首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Piperazine derivatives possess pharmacological properties, yet the acaricidal activity of these compounds has not been investigated. This study was conducted to evaluate the colour alteration and acaricidal activity of piperazine derivatives against Dermatophagoides spp. and Tyrophagus putrescentiae (Schrank) using filter paper and fumigant methods. RESULTS: In a fumigant bioassay, 1‐phenylpiperazine (7.83 µg cm?2) against D. farinae (Hughes) was found to be 4.7 times more toxic than DEET (36.84 µg cm?2), followed by benzyl benzoate (9.72 µg cm?2), piperazine (11.41 µg cm?2), 1‐ethoxycarbonylpiperazine (20.14 µg cm?2) and 1‐(2‐methoxyphenyl)piperazine (22.14 µg cm?2). In a filter paper bioassay, 1‐(2‐methoxyphenyl)piperazine (3.65 µg cm?2) was 5.7 times more toxic than DEET (20.64 µg cm?2), followed by 1‐ethoxycarbonylpiperazine (4.02 µg cm?2), 1‐phenylpiperazine (4.75 µg cm?2), benzyl benzoate (7.83 µg cm?2) and piperazine (10.59 µg cm?2). Similar results have been exhibited with piperazine derivatives against D. pteronyssinus (Troussart). However, no activity against T. putrescentiae was observed for piperazine derivatives, except for piperazine. CONCLUSIONS: These results indicate that piperazine derivatives may be suitable as vapour‐phase acaricide fumigants owing to their high volatility, acaricidal activity and safety. 1‐Phenylpiperazine was found to be an excellent mite indicator based on the colour change it induced. Taken together, these findings indicate that piperazine derivatives may be used to replace existing problematical acaricides owing to their activity and ability to act as a mite indicator. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Recent studies have focused on materials derived from plant extracts as mite control products against house dust and stored food mites because repeated use of synthetic acaricides had led to resistance and unwanted activities on non‐target organisms. The aim of this study was to evaluate the acaricidal activity of materials derived from Lycopus lucidus against Dermatophagoides farinae, D. pteronyssinus and Tyrophagus putrescentiae. RESULTS: The LD50 values of L. lucidus oil were 2.19, 2.25 and 8.45 µg cm?2 against D. farinae, D. pteronyssinus and T. putrescentiae. The acaricidal constituent of L. lucidus was isolated by chromatographic techniques and identified as 1‐octen‐3‐ol. In a fumigant method against D. farinae, the acaricidal activity of 1‐octen‐3‐ol (0.25 µg cm?2) was more toxic than N,N‐diethyl‐m‐toluamide (DEET) (36.84 µg cm?2), followed by 3,7‐dimethyl‐1‐octen‐3‐ol (0.29 µg cm?2), 1‐octen‐3‐yl butyrate (2.32 µg cm?2), 1‐octen‐3‐yl acetate (2.42 µg cm?2), 3,7‐dimethyl‐1‐octene (9.34 µg cm?2) and benzyl benzoate (10.02 µg cm?2). In a filter paper bioassay against D. farinae, 1‐octen‐3‐ol (0.63 µg cm?2) was more effective than DEET (20.64 µg cm?2), followed by 3,7‐dimethyl‐1‐octen‐3‐ol (1.09 µg cm?2). CONCLUSION: 1‐Octen‐3‐ol and 3,7‐dimethyl‐1‐octen‐3‐ol could be useful as natural agents for the management of three mite species. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
4.
5.
6.
大环内酯类新化合物天维菌素杀螨活性及田间防治效果   总被引:1,自引:1,他引:1  
为明确新化合物天维菌素的杀螨活性,采用叶碟喷雾法测定了在室内天维菌素对朱砂叶螨Tetranychus cinnabarinus、柑橘红蜘蛛Panonychus citri及二斑叶螨Tetranychus urticae的毒力,并研究了其制剂对螨类害虫的田间防治效果。结果表明,天维菌素对朱砂叶螨若螨和雌成螨均具有较高的毒力,其LC50分别为0.011、0.11 mg(a.i.)/L,杀螨活性优于弥拜霉素、阿维菌素,但杀卵活性较差。田间试验中2%天维菌素微乳剂具有良好的速效性且具有一定的持效期,在有效成分8~40 mg/kg剂量下,对朱砂叶螨和二斑叶螨药剂处理14 d的防治效果分别为83.22%~92.77%和85.49%~92.64%,有效控制期在14 d以上;在有效成分75 mg/kg剂量下,对柑橘红蜘蛛防治效果最好,处理1、3、7、14 d的防治效果分别达96.53%、97.72%、98.05%和91.42%。表明天维菌素具有作为杀螨剂的潜力。  相似文献   

7.
The acaricidal activities of paeonol (2'-hydroxy-4'-methoxyacetophenone) and benzoic acid identified in the root bark of tree peony, Paeonia suffruticosa Andrews, against copra mite, Tyrophagus putrescentiae (Schrank), adults were examined using direct contact and vapour phase toxicity bioassays and compared with those of cinnamyl acetate, cinnamyl alcohol and 37 monoterpenoids as well as the acaricides benzyl benzoate, dibutyl phthalate and N,N-diethyl-m-toluamide (DEET). Based on LD(50) values in fabric piece contact toxicity bioassays, the acaricidal activities of benzoic acid (4.80 microg cm(-2)) and paeonol (5.29 microg cm(-2)) were comparable to that of benzyl benzoate (4.46 microg cm(-2)) but more pronounced than those of DEET (30.03 microg cm(-2)) and dibutyl phthalate (25.23 microg cm(-2)). In vapour phase toxicity bioassays, paeonol and benzoic acid were much more effective in closed containers than in open ones, indicating that the effects of these compounds were largely due to action in the vapour phase. As judged by 24 h LD(50) values, (1S)-(-)-verbenone (7.42 mg per disc) was the most toxic fumigant, followed by (1S)-(-)-camphor, (S)-(+)-carvone, (R)-(-)-linalool and (+/-)-camphor (10.45-18.18 mg). Potent fumigant toxicity was also observed with paeonol, (2S,5R)-(-)-menthone, (+/-)-citronellal, benzoic acid, (1S,4R)-(-)-alpha-thujone and (R)-(+)-pulegone (25.10-34.63 mg). Neither benzyl benzoate, DEET nor dibutyl phthalate caused fumigant toxicity. Paeonia root bark-derived materials, particularly paeonol and benzoic acid, as well as the monoterpenoids described, merit further study as potential acaricides or as leads for the control of T. putrescentiae.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
BACKGROUND: Isothiocyanates (ITCs) extracted from Armoracia rusticana Gaertn., May & Scherb. have been shown previously to have insecticidal activity. Allyl isothiocyanate (AITC), a major component of ITCs with high volatility, was therefore extracted using different methods and tested as a fumigant against four major pest species of stored products, maize weevil Sitophilus zeamais (Motsch.), lesser grain borer Rhizopertha dominica (F.), Tribolium ferrugineum (F.) and book louse Liposcelis entomophila (Enderlein). RESULTS: Whereas there was no significant difference between hydrodistillation and supercritical carbon dioxide fluid extraction in extraction rate for AITC from A. rusticana, both methods resulted in higher extraction efficiency than water extraction. AITC fumigation showed strong toxicity to the four species of stored‐product pests. Adult mortality of 100% of all four pest species, recorded after 72 h exposure to AITC fumes at an atmospheric concentration of 3 µg mL?1, showed no significant difference from that of insects exposed to phosphine at 5 µg mL?1, the recommended dose for phosphine. CONCLUSIONS: The results suggest good insecticidal efficacy of AITC against the four stored‐product pests, with non‐gaseous residuals on stored products. AITC obtained from A. rusticana may be an alternative to phosphine and methyl bromide against the four pest species. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
18.
19.
BACKGROUND: Finger millet is a major food crop as well as feed and fodder for livestock, especially in regions of southern India. A sturdy crop to fluctuating environmental conditions, it can be cultivated in all seasons of the year. Leaf, neck and finger blast caused by Pyricularia grisea Sacc. and Bipolaris setariae (Saw.) Shoem, as well as leaf spot disease, Bipolaris nodulosa (Berk & M.A.Curtis) Shoem, are major production constraints in southern India. Apart from environmental conditions, the use of harvested seeds by farmers is a major reason for disease prevalence. Benzophenone analogues have been investigated for controlling phytopathogenic fungi. In addition, the most important applications of azetidin‐2‐ones are as antibiotics. Based on this information, the present study was conducted to explore the antifungal activity of integrated 2‐azetidinonyl and 1,3,4‐oxadiazoles moieties into a benzophenone framework. RESULTS: A simple high‐yielding method for the integration of heterocyclic rings, namely 2‐azetidinonyl, at the benzophenone nucleus has been achieved, starting from substituted 2‐hydroxybenzophenones under mild conditions on a wet solid surface using microwave irradiation. In the present study, an array of newly synthesised compounds, 2‐azetidinonyl‐5‐(2‐benzoylphenoxy)methyl‐1,3,4‐oxadiazoles, were screened for their antifungal property against blast and leaf spot causing fungi associated with the seeds of finger millet, cv. Indof‐9. CONCLUSION: Two of the newly synthesised compounds showed promising effects in depleting the incidence of seed‐borne pathogenic fungi of finger millet. The suppression of Pyricularia grisea and Bipolaris setariae resulted in enhanced seed germination and seedling growth. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号