4.5%. Secondary seed dormancy potential decreased over time during seed storage. This decrease was greatest when seeds were stored at ambient temperatures and least when seeds were stored at ?70°C.  相似文献   

2.
Seed dormancy and persistence in the soil seedbank play a key role in timing of germination and seedling emergence of weeds; thus, knowledge of these traits is required for effective weed management. We investigated seed dormancy and seed persistence on/in soil of Chenopodium hybridum, an annual invasive weed in north‐western China. Fresh seeds are physiologically dormant. Sulphuric acid scarification, mechanical scarification and cold stratification significantly increased germination percentages, whereas dry storage and treatments with plant growth regulators or nitrate had no effect. Dormancy was alleviated by piercing the seed coat but not the pericarp. Pre‐treatment of seeds collected in 2012 and 2013 with sulphuric acid for 30 min increased germination from 0% to 66% and 62% respectively. Effect of cold stratification on seed germination varied with soil moisture content (MC) and duration of treatment; seeds stratified in soil with 12% MC for 2 months germinated to 39%. Burial duration, burial depth and their interaction had significant effects on seed dormancy and seed viability. Dormancy in fresh seeds was released from October to February, and seeds re‐entered dormancy in April. Seed viability decreased with time for seeds on the soil surface and for those buried at a depth of 5 cm, and 39% and 10%, respectively, were viable after 22 months. Thus, C. hybridum can form at least a short‐lived persistent soil seedbank.  相似文献   

3.
BACKGROUND: Infestation of seeds by pests during storage leads to deterioration in quality. Seed coating is an effective option to overcome the menace. Unlike synthetic fungicidal seed coats, little is known of those based on botanicals. This study aims at developing azadirachtin‐A‐based pesticidal seed coats to maintain seed quality during storage. RESULTS: Polymer‐ and clay‐based coats containing azadirachtin‐A were prepared and evaluated for quality maintenance of soybean seed during storage. Gum acacia, gum tragacanth, rosin, ethyl cellulose, hydroxyethyl cellulose, polyethyl methacrylate, methyl cellulose, polyethylene glycol, polyvinyl chloride, polyvinyl acetate, polyvinyl pyrrolidone and Agrimer VA 6 polymers and the clay bentonite were used as carriers. The time for 50% release (t1/2) of azadirachtin‐A into water from the seeds coated with the different coats ranged from 8.02 to 21.36 h. The half‐life (T1/2) of azadirachtin‐A in the coats on seed ranged from 4.37 to 11.22 months, as compared with 3.45 months in azadirachtin‐A WP, showing an increase by a factor of nearly 1.3–3.3 over the latter. The coats apparently acted as a barrier to moisture to reduce azadirachtin‐A degradation and prevented proliferation of storage fungi. Polyethyl methacrylate, polyvinyl acetate and polyvinyl pyrrolidone were significantly superior to the other polymers. Azadirachtin‐A showed a significant positive correlation with seed germination and vigour, and negative correlation with moisture content. CONCLUSION: Effective polymeric carriers for seed coats based on azadirachtin‐A are reported. These checked seed deterioration during storage by acting as a barrier to moisture and reduced the degradation of azadirachtin‐A. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
对营养竞争拮抗测定方法进行了改进,对接法将芽孢杆菌JPC-2与小麦纹枯病菌接种于大豆麦麸(SWB)培养基上,JPC-2可在SWB培养基上迅速扩展并完全抑制小麦纹枯病菌的菌丝生长。田间试验表明,芽孢杆菌JPC-2液体菌剂(107cfu/mL,1∶100)处理种子对小麦纹枯病的冬前期防效高于扬花期防效,防治效果为61.9%,高于3%苯醚甲环唑包衣处理(用量为种子质量的0.3%);对小麦根腐病的防治效果可达46.8%,与空白对照差异显著(p<0.05);并使小麦增产73.5%,高于3%苯醚甲环唑种衣剂。芽孢杆菌JPC-2固体菌剂(106cfu/mL,225kg/hm2)沟施于土壤,再播种液体菌剂包衣(107cfu/mL,药种比1∶30)的小麦种子,对小麦纹枯病菌的冬前期防效为68.9%,扬花期防效为59.7%,小麦增产38.9%,与0.2%戊唑醇种衣剂(1∶50)增产效果相当。  相似文献   

5.
Iresine diffusa has become more abundant under no‐till soyabean in Argentina. The influence of temperature, light, cold‐wet storage, osmotic potential, dry storage and depth of seed burial on germination and emergence of I. diffusa was examined in a growth chamber experiment. Iresine diffusa seeds germinated at the highest proportion (>0.80) in all fluctuating day/night temperatures tested. Conversely, under a constant temperature regime, maximum germination rates occurred at 15 (0.78) and 20°C (0.82), and minimum germination rates occurred at 10 (0.19) and 30°C (0.36). Seed germination was not influenced by light exposure. However, germination decreased after 12 (0.76) and 16 (0.65) weeks in cold‐wet storage. To reduce germination significantly, ?0.4 MPa of osmotic potential (induced by PEG‐6000) or 120 mmol L?1 of salt (NaCl) concentration was required. Seeds of I. diffusa showed high viability (0.85) after 720 days of dry storage. Low emergence was recorded for seeds buried at 2 cm, and seedling emergence was completely inhibited when seeds were buried at 5 and 10 cm. Iresine diffusa seeds had high viability and were capable of emerging in a broad range of environmental conditions. The thermal germination conditions, shallow soil depths and high moisture conditions in germination phase for I. diffusa are congruent with the conditions in Argentina no‐tillage soyabean. Thus, no‐tillage could provide better conditions for germination than conventional tillage systems. However, due to the fact that I. diffusa can reproduce by rhizomes, further research should be conducted to understand the relative importance of the vegetative reproductive strategy in relation to the presence and persistence of this weed in fields.  相似文献   

6.
Mikania micrantha (mile‐a‐minute) reproduces both by seed and vegetatively. A study to determine the possible pollinators, seed production rates, temperature and salinity limitations to germination and its seedbank size and persistence was conducted in Viti Levu, Fiji. Representatives of the Diptera had the greatest percentage of all floral visits (38%), followed by Hymenoptera (34%) and Lepidoptera (27%), while the honeybee was the most recurring visitor (18% of all visits). Flower heads (capitula) within the inflorescence commonly formed four viable seeds, resulting in 60 820 filled seed being produced per m2. However, the seedbanks formed were not massive (600 seed m?2) and they were moderately persistent (T50: 1–3 years). Seed germination from both high and moderate rainfall regions occurred rapidly, under a wide range of temperature regimes, with no primary dormancy being observed. This study indicates that the seed reproductive success of M. micrantha in the two rainfall regions of Fiji is due to a number of factors, including the production of large numbers of flowers, successful pollination by local insects and the subsequent production of a large number of viable seeds. These seeds have high viability, no dormancy and are capable of forming small‐to‐medium seedbanks that are moderately long‐lived. In addition, seeds can germinate under a wide range of temperature and salinity conditions. This knowledge on seed production, biology, longevity and salt tolerance is vital in the development of management plans of M. micrantha in Fiji.  相似文献   

7.
Dormant seeds of oilseed rape (OSR) can persist in the soil and cause OSR volunteers in subsequent crops. Several approaches were tested in the laboratory and in the field to determine whether dormancy induction and seed persistence can be reduced by using dormancy‐breaking exogenous compounds. In a laboratory experiment, OSR seeds were coated with KNO3, micronutrients, or gibberellic acid (GA) prior to a secondary dormancy test. In a field experiment, seeds were coated in a manner analogous to the laboratory experiment, and then buried 10 cm deep in the soil for 2.5 months. In a practical demonstration, OSR plants were sprayed with either urea ammonium nitrate (UAN) or a commercial product containing GA prior to seed maturity. Seed coating (laboratory and field experiments) reduced secondary dormancy and seed persistence in the field by up to 99%. The efficiency of the treatments for mitigating secondary dormancy (laboratory and field experiments) in decreasing order was GA > micronutrients > KNO3 > control. With pre‐maturity spraying (practical demonstration), UAN reduced primary dormancy by up to 77% and the development of secondary dormancy by up to 38%; GA had no effect. Dormancy and seed persistence of OSR seeds may be reduced by a pre‐maturity UAN treatment of OSR mother plants, or by applying appropriate exogenous compounds to OSR seeds.  相似文献   

8.
Chenopodium album became a problem weed in sugar beet production, due to resistance to metamitron, a key herbicide in this crop. Dispersal of the seeds from resistant biotypes may occur due to spread by wind, animals, agricultural machinery or manure. This study examined the effect of ensiling, digestion by cattle and storage in slurry and farmyard manure on the germination and viability of the seeds of one susceptible and three resistant C. album populations. After 4 weeks in a maize silo, seed viability of C. album populations was reduced drastically to 0–5%. Incubation for 24 h in the rumen followed by a post‐ruminal digestion in vitro of intact seeds only resulted in a small reduction in viability in one C. album population. Storage in a slurry cellar for 16 weeks reduced the viability of intact seeds of the C. album populations to 25–60%. Only 0–1% of the seeds remained viable after storage in a farmyard manure heap for 4 weeks. An accelerated ageing experiment showed seed persistence to be population specific and less related to seed weight. Keeping a fresh maize silo closed for at least 4 weeks and heaping farmyard manure are excellent preventive measures to limit the spread of resistant C. album seeds between fields.  相似文献   

9.
为评价41.7%氟吡菌酰胺悬浮剂防治水稻拟禾本科根结线虫Meloidogyne graminicola的应用潜力,将氟吡菌酰胺与吡虫啉种衣剂混合后采用种子包衣法及喷洒法研究其对水稻拟禾本科根结线虫的田间防效,并测定了不同施药方法对水稻生长和产量的影响。结果表明,氟吡菌酰胺4.2、8.3、12.5 g(a.i.)/kg种子与吡虫啉18.0 g(a.i.)/kg种子混合包衣处理,播种后35 d其根结抑制率和防效分别为41.0%~51.8%和47.4%~58.6%,土壤中2龄幼虫减退率为38.6%~40.4%,显著高于单施吡虫啉18.0 g(a.i.)/kg种子处理。水稻播种后连续3次以氟吡菌酰胺250.2、375.3、500.4 g(a.i.)/hm2进行土壤喷洒,最后1次施药后7 d,其根结抑制率和防效分别为81.0%~89.9%和65.9%~74.3%,土壤中2龄幼虫减退率为65.4%~73.4%,均显著高于对照药剂克百威1 800.0 g(a.i.)/hm2处理。氟吡菌酰胺各处理对水稻苗期生长均有较好的保护作用,能显著提高千粒重和有效穗数,产量比空白对照增加50.0%~61.2%,保产效果显著。水稻播种后35 d采用氟吡菌酰胺对稻田进行1次喷洒,对水稻具有一定的保护作用,保产效果不明显。表明采用氟吡菌酰胺与吡虫啉混合包衣种子处理及在水稻苗期进行喷洒处理对水稻拟禾本科根结线虫防效显著,具有显著的保产效果。  相似文献   

10.
Seed populations of Avena sterilis ssp. ludoviciana (Durieu) Nyman were monitored in a naturally occurring infestation throughout its life cycle. Considering the large weed population present (298panicles m?2), total seed production was relatively low: 3838 seeds m?2. Only 68% of these seeds were recovered from the soil surface and a further 3% were removed with wheat grain and straw during harvest operations. The numbers of seeds from the stubble between mid-July and mid-September were relatively low (10%). Ploughing the stubble in October buried most of the recently produced seed rain and resulted in a relatively uniform vertical distribution of the seedbank. Maximum seed persistence in the soil ranged from 27 to 43 months (depending on the experimental technique used to do the study). Seed decline followed an exponential pattern on a yearly basis, with the greatest decline taking place between October and April (57–90% in year 1 and 10–40% in year 2), Between May and September the buried seed populations remained practically constant. Seedbank depletion was primarily due to seedling production (25%) and ‘lethal’ germination (24%). Although the depth of burial had very little effect on seed survival, the mode of seed disappearance was closely related to their depth in the soil. Seed depletion through ‘lethal’ germination increased with increasing depth in the soil, whereas depletion through seedling emergence decreased with increasing depth.  相似文献   

11.
L Ziska 《Weed Research》2013,53(2):140-145
Soyabean (Glycine max) was grown at ambient and projected levels of atmospheric carbon dioxide (+250 μmol mol?1 above ambient) over two field seasons with and without the presence of a weed, Abutilon theophrasti, to quantify the potential effect of rising atmospheric carbon dioxide concentration on weed–crop interactions and potential yield loss in soyabean. Under weed‐free conditions, elevated CO2 resulted in stimulations in soyabean seed yield and associated components, including pod number. At an approximate density of 6 plants m?2, A. theophrasti competition resulted in a significant reduction (?40%) in soyabean seed yield. Although differences in seed yield reduction by A. theophrasti were observed as a function of year, the relative decrease in seed yield with A. theophrasti biomass did not differ in response to CO2. Although careful weed management will be necessary if CO2‐induced increases in seed yield for soyabean are to be achieved, these data suggest that soyabean seed yield may be more resilient in competition with A. theophrasti as a function of rising atmospheric levels of carbon dioxide.  相似文献   

12.
为评价种衣剂防治玉米田双斑长跗萤叶甲的可行性,通过选用内吸性强、持效期长的种衣剂,设置常规剂量对玉米种子进行包衣处理,采取田间罩网小区试验,明确种衣剂对双斑长跗萤叶甲的防效及对玉米出苗、生长的安全性。结果表明,30%噻虫嗪FS、10%氟虫腈FSC、38%噻虫胺FSC、40%噻虫嗪·溴氰虫酰胺FS、30%噻虫嗪·氟虫腈FSC、30%噻虫胺·氟虫腈FSC、20%噻虫胺·氟啶虫酰胺FSC等7种种衣剂对玉米出苗、生长均安全;38%噻虫胺FSC有效成分用量7.6 g/kg种子处理对双斑长跗萤叶甲的防治效果为70.6%~78.5%,防效最好,显著高于除30%噻虫胺·氟虫腈FSC 7.5 g/kg处理外的其他种衣剂处理(P<0.05),并且可使双斑长跗萤叶甲成虫羽化出土始现期、出土高峰期推迟5~10 d,可以使成虫高峰期避开玉米吐丝期。玉米田双斑长跗萤叶甲防控前移推荐使用38%噻虫胺FSC,有效成分剂量为7.6 g/kg种子。  相似文献   

13.
Plant species invasiveness is frequently associated with rapid proliferation and production of seeds that can persist in the soil for long periods of time. Leucaena leucocephala (Fabaceae) is an alien and invasive species, for example in Brazilian forest and savannah ecosystems. This study quantified the invasive potential of this species by analysing its seed rain (using seed collectors), seed longevity in the soil (stored in buried bags) and the germination capacity of the soil seedbank (by collecting soil samples in the study area). Our results showed that seed rain occurred throughout the year, although more intensely from July to September, with about 5500 seeds m?2 year?1 being released. The numbers of seeds in the buried bags diminished over time and intact seeds showed low germinability (approximately 15%), although their viability remained >80% of the recovered seeds after two years of in situ storage. The germinability of seeds collected directly from the soil was approximately 40%, indicating that more than half of the seeds of soil seedbank were dormant (physical dormancy). Leucaena leucocephala produces large numbers of seeds and is able to form a persistent short‐lived seedbank (viability 1–5 years). These factors may contribute significantly to its invasive potential, which makes it difficult to control this species once it becomes established. As control costs become higher over time, immediate public efforts are needed to counter this threat.  相似文献   

14.
The decline of a population of A. fatua established in September 1971, and not allowed to seed thereafter, was monitored in three successive barley crops Numbers of viable seeds in the son in June fell from 159 m2 in 1972 to 1 m2 in 1974 declining by 83° in the first, and by 96° in the second year. Seedling numbers fell from 138 m2 in 1972 to 9 m2 in 1974, declining by 32° in their first and by 89° in the second year. The slower decline of seedling numbers in the first year was attributed to loss of dormancy of seed reserves giving proportionally more seedlings in the second spring. Cultivations had no major influence on the pattern of seedling emergence in the spring, but they did affect population level. Where the stubble was cultivated immediately after seeding in September 1971, twice as many seedlings and three times as many seeds in the soil were present in 1972 compared with delayed autumn cultivations in 1971. From this greater reserve of seeds in the soil more seedlings arose in 1973 and in 1974. Time cultivation in the winter of 1971 resulted in slightly more seedlings in 1972 than did ploughing; this greater population declined more rapidly with line cultivation in 1973 and 1974. It is suggested that with no herbicidal control annual line cultivation will lead to a more rapid build up than ploughing: where A. fatua is controlled, the decline should be more rapid with tne cultivation. Persistence of A. fatua as a weed in arable situations seems related more to survivors shedding seeds than to the persistence of seeds on the soil. Factors which may influence the persistence of seeds in the soil are discussed.  相似文献   

15.
BACKGROUND: Bemisia tabaci (Gennadius) biotype B is one of the most important pests on cotton around the world. Laboratory, greenhouse and field experiments were conducted to determine the efficacy of thiamethoxam and imidacloprid seed treatments against B. tabaci on cotton. RESULTS: Under laboratory conditions, the two treatments caused whitefly adult mortality, reduced oviposition and increased mortality of nymphs at 10, 20, 30 and 40 days after germination (DAG). The longer the adults fed on plants from treated seeds, the higher the mortality. The two treatments did not have any effect on eggs. The efficacy of the treated seeds against B. tabaci gradually decreased from 10 to 40 DAG, being the lowest at 40 DAG. In laboratory experiments, the efficacies between the two treatments were similar. In greenhouse experiments, the two treatments were equally effective with lower numbers of whiteflies than untreated controls. With both treatments the concentrations of the active ingredient were gradually reduced with aging of the plants and from the bottom to the top leaves of the plants. Numbers of live whiteflies were well correlated with the dosage of active ingredients. Under field conditions, the seeds treated with both insecticides exhibited similar efficacy against B. tabaci for up to ~2 months. CONCLUSION: Cotton seeds treated with imidacloprid and thiamethoxam were effective against B. tabaci for up to 45 days under laboratory and greenhouse conditions, and up to ~2 months under field conditions. Use of imidacloprid‐ and thiamethoxam‐treated seeds can be an important alternative for management of whiteflies on cotton. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Weed seed predation is an ecosystem service, influencing weed population dynamics. The impact of weed seed predation on weed population dynamics depends on how predators respond to seed patches at the field scale. Seed predation will be most effective if the proportion of seeds predated increases with increasing size and seed density of patches. Density‐dependent rodent seed predation was measured by varying seed density and patch size in four irrigated conventionally managed cereal fields in north eastern Spain. Artificial weed seed patches were created by applying a range of Lolium multiflorum seed densities from 0 to 7500 seeds m?2 in 225 m2 patches (2008) or in patches that varied in size from 1 to 9 m2 (2009). Seed predation was estimated using seed cards and seed frames. The granivorous rodents Mus spretus and Apodemus sylvaticus caused high seed predation rates (92%) in three fields, whereas in a fourth field, it was lower (47%). Rodents responded in an inversely density‐dependent manner, but this had little biological meaning as even in patches seeded with the highest density, the input to the soil seedbank was reduced by 88%. For the period of time this experiment lasted, hardly any new seeds would have entered the seedbank.  相似文献   

17.
Conidia of sevenTrichoderma strains were applied on cucumber or radish seeds as a simple methyl cellulose coating or through an industrial film coating process. The seeds were sown in a peat-based soil artificially infested byR. solani orP. ultimum. Four strains controlled damping-off caused byR. solani when applied as a simple coating or as an industrial film-coating. Also, four strains significantly reduced damping-off caused byP. ultimum in cucumber. A correlation was found between production of volatile antibiotics in vitro and control ofP. ultimum. Survival during storage varied according to the strain. Better survival was observed for two strains, with a decrease in conidial viability of one order of magnitude after storage for three and five months at 15 ° C and 4 ° C, respectively. The results show the feasibility of biocontrol of seedling diseases by some antagonists applied onto seeds through an industrial film-coating process.  相似文献   

18.
Buried populations of dormant and non-dormant wild oat (Avena fatua) seed persisted less than 2 years, depth of burial having very little influence on their survival. The mode of seed disappearence, however, was closely related to their depth in the soil. Seed exhaustion through germination in situ increased with increasing depth in the soil, whereas exhaustion through non-viability increased with decreasing depth. Physical and induced dormancies are apparently not capable of supporting prolonged persistence of A. fatua seeds in soil. The lack of prolonged persistence of A. fatua seeds in Colorado derives from a lack of genetically programmed embryonic dormancy in these populations and makes A. fatua easier to control in Colorado than in other cereal-growing regions south of the 43rd parallel because it dramatically reduces the survival of seeds in the soil. The most effective non-chemical control of this grass weed is achieved by means of the shallowest cultivations possible, carried out as late as possible.  相似文献   

19.
Carolina dayflower (Commelina caroliniana Walter), infesting soybean (Glycine max L.) fields on northern Kyushu Island, Japan, has seed heteromorphism; that is, it produces two types of seeds: pericarp and naked. However, there is no information about their germination behavior. The purpose of this study was to understand the germination characteristics of carolina dayflower seeds and to clarify the difference between the pericarp and naked seeds. On the shape of the seed, the pericarp seeds were significantly longer than the naked ones, with no significant difference in width or thickness. Both the pericarp and the naked seeds could germinate at >20°C, and at 30°C, their cumulative germination rate at 7 days after sowing was the highest, at >90%. Light had no effect on seed germination. The cumulative germination rate after 7 days, when the seeds had been stored dry, wet or under water at a low temperature, was significantly lower than after storage at room temperature, suggesting that a higher temperature and concentration of oxygen during the seed‐storage period affects the germination of carolina dayflower. However, there was no difference in the germination behavior between the pericarp and the naked seeds.  相似文献   

20.
A.M. TOMS 《EPPO Bulletin》1983,13(3):471-474
The paper deals with the treatment of seeds other than cereals and describes the technique of seed coating with the incorporation of the required pesticides. The formulation of the pesticides has to be modified for this technique. The advantages of seed coating are given and include the increased loading of chemicals onto seeds, thereby increasing the diseases and pests that can be controlled by the coating technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号