首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption, incubation and soil-column experiments with bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] were carried out in ten different soils from the marches surrounding the Doñana National Park (Huelva, SW Spain). Adsorption isotherms for the different soils showed a good fit with the Freundlich equation. Bentazone was poorly adsorbed in all the soils studied, with no significant relationship between theKf values and soil characteristics. A significant correlation was obtained between the soil organic matter content and the distribution constant values (Kd) calculated at an equilibrium concentration of 200 μg cm−3. The low adsorption and non-degradation of bentazone on these soils suggest that the herbicide readily percolates through soils to reach the surface and ground waters. The mobility of bentazone through three soil columns was also studied. The mass balances carried out showed that bentazone was totally eluted from the soil columns. The theoretical model applied to explain bentazone leaching under our experimental conditions seems to be suitable for soil columns with a uniform water-flow rate.  相似文献   

2.
Although glyphosate (N‐(phosphonomethyl)glycine) is one of the most frequently used herbicides, few controlled transport experiments in undisturbed soils have been carried out to date. The aim of this work was to study the influence of the sorption coefficient, soil‐glyphosate contact time, pH, phosphorus concentration and colloid‐facilitated transport on the transport of [14C]glyphosate in undisturbed top‐soil columns (20 cm height × 20 cm diameter) of a sandy loam soil and a sandy soil. Batch sorption experiments showed strong Freundlich‐type sorption to both soil materials. The mobility of glyphosate in the soil columns was strongly governed by macropore flow. Consequently, amounts of glyphosate leached from the macroporous sandy loam soil were 50–150 times larger than from the sandy soil. Leaching rates from the sandy soil were not affected by soil‐glyphosate contact time, whereas a contact time of 96 h strongly reduced the leaching rates from the sandy loam soil. The role of pH and phosphorus concentration in solution was relatively unimportant with respect to total glyphosate leaching. The contribution of colloid‐facilitated transport was <1 to 27% for the sandy loam and <1 to 52% for the sandy soil, depending on soil treatment. The risk for glyphosate leaching from the top‐soils seems to be limited to conditions where pronounced macropore flow occurs shortly after application. © 2000 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Azoxystrobin [methyl (E)‐2‐{2‐[6‐(2‐cyanophenoxy)pyrimidin‐4‐yloxy]phenyl}‐3‐methoxyacrylate], a strobilurin fungicide, is a broad‐spectrum, systemic and soil‐applied fungicide. Azoxystrobin has been registered for rice cultivation in India, but no information is available on its leaching behaviour in Indian soils. Therefore, leaching behaviour of azoxystrobin was studied in packed and intact soil columns under different irrigation regimes. RESULTS: Azoxystrobin did not leach out of the 300 mm long columns after 126 and 362 mm rainfall. After percolating water equivalent to 362 mm rainfall, azoxystrobin leached down to 10–15 cm (packed columns) and 15–20 cm (intact columns) depth. Azoxystrobin was not detected in the leachate from the packed column leached with 94.5 mL water every week (140 mm rainfall per month) during the 28 weeks of the study period. However, azoxystrobin acid, formed by azoxystrobin degradation, was detected in the leachate after 18 weeks. At the end of the study, azoxystrobin had leached down to 5–10 cm depth, and only 60% of initially applied azoxystrobin was recovered from the soil. CONCLUSION: The results indicate that azoxystrobin is fairly immobile in sandy loam soil, but azoxystrobin acid, a major metabolite of azoxystrobin, is quite mobile and may pose a threat of soil and groundwater contamination. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
Two lysimeter studies with the pesticides cloethocarb and bentazone were used to validate a modified version of the computer model SESOIL (Seasonal Soil Compartment Model), developed by Bonazountas and Wagner and to transfer the results of the lysimeter study to another climate scenario. For cloethocarb, an experimental insecticide without marked mobility in the soil, as indicated by the lysimeter study, the simulations were in excellent agreement with the lysimeter study. Calculations for bentazone revealed higher leaching than found in the lysimeter study. This discrepancy was resolved by a more careful and realistic inclusion of sorption in the lysimeter soil into the simulation model.  相似文献   

5.
The rate of transformation of a pesticide as a function of the depth in the soil is needed as an input into computations on the risk of residues leaching to groundwater. The herbicide bentazone was incubated at 15 °C in soil materials derived from four layers at depths of up to 2.5 m in a humic sandy soil profile with a fluctuating water table (0.8 to 1.4 m), while simulating the redox conditions existing in the field. Gamma‐irradiation experiments indicated that bentazone is mainly transformed by microbial activity in the soil. The rate constant for transformation was highest in the humic sandy top layer; it decreased with depth in the sandy vadose subsoil. However, material from the top of the phreatic aquifer had a higher rate constant than that from the layers just above. The presence of fossil organic material in the fluviatile water‐saturated sediment probably stimulated microbial activity and bentazone transformation. The changes in the transformation rate constant with depth showed the same trend as those in some soil factors, viz organic carbon content, water‐extractable phosphorus and microbial density as measured by fluorescence counts. However, the (low) concentration of dissolved organic carbon (DOC) in the top of the aquifer did not fit the trend. The rate constant for bentazone transformation in the layers was higher at lower initial contents of the herbicide. © 2001 Society of Chemical Industry  相似文献   

6.
Surfactants can improve postemergence herbicide efficacy and reduce the amount of herbicide required to obtain weed control. The effect of surfactants on the efficacy of herbicides is complicated and depends on the interaction among the plant, surfactant, and herbicide. The effects of surfactants on the efficacy of clodinafop‐propargyl and/or tribenuron‐methyl on wild oat (Avena ludoviciana) and wild mustard (Sinapis arvensis) under greenhouse conditions were investigated. In addition, the surface tension of aqueous solutions of the surfactants and surfactants + herbicides was determined. Significantly lower surface tension values were obtained with the aqueous solutions of citofrigate (Citogate plus Frigate) alone and with the herbicides used in this study. The citofrigate surfactant lead to the greatest enhancement of clodinafop‐propargyl and/or tribenuron‐methyl efficacy and the effect was species‐dependent. The efficacy of clodinafop‐propargyl and/or tribenuron‐methyl in the presence of surfactants in controlling wild oat was higher than for wild mustard. The foliar activity of the tested herbicides rose with increasing surfactant concentrations. The tank mixture of clodinafop‐propargyl and tribenuron‐methyl showed a synergistic effect in controlling wild oat and wild mustard. The synergistic effect in controlling wild mustard was greater than for wild oat.  相似文献   

7.
The influence of a non‐ionic surfactant (20% isodecyl alcohol ethoxylate plus 0.7% silicone surfactants), an anionic surfactant (25.5% alkylethersulfate sodium salt), and a vegetable oil (95% natural rapeseed oil with 5% compound emulsifiers) on the performance and rainfastness of a new commercial formulation of tribenuron‐methyl was assessed on four broad‐leaved weeds: wild mustard (Sinapis arvensis), scentless mayweed (Tripleurospermum inodorum), common poppy (Papaver rhoeas), and common lambsquarters (Chenopodium album). In one experiment, six doses of tribenuron‐methyl alone or in a mixture with each of the three adjuvants were applied to each weed species at two different leaf stages. In another experiment, the plants of T. inodorum were sprayed and subsequently subjected to 3 mm of rain at 1, 2, and 4 h after treatment (HAT). The activity of tribenuron‐methyl was significantly enhanced by all the adjuvants on all the weed species and only minor differences were observed among the tested adjuvants. The impact of the adjuvants varied among the weed species and growth stages. The highest response to the inclusion of adjuvants in the spray liquid was found at the late growth stage and on C. album, followed by P. rhoeas and T. inodorum, while S. arvensis was less responsive to the adjuvants. All the adjuvants significantly improved the rainfastness of tribenuron‐methyl on T. inodorum, with differences among the adjuvants being more pronounced when rain occurred shortly after herbicide application. The effect of the vegetable oil on tribenuron‐methyl's rainfastness was significantly lower than that of the surfactants with rain at 1 HAT, while no significant differences among the three adjuvants were observed when rain occurred at 2 and 4 HAT.  相似文献   

8.
A controlled–release formulation of chlorsulfuron (DT26B) and a conventional granular formulation were compared for their initial bioefficacy and leaching in laboratory and field experiments. Three alkaline soil types, representative of farm soils in SE Australia, were used for these experiments. Laboratory tests of initial bioefficacy using a Mallee sand (pH 7.2) were able to detect, within ED05–95 limits, that approximately 50% of active ingredient remained as a non–available reserve in DT26B immediately after spraying, when compared with the granular formation. There was also an indication that the bioavailable component of active ingredient in DT26B would be sufficient for weed control. This was confirmed at field sites on a Kattyoong sand (pH 7.9) and a Wimmera Grey clay (pH 8.4), after using recommended application rates of chlorsulfuron during the 1994 winter growing season. The formulations produced only marginal differences in control of Lolium rigidum Gaud. The field leaching trials at these sites showed that there can be rapid leaching of chlorsulfuron with only small amounts of rainfall. Under these conditions, there was an overall trend of reduced leaching by DT26B at both trial sites, although these reductions were not significant when compared with the granular formation, A laboratory system designed to measure the mobility of herbicides is described. It was used to impose upon each formulation a greater level of leaching than in the field trials, using Mallee sand columns irrigated with 50 mm day–1 under –50 kPa suction. This test revealed a negligible reduction in leaching of chlorsulfuron by DT26B as compared with the granular formulation. Therefore, although the controlled–release formulation DT26B demonstrated that it could provide a viable alternative for weed control under conventional spraying conditions in arable farming, the agricultural usage of DT26B for the purpose of reducing leaching could not be warranted at its current stage of development.  相似文献   

9.
D. J. TURNER 《Weed Research》1985,25(4):289-299
In pot experiments, mixtures of ammonium sulphate with surfactants or oil additives increased the phytotoxicity of commercially formulated bentazone (‘Basagran’) to Stellaria media (chickweed). Ammonium sulphate with a proprietary oil adjuvant Actipron had similar effects with benazolin potassium salt, but not with an ethyl ester formulation of benazolin. The phytotoxicity of bentazone and benazolin salts to Trifolium repens (white clover) and Lolium perenne (perennial ryegrass) was almost unaffected by these additives. In a field experiment, a mixture of ammonium sulphate with Actipron improved the control of S. media by bentazone and benazolin salts. Oils and surfactants markedly increased rates of entry of 14C bentazone into leaves of S. media, white clover and Chrysanthemum segetum. Ammonium sulphate sometimes had similar effects but on other occasions reduced uptake. In some circumstances the additives apparently interacted synergistically, to increase uptake of labelled herbicide into the leaf or to enhance its transport within the plant. In these test species, differential absorption of bentazone could not explain differences in species susceptibility, suggesting that the main cause of resistance was the ability of plants to degrade the herbicide.  相似文献   

10.
Adsorption and leaching of the herbicides thiazafluron (1,3-dimethyl-1(5-trifluoromethyl-1,3,4-thiadiazol-2-yl)urea), metamitron (4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-tri azin-5-one) and clopyralid (3,6-dichloropicolinic acid) were studied in one sandy and two silty-clay soils. Equilibrium adsorption coefficients (Kd) were measured using a batch equilibration procedure, and mobility was studied in repacked columns of the soils under fluctuating saturated/unsaturated flow conditions. Breakthrough curves (BTCs) were consistent with an inverse relationship between leaching and adsorption with greater mobility of the weakly-adsorbed clopyralid than the more strongly adsorbed thiazafluron or metamitron. The BTC data were used to evaluate the LEACHP simulation model. Following model calibration with respect to hydrological parameters and some of the herbicide degradation rates, the best fits between predicted and observed data were with the less adsorptive and highly mobile clopyralid. In general, the model gave acceptable predictions of the timing of the concentration maxima and the shapes of the BTCs, although earlier breakthrough than that observed was predicted with the less mobile herbicides, thiazafluron and metamitron, in the silty-clay soils. For metamitron, the total amounts leached were not predicted accurately, suggesting more rapid degradation of the herbicide in the soil columns than in the kinetic studies performed in a 1:1 soil:solution ratio shaken system.  相似文献   

11.
The retention and degradation of metribuzin herbicide were studied under two environmental conditions. Field studies were carried out on two soils, a sandy loam soil (soil A) and a clay soil (soil B). Metribuzin was applied with a jet sprayer at 1060 g a.i. ha?1 and 1960 g a.i. ha?1 on soils A and B respectively. Reconstituted soil columns were used to study the herbicide movement and metabolism in the two soils. Analyses of metribuzin and its metabolites were carried out using standardized methods. The results indicated a very weak capacity of adsorption of metribuzin in the two soils, and the weak adsorbed fraction is easily desorbed. Degradation and mobility of metribuzin in the field and laboratory soil columns were very intense and rapid. Soil A favoured reductive deamination whereas soil B favoured oxidative desulphuration and the respective metabolites deaminometribuzin and diketometribuzin yield the same product deaminodiketometribuzin. Both leaching by rainfall and degradation were important in the disappearance of metribuzin from the soils.  相似文献   

12.
BACKGROUND: Owing to the complexity of soil composition, accurate predictions of both apoplastic systemicity of lipophilic xenobiotics and their leaching from the soil are made difficult. Therefore, a non‐destructive method to assess directly these two components of the spatial behaviour of soil‐applied phytochemicals is needed. RESULTS: The plant selected was a dwarf tomato, which can exude an abundant apoplastic fluid through large stomata for several months. The feasibility and reliability of the method were assayed using three triazoles exhibiting different log D values. HPLC‐MS analyses indicated that triadimenol (log D = 2.97) was clearly the most mobile compound within the apoplast, especially its diastereoisomer A. Propiconazole (log D = 3.65) and penconazole (log D = 4.64) exhibited a similar low systemicity. The data remained the same when the three fungicides were applied together on the soil. Long time‐course studies (1.5 months) of penconazole behaviour indicated that, in contrast to leaching, which decrease sharply, root‐to‐shoot translocation remained almost unchanged during the whole experiment, in spite of the high lipophilicity of this fungicide. CONCLUSION: This method must contribute to a better knowledge of the behaviour of commercial soil‐applied phytochemicals. It can also be used to screen new xenobiotics within strategies to satisfy environmental requirements. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Postemergence applications of bentazone [3-iscpropyl-1H-2,1,3-benzothiadiazine-4-(3H)-one-2,2-dioxide] have shown promise for weed control in soybean [Glycine max (L.) Merr.]. A high soil moisture regime reduced soybean tolerance to bentazone. Covering the soil with vermiculite prior to spraying avoided the loss in tolerance and suggested that bentazone absorption by roots can occur under conditions of flooding at time of application. Bentazone was more inhibitory to photosynthesis 3 h after application and to respiration 1 day after application to the susceptible Canada thistle [Cirsium arvense (L.) Scop.] than to the tolerant soybean. The retention of less spray on leaf surfaces and faster metabolism of absorbed bentazone by soybean appear lo contribute to the observed selectivity. Movement of the 14C-label from the site of 14C-bentazone application in either species was primarily acropetal within the treated leaf. Sélectivité de la hentazone vis-á-vis du soja et du chardon Des applications en postlevée de bentazone (3-isopropyl-1H-2,1,3-benzothiadiazine-4-(3H)-one,2,2-dioxyde) se sont nion-trées prometteuses pour de désherbage du soja (Glyeine max (L.) Merr.). Un taux élevé d'humidité du sol a réduit la résistance du soja á la bentazone. Le recouvrement du sol avec de la vermiculite avant le traitement a évité la perte de resistance, de qui suggere que rabsorption de la bentazone par les racines peut se produire lorsqu'il y a submersion au moment du traitement. La bentazone s'est montré e plus inhibitrice pour la phclosynthé se 3 heures apré s l'application, et pour la respiration, 1 jour apré s Tapplication, pour le chardon, (Cirsium arvense (L.) Scop.) plante sensible, que pour le soja, plante risistante. La retention plus faible du liquide pulvérisé sur les surfaces foliaires et le métabolisme plus rapide de la bentazone par le soja semble contribuer á la sélectivité observé e. La migration du 14C depuis le site d'application de la 14C-bentazone dans les deux espéces a ite au début acropétale á l'intérieur des feuilles traitées. Selektivität von Bentazon zwisehen Sojabohne und Acker-Kratzdistel Die Verwendung von Bentazon [3-Isopropyl-1H-2,1,3-benzothiadiazin-4-(3H)-one-2,2-dioxid] im Nachauflaufver-fahren zur Unkrautbekämpfung in Sojabohnen [Glyeine max. (L.) Merr.] ist vielversprechend. Hohe Bodenfeuch-tigkeit verminderte die Toleranz von Bentazon gegenüber der Sojabohne. Bedecken des Bodens mit Vermikulit vor der Spritzung bewirkte, dass die Kultur nicht geschSdigt wurde und lässt daher vermuten, dass Bentazon über die Wurzeln aufgenommen wird. wenn zur Zeit der Anwendung der Boden sehr feucht ist. Bentazon hemmte 3 h nach der Applikation die Photosynthese und einen Tag nach der Anwendung die Atmung bei der Acker-Kratzdistel (Cirsium arvense (L.) Scop.] stärker als bei der toleranten Sojabohne. Die geringere Rentention auf der Biattobertiäche und der raschere Metabo-lismus des aufgenommenen Bentazons scheint zur Selektivitat bei der Sojabohne beizutragen. Aktivität von 14C-Bentazon wurde im Blatt beider Arten hauptsachlich akropetal transloziert.  相似文献   

14.
Testing MACRO (version 5.1) for pesticide leaching in a Dutch clay soil   总被引:2,自引:0,他引:2  
Testing of pesticide leaching models against comprehensive field-scale measurements is necessary to increase confidence in their predictive ability when used as regulatory tools. Version 5.1 of the MACRO model was tested against measurements of water flow and the behaviour of bromide, bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one-2,2-dioxide] and imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] in a cracked clay soil. In keeping with EU (FOCUS) procedures, the model was first calibrated against the measured moisture profiles and bromide concentrations in soil and in drain water. Uncalibrated pesticide simulations based on laboratory measurements of sorption and degradation were then compared with field data on the leaching of bentazone and imidacloprid. Calibrated parameter values indicated that a high degree of physical non-equilibrium (i.e. strong macropore flow) was necessary to describe solute transport in this soil. Comparison of measured and simulated bentazone concentration profiles revealed that the bulk of the bentazone movement in this soil was underestimated by MACRO. Nevertheless, the model simulated the dynamics of the bentazone breakthrough in drain water rather well and, in particular, accurately simulated the timing and the concentration level of the early bentazone breakthrough in drain water. The imidacloprid concentration profiles and its persistence in soil were simulated well. Moreover, the timing of the early imidacloprid breakthrough in the drain water was simulated well, although the simulated concentrations were about 2-3 times larger than measured. Deep groundwater concentrations for all substances were underestimated by MACRO, although it simulated concentrations in the shallow groundwater reasonably well. It is concluded that, in the context of ecotoxicological risk assessments for surface water, MACRO can give reasonably good simulations of pesticide concentrations in water draining from cracking clay soils, but that prior calibration against hydrologic and tracer data is desirable to reduce uncertainty and improve accuracy.  相似文献   

15.
This study has determined the uptake of three pesticides, applied as commercial or model formulations in the presence of a wide range of surfactants, into the leaves of three plant species (bentazone into Chenopodium album L. and Sinapis alba L., epoxiconazole and pyraclostrobin into Triticum aestivum L.). The results have confirmed previous findings that the initial dose (nmol mm(-2)) of xenobiotic applied to plant foliage is a strong, positive determinant of uptake. This held true for all the pesticide formulations studied, although surfactant concentration was found to have an effect. The lower surfactant concentrations studied showed an inferior relationship between the amount of xenobiotic applied and uptake. High molecular mass surfactants also produced much lower uptake than expected from the dose uptake equations in specific situations.  相似文献   

16.
The effect of agronomic doses of three suspension concentrate formulations and two anionic surfactant adjuvants on the solubilisation and sorption characteristics of triticonazole fungicide in a loamy clay soil was investigated. Soil sorption of [14C]triticonazole alone, in the formulations, and in the presence of increasing doses of formulation additives was measured using the classical batch equilibration technique. Triticonazole solubilisation in water‐formulation systems was also evaluated using a batch procedure, and sorption of the formulation aqueous phases on soil was examined. Solubilisation of triticonazole in the formulation systems occurred in excess of the solubility in water (Sw). This was attributed to triticonazole association with surfactant monomers. Sorption isotherms of triticonazole with diluted surfactants and other formulation additives were similar to that of triticonazole alone. We concluded that in soil‐formulation systems, triticonazole solubilisation in excess of the Sw may increase the amount available in soil solution for plant absorption. However, triticonazole molecules preferentially associated with the soil surfaces, and the presence of diluted amounts of the formulation adjuvants would not significantly affect the soil sorption process. © 2000 Society of Chemical Industry  相似文献   

17.
The mobility of alachlor from alginate-encapsulated controlled-release (CR) formulations was investigated in two contrasting soil profiles. Two CR formulations of alachlor were prepared with the following components (1) base—sodium alginate+kaolin+‘Tween’ 20 (1+10+0·5 by mass) and (2) base+40 g kg−1 linseed oil. These were compared to technical grade alachlor and to a commercial alachlor EC formulation (‘Lasso’ 4EC). All herbicide treatments were labeled with [14C]alachlor and were applied to duplicate soil columns that were composed of a surface and a subsoil horizon. Each horizon was packed to a depth of 12·5 cm, giving a total column length of 25 cm. The columns were leached with 21 cm (420 ml) to 30 cm (600 ml) of 0·01M calcium chloride for a period of 7 to 10 days. Alachlor leaching from the EC formulations was the same as that from the technical material in both soils: 33% in the Evesboro and 10% in the Conover soil. The CR-Oil formulation leached 4 and 2% of the applied [14C]alachlor, compared to 12 and 3% for the CR-N formulation for the Evesboro and Conover soils, respectively. The CR-Oil formulation also increased the amount of [14C]alachlor retained in the soil surface horizon (105–114%), compared to CR-N (39–45%), technical material (14–23%) and EC (12–17%).  相似文献   

18.
Polydisperse ethoxylated fatty alcohol (EFA) surfactants can improve the performance of crop protection agents. At the cuticular level they act as accelerators of penetration by increasing the mobility of active ingredients in the cuticle, the barrier properties of which are mainly caused by cuticular waxes. Polydisperse Genapol C-050 (GP C-050, average formula C12.5E5.8) was also found to increase mobility in wax-extracted polymer matrix membranes (MX) of bitter orange and pear, indicating that sorption of surfactants increased segmental mobility of polymethylene chains in cutin and wax. Sorption into MX of the active fraction of GP C-050 from 5g litre−1 micellar solutions was in equilibrium in less than 1 h after establishing contact. This is almost 100-fold faster than with cuticular membranes (CM). Temperature dependence of solute mobilities in CM was studied in order to measure activation energies (ED) of diffusion in the presence and absence of aqueous surfactant solutions. Monodisperse fatty alcohol ethoxylates C8E3, C8E4 and C12E6, and (non-surface-active) tributylphosphate decreased ED of the model compounds WL 110547 and bifenox in Citrus, Pyrus and Stephanotis CM by more than 100 kJ mol−1. This corresponds to 50 to 275-fold increases of mobilities at 15 °C. Our data suggest that the decrease in activation energies with the concomitant accelerating effect on mobility contributes considerably to the effects of so-called activator surfactants. High temperature and accelerators act similarly on barrier properties of CM. It is shown that effects of both monodisperse and polydisperse EFA surfactants on solute mobility are reversible and that radiolabelled C12E8 penetrated pear CM rapidly. However, rates of penetration were lowered by excess amounts of WL 110547 and especially phenylurea. Partition coefficients of seven organic solutes between Capsicum fruit cuticles and GP C-050 were very low and, with the exception of methylglucose, smaller than 1. They decreased with lipophilicity and differed about 100-fold. Especially for the lipophilic compounds they were orders of magnitude lower than octanol/water or cuticle/water partition coefficients, which indicates the limited usefulness of these values for an understanding of penetration of active ingredients from formulation residues. © 1999 Society of Chemical Industry  相似文献   

19.
20.
Structure-concentration–foliar uptake enhancement relationships between commercial polyoxyethylene primary aliphatic alcohol (A), nonylphenol (NP), primary aliphatic amine (AM) surfactants and the herbicide glyphosatemono(isopropylammonium) were studied in experiments with wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants growing under controlled-environment conditions. Candidate surfactants had mean molar ethylene oxide (EO) contents ranging from 5 to 20 and were added at concentrations varying from 0·2 to 10 g litre?-1 to [14C]glyphosate formulations in acetone–water. Rates and total amounts of herbicide uptake from c. 0·2–μl droplet applications of formulations to leaves were influenced by surfactant EO content, surfactant hydrophobe composition, surfactant concentration, glyphosate concentration and plant species, in a complex manner. Surfactant effects were most pronounced at 0·5 g acid equivalent (a.e.) glyphosate litre?-1 where, for both target species, surfactants of high EO content (15–20) were most effective at enhancing herbicide uptake: surfactants of lower EO content (5–10) frequently reduced, or failed to improve, glyphosate absorption. Whereas, at optimal EO content, AM surfactants caused greatest uptake enhancement on wheat, A surfactants gave the best overall performance on field bean; NP surfactants were generally the least efficient class of adjuvants on both species. Threshold concentrations of surfactants needed to increase glyphosate uptake were much higher in field bean than wheat (c. 2 g litre?-1 and < 1 g litre?-1, respectively); less herbicide was taken up by both species at high AM surfactant concentrations. At 5 and 10 g a.e. glyphosate litre?-1, there were substantial increases in herbicide absorption and surfactant addition could cause effects on uptake that were different from those observed at lower herbicide doses. In particular, the influence of EO content on glyphosate uptake was now much less marked in both species, especially with AM surfactants. The fundamental importance of glyphosate concentration for its uptake was further emphasised by experiments using formulations with constant a.i./surfactant weight ratios. Any increased foliar penetration resulting from inclusion of surfactants in 0·5 g litre?-1 [14C]glyphosate formulations gave concomitant increases in the amounts of radiolabel that were translocated away from the site of application. At these low herbicide doses, translocation of absorbed [14C]glyphosate in wheat was c. twice that in field bean; surfactant addition to the formulation did not increase the proportion transported in wheat but substantially enhanced it in field bean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号