首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Aedes aegypti L. is the major vector of dengue fever and dengue hemorrhagic fever. In an effort to find effective tools for control programs to reduce mosquito populations, the authors assessed the acute toxicities of 14 monoterpenoids, trans‐anithole and the essential oil of rosemary against different larval stages of Ae. aegypti. The potential for piperonyl butoxide (PBO) to act as a synergist for these compounds to increase larvicidal activity was also examined, and the oviposition response of gravid Ae. aegypti females to substrates containing these compounds was evaluated in behavioral bioassays. RESULTS: Pulegone, thymol, eugenol, trans‐anithole, rosemary oil and citronellal showed high larvicidal activity against all larval stages of Ae. aegypti (LC50 values 10.3–40.8 mg L?1). The addition of PBO significantly increased the larvicidal activity of all test compounds (3–250‐fold). Eugenol, citronellal, thymol, pulegone, rosemary oil and cymene showed oviposition deterrent and/or repellent activities, while the presence of borneol, camphor and β‐pinene increased the number of eggs laid in test containers. CONCLUSIONS: This study quantified the lethal and sublethal effects of several phytochemical compounds against all larval stages of Aedes aegypti, providing information that ultimately may have potential in mosquito control programs through acute toxicity and/or the ability to alter reproductive behaviors. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
BACKGROUND: The current study investigates, for the first time, the mosquito larvicidal activities of leaf and twig essential oils from Clausena excavata Burm. f. and their individual constituents against Aedes aegypti L. and Aedes albopictus Skuse larvae. The yields of essential oils obtained from hydrodistillation were compared, and their constituents were determined by GC‐MS analyses. RESULTS: The LC50 values of leaf and twig essential oils against fourth‐instar larvae of Ae. aegypti and Ae. albopictus were 37.1–40.1 µg mL?1 and 41.1–41.2 µg mL?1 respectively. This study demonstrated that C. excavata leaf and twig essential oils possess mosquito larvicidal activity, inhibiting the growth of mosquito larvae for both species at a low concentration. In addition, results of larvicidal assays showed that the effective constituents in leaf and twig essential oils were limonene, γ‐terpinene, terpinolene, β‐myrcene, 3‐carene and p‐cymene. The LC50 values of these constituents against both mosquito larvae were below 50 µg mL?1. Among these effective constituents, limonene had the best mosquito larvicidal activity, with LC50 of 19.4 µg mL?1 and 15.0 µg mL?1 against Ae. aegypti and Ae. albopictus larvae respectively. CONCLUSION: The findings suggested that the essential oils from Clausena excavata leaf and twig and their effective constituents may be explored as a potential natural larvicide. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Mosquitoes are the most important vectors of human pathogens. Wide‐scale use of pesticides has led to the development of resistance to most common insecticide groups. The need to develop novel products that have a low impact on human health and the environment is well established. The toxicity of selected semiochemicals with molecular structures indicative of insecticidal activity was determined against adult Aedes aegypti (L.) and Anopheles quadrimaculatus (Say). The two most active insecticides against Ae. aegypti were also evaluated against Ae. albopictus (Skuse). RESULTS: Fifteen semiochemicals classified as terpenoid alcohols, ketones or carboxylic esters showed toxicity to both mosquito species. Geranyl acetone (LC50 = 38.51 µg cm?2) followed by citronellol (LC50 = 48.55 µg cm?2) were the most toxic compounds to Ae. aegypti, while geraniol and lavonax, with LC50 values of 31.88 and 43.40 µg cm?2, showed the highest toxicity to An. quadrimaculatus. Both geranyl acetone and citronellol were highly toxic to Ae. albopioctus. No semiochemical showed fumigation activity against either species. All semiochemicals persisted for less than 24 h when tested on filter paper. CONCLUSION: Quantification of LC50 values of several semiochemicals against Ae. Aegypti, An. quadrimaculatus and Ae. albopioctus showed that semiochemicals not only modify insect behaviors but also hold potential as potent insecticides for mosquito control programs. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
The culture supernatant of a strain of Bacillus subtilis isolated from soil samples killed larvae of the mosquito Aedes aegypti. The metabolites produced by B. subtilis were characterized using high performance liquid chromatography (HPLC). Mortality rate was dose-dependent for all larval instars of A. aegypti. Log probit analysis (95% confidence level) revealed an LC50 of 1.73 and an LC90 3.71 μg/ml. Molecular weights/masses of B. subtilis metabolites were confirmed using SDS–PAGE analysis. B. subtilis metabolites were confirmed using HPLC analysis. We demonstrate that secondary metabolites from B. subtilis have larvicidal activity against A. aegypti and may be suitable for the control of this and other mosquito vectors of human disease. The larvae to the metabolites, significant reduction in the activities of acetylcholinesterse, α-carboxylesterase, and acid phosphatases were recorded.  相似文献   

5.
Laboratory studies were conducted to determine the effect of the naturally derived compound spinosad on Ceratitis capitata Wied. (Diptera, Tephritidae). The organophosphate fenthion was used as a standard. Direct dose-dependent mortality and reduced fecundity were observed in oral treatment of adults with spinosad. The LC90 values 14 h and seven days after treatment were 19·50 and 0·49 mg litre−1 respectively. Fenthion was less active (the LC50 eight days after treatment was 1·17 mg litre−1) and did not affect the fecundity of the fly. Adults were also very susceptible to spinosad and fenthion via residual contact. For spinosad, 100% mortality was recorded 48 h after treatment for a dose of 10 mg litre−1. Spinosad was more effective than fenthion in suppressing larval development when neonate larvae were reared on treated diet supplemented with a range of concentrations from 0·02 to 0·83 mg kg−1 diet. Last-instar larvae were much less susceptible to spinosad or fenthion when exposed via dipping or when they pupated in treated medium and both products had similar performance. A lack of ovicidal activity was observed in direct egg-treatments with spinosad but significant reductions from 1 mg litre−1 onwards were recorded for fenthion.  相似文献   

6.
7.
Susceptibility to spinosad (Success®/Tracer®) of beet armyworm (Spodoptera exigua) from the southern USA and Southeast Asia was determined through exposure of second‐ and third‐instar larvae to dipped cotton leaves. LC50 estimates of susceptibility of second‐ and third‐instar larvae of field populations ranged from 0.279 to 6.14 and 0.589 to 14.0 mg spinosad litre−1, respectively. A Thailand population was 22‐ and 24‐fold less susceptible than the six other US field populations evaluated, and 85‐ and 58‐fold less susceptible than a reference laboratory population, respectively. From these results, we initiated experiments to test the hypothesis that the Thailand population was resistant to spinosad. F1 crosses between the resistant Thailand population and a susceptible reference strain yielded individuals that were 22‐fold less sensitive to spinosad than the susceptible parent. This same resistant strain exhibited significantly greater survivorship on plants treated with spinosad in the field. Lastly, selection of an Arizona population resulted in a significant reduction in susceptibility to spinosad, further substantiating the hypothesis of a genetic basis for resistance to spinosad. These findings indicate a vulnerability of this new insecticide to resistance development in beet armyworm and should serve as a warning against excessive use of it. © 2000 Society of Chemical Industry  相似文献   

8.
We investigated the sub-lethal influences of spinosad, chlorpyriphos, endosulfan, acephate and cypermethrin on the oviposition responses of Helicoverpa armigera (Hübner) to cotton plants, under cage and laboratory conditions. The rank order of toxicity (LC50 values as a per cent) of test insecticides against third instar larvae using the leaf disc method was: spinosad > chlorpyriphos > endosulfan > acephate > cypermethrin. On whole plants, females laid more eggs on acephate LC50-, acephate LC30- and cypermethrin LC50-treated cotton plants than on the control. The chlorpyriphos-treated plants were least preferred for oviposition. When excised cotton leaves from different treatments were used in a multiple-choice test, cypermethrin LC50- and endosulfan LC30-treated leaves received more eggs than the control. The repeated application of sub-lethal concentrations of different insecticides reduced plant height in the case of acephate LC30 and cypermethrin LC50, while plant spread and upper canopy leaf area were reduced in both treatments of acephate and cypermethrin. Reduced plant spread, upper canopy leaf area followed by plant height were found associated with oviposition preference by H. armigera females.  相似文献   

9.
BACKGROUND: Neoseiulus fallacis (Garman) is a key predator of tetranychid mites in integrated pest management (IPM) programs across Canada. This study identified compounds that would be recommended for tier‐II field evaluations in an IPM program. RESULTS: The overall egg mortality caused by the six insecticides was negligible as it extended from 0 to 12.1%. Imidacloprid was classified as toxic to adults. The label rate was 7.73‐fold the LC50. Thiamethoxam was classified as moderately toxic to adults, and its label rate was 2.87‐fold the LC50. Acetamiprid and spinosad were classified as marginally toxic, and their label rates were respectively 0.99‐ and 0.45‐fold the LC50 for adults. Thiacloprid and methoxyfenozide were virtually innocuous to adults. CONCLUSION: Methoxyfenozide was totally harmless to all stages of N. fallacis, and it would be included in IPM programs immediately. Acetamiprid, spinosad and thiacloprid had varying degrees of mild toxicity to at least one growth stage of the predator. Therefore, they were recommended for tier‐II field testing according to their label claims. Imidacloprid and thiamethoxam were toxic to moderately toxic to adults and had significant adverse effects on fecundity. Therefore, they would be field evaluated only if alternatives were unavailable. Copyright 2010 Crown in the right of Canada. Published by JohnWiley & Sons, Ltd  相似文献   

10.

BACKGROUND

Tuta absoluta (Lepidoptera: Gelechiidae) is difficult to control by means of foliar insecticides, partly because of the endophytic feeding behavior of its larvae. The biopesticide spinosad is applied as a foliar spray for control of T. absoluta and has systemic properties when applied as a soil drench to the growing medium of tomato plants. The aims of this study were to determine the: (i) instar-dependent tolerance of larvae to spinosad; (ii) efficacy of spinosad drench application for the control of larvae; (iii) residual period of systemic activity of spinosad in leaves and fruit after drenching; and (iv) effect of spinosad drenching on tomato plant growth parameters.

RESULTS

The estimated LC50 value (Lethal Concentration at which 50% of the larvae died) differed between instars. The LC50 for second-instar larvae (0.41 ppm) to spinosad was significantly lower than that for third- (0.64 ppm) and fourth-instar (0.63 ppm) larvae. The LC80 value (Concentration at which 80% of the larvae died) for fourth-instar larvae (2.48 ppm) was 2.6- and 1.7-fold higher than that for the second- and third-instar larvae, respectively. The spinosad concentration recorded in leaves at 25 days after treatment (DAT; 0.26 μg g−1) was significantly lower than that in leaves sampled at 3, 10 and 15 DAT. High larval mortalities were, however, recorded for the duration of the experiment, which lasted 25 days (equivalent to one T. absoluta generation).

CONCLUSION

Systemic spinosad effectively controlled T. absoluta larvae over a prolonged period. However, drenching this insecticide violates the recommendation of the Insecticide Resistance Action Committee to avoid treating consecutive insect generations with the same mode of action and can therefore result in the evolution of insecticide resistance. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

11.
BACKGROUND: Upon emergence from their pupal cells, bollworm, Helicoverpa zea (Boddie), adults actively seek and feed on plant exudates before they disperse and reproduce on suitable host plants. This nocturnal behavior of the bollworm may be exploited as a pest management strategy for suppression of the insect by using an attractant/stimulant mixed with an insecticide to induce feeding to cause adult mortality or reproductive reduction/inhibition. This study aimed to determine in the laboratory whether or not spinosad when mixed with sucrose solution as a feeding stimulant and ingested by bollworm could influence mortality and reproduction of the insect. RESULTS: Sublethal concentrations of spinosad fed to laboratory‐reared females confined with males significantly reduced percentage hatch of eggs at 0.1 mg L?1, and it was reduced to near zero at 2.5 mg L?1 when compared with females fed 2.5 M sucrose solutions only. The lethal concentration (LC99) for males captured from the field in sex‐pheromone‐baited traps was 73 mg L?1 for 24 h response. Proboscis extension response was not inhibited significantly even at 10 g L?1. In spite of a 137‐fold increase in lethal dose concentration, spinosad did not inhibit feeding. CONCLUSION: A detailed study of laboratory‐reared and field‐collected bollworm adults relative to mortality and reproduction after ingestion of spinosad indicates that spinosad would be useful in an attract‐and‐kill strategy to control the insect when mixed with a feeding attractant/stimulant. Field validation of the data is warranted. Published 2010 by John Wiley & Sons, Ltd.  相似文献   

12.
BACKGROUND: Bait-formulated spinosad is currently being introduced for housefly (Musca domestica L.) control around the world. Spinosad resistance was evaluated in a multiresistant field population and strains derived from this by selection with insecticides. Constitutive and spinosad-induced expression levels of three cytochrome P450 genes, CYP6A1, CYP6D1 and CYP6D3, previously reported to be involved in insecticide resistance, were examined. RESULTS: In 2004 a baseline for spinosad toxicity of Danish houseflies where all field populations were considered to be susceptible was established. In the present study, females of a multiresistant field population 791a were, however, 27-fold spinosad resistant at LC50, whereas 791a male houseflies were susceptible. Strain 791a was selected with spinosad, thiamethoxam, fipronil and imidacloprid, resulting in four strains with individual characteristics. Selection of 791a with spinosad did not alter spinosad resistance in either males or females, but counterselected against resistance to the insecticides thiamethoxam and imidacloprid targeting nicotinic acetylcholine receptors. A synergist study with piperonyl butoxide, as well as gene expression studies of CYP6A1, CYP6D1 and CYP6D3, indicated a partial involvement of cytochrome P450 genes in spinosad resistance. CONCLUSION: This study reports female-linked spinosad resistance in Danish houseflies. Negative cross-resistance was observed between spinosad and neonicotinoids in one multiresistant housefly strain. Spinosad resistance involved alterations of cytochrome P450 gene expression. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
The toxicity of the naturally derived insecticide spinosad was tested against the gypsy moth, Lymantria dispar. Bioassays using red oak leaf disks, treated with spinosad in a Potter spray tower, yielded an LC50 value of 0.0015 µg AI cm−2 (3‐day exposure; 13‐day evaluation; 2nd instar larvae). Applied to foliage to run‐off in the laboratory (potted red oak seedlings) and the field (4 m‐tall birch trees), spinosad effectively controlled 2nd instar larvae at concentrations ranging from 3 to 50 mg litre−1. Toxicity in the laboratory, and efficacy and persistence in the field, were comparable to those achieved with the insecticide permethrin. Laboratory studies supported field observations that control was achieved in part by knockdown due to paralysis. In addition, laboratory results demonstrated that crawling contact activity may play an important role in field efficacy; 50% of treated larvae were paralyzed 16 h after a 2‐min crawling exposure to glass coated with a 4 mg litre−1 spinosad solution. © 2000 Society of Chemical Industry  相似文献   

14.
多杀菌素亚致死浓度对小菜蛾解毒酶系活力的影响   总被引:10,自引:3,他引:7  
采用多杀菌素亚致死浓度,以浸叶法分别处理小菜蛾Plutella xylostella (L.)敏感种群(SS)和亚致死选育种群 的3龄幼虫,分别测定饲喂处理6、12、24、48和72 h后小菜蛾体内羧酸酯酶(CarE)、谷胱甘肽S-转移酶(GST) 和多功能氧化酶(MFOs)的活性,分析了酶活性的变化动态。结果表明,SS种群小菜蛾CarE的活性在不同时间段波动较大,经多杀菌素处理后,开始时段比活力增加,随着处理时间的延长,比活力逐渐被抑制,Sub-SS种群的GarE活力高于SS种群;多杀菌素对GST具有明显的诱导作用,亚致死浓度处理后GSTs比活力呈上升趋势,且具有一定的时间效应;对细胞色素P450酶系的O-脱甲基酶活性具有明显的抑制作用,多杀菌素亚致死浓度连续处理5代后,该酶活性更低。  相似文献   

15.
低剂量乙基多杀菌素对小菜蛾解毒酶的影响   总被引:2,自引:0,他引:2  
为探讨低剂量乙基多杀菌素对小菜蛾Plutella xylostella(L.)解毒酶的影响,采用叶片浸渍法,测定了乙基多杀菌素和多杀菌素对小菜蛾敏感种群的毒力,并比较了低剂量(LC25和LC50)处理6、12、24、48和72 h时小菜蛾体内羧酸酯酶(CarE)、谷胱甘肽S-转移酶(GST)和多功能氧化酶系(MFOs)活性的变化动态。结果表明:乙基多杀菌素对小菜蛾的杀虫活性优于多杀菌素,处理48 h后其LC25和LC50浓度分别为0.018和0.048 mg/L,经此低剂量浓度处理后,小菜蛾CarE活性波动较大,6~24 h,处理组CarE活性高于对照组,且均呈先升后降趋势,24~72 h,处理组CarE活性均低于对照组,并且具有一定的时间效应;对GST具有明显的诱导作用,GST活性均高于对照组;对MFOs具有明显的抑制作用,除在48 h时相差不大外,其他时间MFOs活性均显著低于对照组。结果表明,GST可能参与了乙基多杀菌素在小菜蛾体内的代谢。  相似文献   

16.

BACKGROUND

Arboviroses such as dengue, Zika and chikungunya represent a serious public health issue as a consequence of the absence of approved vaccines or specific antiviral drugs against the arboviruses that cause them. One way to prevent these diseases is by combating the vector mosquito, Aedes aegypti (Diptera), which has serine proteases in the midgut. Protease inhibitors are molecules that can block enzyme activity, impairing digestion and nutrition, which can lead to death. Thus, we purified and characterized a novel chymotrypsin‐trypsin inhibitor (LsCTI) from Lonchocarpus sericeus seeds and investigated its effect upon Ae. aegypti egg hatching, larval development and digestive proteases.

RESULTS

LsCTI showed a single protein band in sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS‐PAGE), and the molecular mass determined by matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) was 8870.45 Da. Kinetics analyses revealed a noncompetitive type of inhibition and low inhibition constant (Ki) for chymotrypsin (8.24 x 10‐8 m ). The thermal resistance was remarkable, even at 100 °C for 180 min. The inhibitor concentration required for 50‐percent enzyme inhibition (IC50) of LsCTI was 4.7 x 10‐7 m for Ae. aegypti midgut larval enzymes. LsCTI did not affect egg hatchability at 0.3 mg mL‐1, but caused a high larval mortality rate (77%) and delayed development (37%).

CONCLUSIONS

LsCTI is a novel protease inhibitor with remarkable biochemical characteristics and is a potential tool to control Ae. aegypti development. © 2017 Society of Chemical Industry
  相似文献   

17.
为明确田间使用多杀霉素亚致死浓度对棉铃虫Helicoverpa armigera幼虫的影响,用含多杀霉素亚致死浓度LC25的人工饲料持续饲喂棉铃虫3龄幼虫,并对饲喂后其体重、取食量、累计蛹化率、蛹发育历期和蛹重等生长发育及脂肪体内甘油三脂(triglyceride,TG)含量和相关基因SREBPFASHSL表达情况进行测定。结果表明,多杀霉素对棉铃虫的亚致死浓度LC25为0.21 mg/kg;多杀霉素亚致死浓度处理4~6 d后,棉铃虫3龄幼虫体重分别为0.065、0.263和0.329 g,较对照显著降低;处理6 d后,其取食量为0.082 g,较对照显著降低;处理4~7 d后,其累计化蛹率分别为60.90%、63.20%、65.50%和65.50%,较对照显著降低。多杀霉素亚致死浓度处理后,棉铃虫蛹发育历期由对照9.89 d显著延长至10.74 d,单头蛹重为0.274 g,显著低于对照的0.324 g;其脂肪体TG含量较对照显著降低。多杀霉素亚致死浓度处理24~72 h后,参与脂肪酸合成信号通路中重要基因SREBPFAS的相对表达量较对照均显著下调,而参与脂肪代谢的重要基因HSL则较对照显著上调。  相似文献   

18.
In the summer of 1998, failures of methoprene field applications to control the mosquito Ochlerotatus nigromaculis (Ludlow) were noticed in several pastures in the outskirts of Fresno, California, USA. Effective control with methoprene had been achieved for over 20 years prior to this discovery. Susceptibility tests indicated that the Fresno Oc nigromaculis populations had developed several thousand‐fold higher LC50 and LC90 tolerance levels to methoprene compared with methoprene‐naïve populations. The synergists piperonyl butoxide (PBO), S,S,S‐tributyl phosphorotrithioate and 3‐octylthio‐1,1,1‐trifluoro‐2‐propanone had little synergistic effect, suggesting that the mechanism of methoprene tolerance was not mediated by P450 monooxygenase or carboxylesterase enzyme degradation. As part of initiating a resistance management strategy, partial reversion back to methoprene susceptibility was achieved in a resistant population after six consecutive applications of Bacillus thuringiensis israelensis Goldberg & Marga coupled with two oil and two pyrethrum + PBO applications. © 2002 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Dengue fever is a severe public health problem for several countries. In order to find effective larvicides to aid control programs, the structure‐activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae were evaluated. Additionally, the composition and larvicidal activity of Syzygium aromaticum essential oil was assessed. RESULTS: Four compounds representing 99.05% of S. aromaticum essential oil have been identified. The essential oil was active against Ae. aegypti larvae (LC50 = 62.3 and 77.0 ppm, field‐collected and Rockefeller larvae respectively). The larvicidal activity of eugenol, the major compound of the essential oil, was further evaluated (LC50 = 93.3 and 71.9 ppm, field‐collected and Rockefeller larvae respectively). The larvicidal activity and structure‐activity relationships of synthetic derivatives of eugenol were also assessed. The larvicidal activity of the derivatives varied between 62.3 and 1614.9 ppm. Oxidation of eugenol allylic bond to a primary alcohol and removal of the phenolic proton resulted in decreased potency. However, oxidation of the same double bond in 1‐benzoate‐2‐methoxy‐4‐(2‐propen‐1‐yl)‐phenol resulted in increased potency. CONCLUSION: Structural characteristics were identified that may contribute to the understanding of the larvicidal activity of phenylpropanoids. The present approach may help future work in the search for larvicidal compounds. Copyright © 2012 Society of Chemical Industry  相似文献   

20.
Butter  N. S.  Singh  Gurmeet  Dhawan  A. K. 《Phytoparasitica》2003,31(2):200-203
An insect growth regulator (IGR), lufenuron (Match 5EC), was tested for its toxicity toHelicoverpa armigera on cotton. Potency of the IGR against the larval stage of the pest was demonstrated with respect to larval instars; the LC90 values of 1st, 2nd, 3rd, 4th and 5th instar larvae were 5.63, 7.89, 8.03, 11.39 and 14.76 mg a.i.l −1, respectively. However, different larval instars did not differ significantly with respect to LC50 and LC10. IGR-treated larvae had swollen heads and were significantly smaller (1.5–2.3 mm) than the untreated control (2.9 mm). Larval weight was significantly reduced from 190 mg in the control to 50–70 mg in the lufenuron treatment. IGR treatment in the larval stage significantly affected both pupal length and pupal weight. Pupal duration of the test insect was significantly extended by IGR treatment. Pupal deformities, including an inability to shed the last larval skin and formation of larval-pupal intermediates, occurred following treatment. A significant reduction in adult emergence was recorded. In addition, abnormalities in the form of development of cavities in the forewings of adult were evident. A significant decline in fecundity was noted in the studies. http://www.phytoparasitica.org posting Feb. 3, 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号