首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
BACKGROUND: Studies of hybrid fitness, of which agronomic performance may be an indicator, can help in evaluating the potential for introgression of a transgene from a transgenic crop to wild relatives. The objective of this study was to assess the agronomic performance of reciprocal hybrids between two transgenic glufosinate‐resistant rice lines, Y0003 and 99‐t, and two weedy rice accessions, WR1 and WR2, in the greenhouse. RESULTS: F1 hybrids displayed heterosis in height, flag leaf area and number of spikelets per panicle. The agronomic performance of F1 between WR1 and Y0003 was not affected by crossing direction. The tiller and panicle numbers of F1 individuals were higher than their F2 counterparts. However, these traits did not change significantly from the F2 to the F3 generation or in hybrids with weedy rice as maternal or paternal plants. For all hybrids, the in vitro germination rates of fresh pollen were similar and significantly lower than those of their parents, seed sets were similar to or of lower value than those of weedy rice parents and seed shattering characteristics were partially suppressed, but the survival of hybrids over winter in the field was similar to that of weedy rice parents. All F1, F2 and F3 hybrids had similar composite agronomic performance to weedy rice parents. CONCLUSION: There was no significant decrease in the composite agronomic performance of any of the hybrids compared with weedy rice. This implies that gene flow from transgenic cultivated rice to weedy rice could occur under natural conditions. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Gene transfer from weeds to crops could produce weedy individuals that might impact upon the evolutionary dynamics of weedy populations, the persistence of escaped genes in agroecosystems and approaches to weed management and containment of transgenic crops. The present aim was to quantify the gene flowrate from weedy red rice to cultivated rice, and evaluate the morphology, phenology and fecundity of resulting hybrids. Field experiments were conducted at Stuttgart and Rohwer, Arkansas, USA. Twelve red rice accessions and an imazethapyr‐resistant rice (Imi‐R; Clearfield?) were used. RESULTS: Hybrids between Imi‐R rice × red rice were 138–150 cm tall and flowered 1–5 days later than the rice parent, regardless of the red rice parent. Hybrids produced 20–50% more seed than the rice parent, but had equivalent seed production to the majority of red rice parents. Seeds of all hybrids were red, pubescent and dehisced at maturity. For the majority of hybrids, seed germination was higher than that of the red rice parent. The gene flowrate from red rice to rice was 0.01–0.2% and differed by red rice biotype. The hybrids had higher fecundity and potential competitive ability than the rice parent, and in some cases also the red rice parent. CONCLUSIONS: Red rice plants are vectors of gene flow back to cultivated rice and other weedy populations. The progeny of red rice hybrids from cultivated rice mother plants have higher chances of persistence than those from red rice mother plants. Gene flow mitigation strategies should consider this scenario. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
BACKGROUND: The compatibility and outcrossing rates between transgenic rice and weedy rice biotypes have been studied in some previous cases. However, few studies have addressed the reasons for these differences. The present study compared the compatibility and outcrossing rates between transgenic rice and selected weedy rice biotypes using manual and natural crossing experiments to elucidate the key innate factors causing the different outcrossing rates. RESULTS: Hybrid seed sets from manual crossing between transgenic rice and weedy rice varied from 31.8 to 82.7%, which correlated directly with genetic compatibility. Moreover, the significant differences in the quantity of germinated donor pollens and pollen tubes entering the weedy rice ovule directly contributed to the different seed sets. The natural outcrossing rates varied from 0 to 6.66‰. The duration of flowering overlap was the key factor influencing natural outcrossing. Plant and panicle height also affected outcrossing success. CONCLUSION: From this study, it is concluded that the likelihood of gene flow between transgenic rice and weedy rice biotypes is primarily determined by floral synchronisation and secondarily influenced by genetic compatibility and some morphological characteristics. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
Hybridisation between genetically distinct lineages results in increases in overall genetic diversity and is a potential mechanism for the origin and spread of adaptive alleles. Weed and crop hybridisation may result in weedy ecotypes, which have, in addition to classic weedy traits such as seed shattering and long seed dormancy, crop traits that enhance weediness, such as adaptation to field cultivation and harvest strategies. Weedy rice (Oryza sativa) hybridises with cultivated rice and, in the process, may produce new (pink‐awned) weedy rice varieties. Pink‐awned (PA) weedy rice plants have been observed in rice fields in Arkansas. We explored the genetic relationships between PA weedy rice, crop rice, global rice accessions and other weedy rice ecotypes present in the southern United States. Gene sequencing of 48 sequence‐tagged sites (STS loci) revealed a pattern of hybridisation and gene flow between blackhull weedy rice and tropical japonica rice (O. sativa subsp. japonica) cultivars. Our data suggest that PA rice originates from hybridisation between blackhull weedy rice and tropical japonica rice. PA rice offspring segregate phenotypic traits associated with weediness in rice. This segregation could lead to adaptive allele combinations in PA rice, which could potentially move into other weedy rice types through subsequent hybridisation events.  相似文献   

5.
Weedy rice ( Oryza sativa f. spontanea ) is a problematic weed in the Thai Hom Mali rice production areas of Thung Kula Ronghai in north-eastern Thailand. There is a great need to initiate studies of weedy rice populations in order to perform basic studies to learn about the seed morphology and genetic diversity. The aims of this study were to determine the seed morphological traits and amylose content and to evaluate the genetic variation, based on the polymorphisms of nuclear and chloroplast DNA, of weedy rice. The seeds and flag leaves were collected from a total of 125 weedy rice plants at six rice fields in the region. For the samples, four morphological traits, the amylose content, and the chloroplast identity (ID) sequence and microsatellite genotypes at the waxy locus were determined. The weedy rice that was collected from the Thung Kula Ronghai region varied considerably in its amylose content and both the seed morphology and genotypes. Some of the weedy rice shared the common microsatellite alleles and chloroplast ID sequence with Thai Hom Mali and wild rice, Oryza rufipogon , indicating that the weedy rice in this region might originate from the introgression between cultivated rice and O. rufipogon , which often takes place in nature, mostly in a one-way process from cultivated rice to O. rufipogon.  相似文献   

6.
Transgenic herbicide‐resistant rice is needed to control weeds that have evolved herbicide resistance, as well as for the weedy (feral, red) rice problem, which has been exacerbated by shifting to direct seeding throughout the world—firstly in Europe and the Americas, and now in Asia, as well as in parts of Africa. Transplanting had been the major method of weedy rice control. Experience with imidazolinone‐resistant rice shows that gene flow to weedy rice is rapid, negating the utility of the technology. Transgenic technologies are available that can contain herbicide resistance within the crop (cleistogamy, male sterility, targeting to chloroplast genome, etc.), but such technologies are leaky. Mitigation technologies tandemly couple (genetically link) the gene of choice (herbicide resistance) with mitigation genes that are neutral or good for the crop, but render hybrids with weedy rice and their offspring unfit to compete. Mitigation genes confer traits such as non‐shattering, dwarfism, no secondary dormancy and herbicide sensitivity. It is proposed to use glyphosate and glufosinate resistances separately as genes of choice, and glufosinate, glyphosate and bentazone susceptibilities as mitigating genes, with a six‐season rotation where each stage kills transgenic crop volunteers and transgenic crop × weed hybrids from the previous season. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
苏南苏中苏北地区3个杂草稻生物型萌发特性比较研究   总被引:1,自引:0,他引:1  
为了搞清楚江苏地区杂草稻不同生物型在萌发特性上的差异,选择了苏南、苏中和苏北地区3个杂草稻生物型及2个常规栽培稻品种,采用种子生测法,进行了温度、水势、盐分、pH值和埋土深度对杂草稻与常规栽培稻种子萌发影响的研究。结果表明,在萌发适宜温度范围方面,JT-3、JD-4〉SY63〉GY-LZC〉WYJ7;不同水势条件下,JT-3、JD-4的萌发率〉GY-LZC的萌发率〉常规栽培稻的萌发率。JT-3、JD-4在每个盐浓度处理下的萌发率〉GY-LZC的萌发率;在pH值7~8范围之外,JT-3、JD-4的萌发率〉GY-LZC的萌发率〉常规栽培稻萌发率;当埋土深度在4~7 cm范围内,常规栽培稻的出苗率〉杂草稻。  相似文献   

8.
杂草稻对粳稻生长及产量的影响   总被引:4,自引:0,他引:4  
在同期播种情况下,和粳稻相比,杂草稻出苗时的叶片更肥长、营养生长期的植株更高、分蘖数多达4倍以上。不同生物型杂草稻的落粒性差异较大。杂草稻密度愈高对栽培粳稻的产量影响愈大。  相似文献   

9.
杂草稻对水稻生长及产量的影响   总被引:6,自引:0,他引:6  
通过室内试验和田间试验明确了杂草稻对水稻生长、产量构成因子和产量的影响。水稻营养生长期,不同杂草稻密度对水稻基本苗、株高、单株鲜重、分蘖、倒二叶长与宽均没有影响。而水稻株高、有效穗数、穗长、一次枝梗数、穗粒数、千粒重、结实率、实际产量等均随杂草稻密度的增加而呈现下降趋势。杂草稻密度为1株/m2可导致水稻产量损失9.15%,当杂草稻密度达7株/m2时可导致水稻产量损失50%以上,杂草稻密度达到12株/m2时水稻产量损失可高达72.29%。  相似文献   

10.
A human protoporphyrinogen oxidase (Protox) coding sequence under the control of a ubiquitin promoter was introduced into rice to determine whether transgenic rice overexpressing the human Protox gene exhibits resistance against a peroxidizing herbicide. The transgenic rice lines (H3, H4, H5, H6, H9, and H10) transcribed the human Protox mRNA, whereas hybridizing RNA band was not detected in wild-type rice, indicating that the human Protox gene had been successfully transmitted into transgenic rice plants. The transgenic lines H9 and H10 showed growth retardation and light-dependent formation of necrotic lesions. Compared with wild-type rice plants, rice with a human Protox gene had increased Protox activity and content of the photosensitizer protoporphyrin IX, and reduced chlorophyll. The photosynthetic efficiency in lines H9 and H10, as indicated by Fv/Fm, was not different from that of wild type. The two transgenic lines had decreased levels of antheraxanthin, lutein, and β-carotene and similar levels of neoxanthin and violaxanthin as compared with wild-type plants. The staining activities of catalase, peroxidase, superoxide dismutase, and glutathione reductase were higher in transgenic lines than in wild type. Line H9 germinated in the presence of 20 μM oxyfluorfen, whereas 2 μM oxyfluorfen inhibited the germination of wild-type seeds. Thus, the transgenic rice plants exhibited enhanced resistance to oxyfluorfen.  相似文献   

11.
杂草稻苗期强竞争性的生理机制   总被引:3,自引:1,他引:2  
为揭示杂草稻比栽培稻苗期生长迅速的机制,随机选择均匀分布于江苏省6个市的杂草稻样品和典型粳稻品种日本晴(Nipponbare),比较了其连续7 d的种子萌发率以及在14、21、28、35 d的幼苗株高变化和光合作用原初反应指标之间的差异。结果表明,江苏省6个市的杂草稻样品均比栽培稻提早2 d萌发,且均未表现出休眠性。杂草稻苗期株高在第35天时,均显著高于栽培稻。在播种后14、21、28和35 d,杂草稻光合作用原初反应的7个指标均高于栽培稻,说明杂草稻苗期具有强光合性能。研究表明,江苏省杂草稻比栽培稻早2 d萌发,至少播种后14 d苗期光合效能开始高于栽培稻,播种后28 d左右株高开始显著高于栽培稻。  相似文献   

12.
Weedy rice is morphologically similar to cultivated rice (Oryza sativa L.). It has biological characteristics that identify it as a weed. Its important weedy characteristics, that is, early and heavy seed shattering, makes it very difficult to control. Weedy rice has not been reported to be an important weed problem in transplanted, flooded rice. However, the shift to direct‐seeded rice (DSR) due to water issues and high costs of labor has increased reports of weedy rice becoming an expanding important problem in Vietnam, Malaysia, Thailand, and the Philippines. Experts believe that the growing adoption of DSR in Asian countries will result in the rise of weedy rice as one of the top troublesome weeds in rice production. Early and recent surveys in the Philippines have indicated the urgent need to increase awareness of weedy rice among farmers to allow the implementation of a number of effective location‐specific weed management strategies. These surveys and other studies conducted since weedy rice was first reported in 1991 confirmed that weedy rice and grass weed species caused major problems in DSR areas. About 35% of the 4.56 M ha harvested area in the country is planted with DSR. As cultivated and weedy rice are close relatives, it would be very difficult to implement management options very early in crop growth. However, a deeper understanding of the underlying traits of weedy rice can help develop a holistic approach toward effective and economic weed management.  相似文献   

13.
Oryza sativa (weedy red rice), the same species as cultivated rice, is a serious problem in rice production worldwide. Seed dormancy contributes to its persistence. We determined the effect of germination temperature and after‐ripening period on germination capacity (GC) of red rice seeds from Arkansas rice fields in three production zones. We also determined the gene diversity (GD) of dormancy‐linked loci among selected populations. The germination behaviour was evaluated at three temperatures (1°C, 15°C and 35°C) and four after‐ripening periods (0, 30, 60 and 90 days) in two independent experiments. Germination response to temperature and after‐ripening time differed among and within populations in each production zone. Overall, populations from the Delta and Grand Prairie were more dormant than those from White River. Regardless of ecotype or production zone, incubation at 35°C (mean GC = 84–100%) favoured the germination of seeds after‐ripened for 60 days. Germination of these seeds was most variable at suboptimal temperature (15°C), with mean GC ranging from 44 to 97%; at 1°C, none of the seeds germinated. Primary dormancy was released in the majority of populations after 90 days of after‐ripening. Blackhull populations generally had lower mean GC than strawhull populations, regardless of temperature, and required longer after‐ripening time to release dormancy. They also showed a higher inter‐ and intrapopulation variation in germination and after‐ripening than strawhulls and had the highest gene diversity (GD = 0.55–0.58) among test populations. Non‐dormant strawhulls were most distant (D = 0.63) from dormant blackhulls. Ecotype influenced genotypic clustering more than the dormancy trait.  相似文献   

14.
Genes regularly move within species, to/from crops, as well as to their con‐ specific progenitors, feral and weedy forms (‘vertical’ gene flow). Genes occasionally move to/from crops and their distantly related, hardly sexually interbreeding relatives, within a genus or among closely related genera (diagonal gene flow). Regulators have singled out transgene flow as an issue, yet non‐transgenic herbicide resistance traits pose equal problems, which cannot be mitigated. The risks are quite different from genes flowing to natural (wild) ecosystems versus ruderal and agroecosystems. Transgenic herbicide resistance poses a major risk if introgressed into weedy relatives; disease and insect resistance less so. Technologies have been proposed to contain genes within crops (chloroplast transformation, male sterility) that imperfectly prevent gene flow by pollen to the wild. Containment does not prevent related weeds from pollinating crops. Repeated backcrossing with weeds as pollen parents results in gene establishment in the weeds. Transgenic mitigation relies on coupling crop protection traits in a tandem construct with traits that lower the fitness of the related weeds. Mitigation traits can be morphological (dwarfing, no seed shatter) or chemical (sensitivity to a chemical used later in a rotation). Tandem mitigation traits are genetically linked and will move together. Mitigation traits can also be spread by inserting them in multicopy transposons which disperse faster than the crop protection genes in related weeds. Thus, there are gene flow risks mainly to weeds from some crop protection traits; risks that can and should be dealt with. © 2014 Society of Chemical Industry  相似文献   

15.
中国北方杂草稻幼苗对干旱胁迫的生理响应   总被引:2,自引:0,他引:2  
以杂草稻heb07-2、wr04-6及巴西陆稻IAPAR9为研究材料,采用人工气候箱培养幼苗,利用20%聚乙二醇6000(PEG-6000)模拟干旱条件,研究了杂草稻及巴西陆稻幼苗叶片和根系生理特性标的变化。结果表明:干旱胁迫下,杂草稻heb07-2幼苗的叶片与根系具有较高的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活力;杂草稻heb07-2的可溶性糖含量、可溶性蛋白含量高于其它材料。杂草稻heb07-2细胞膜系统保持完整,膜质过氧化程度小于其它材料,表明干旱胁迫对杂草稻heb07-2伤害较小,具有较强苗期抗旱性。  相似文献   

16.
Weedy rice (Oryza spp.) is a notorious weed in direct-seeding paddy fields. Because it has anatomical and physiological traits similar to those of cultivated rice, no selective herbicide is effective in controlling weedy rice growing among conventional rice cultivars. Imidazolinone (IMI)-resistant rice lines JD372 and JJ818 have been planted with imazamox to control weedy rice in Jiangsu and Shanghai, China. Whole-plant dose–response analysis showed that imazamox exhibited high efficacy against three populations of weedy rice. The ED90 of weedy rice populations FN-5, GY-8, and HY-3 were 46.87, 61.43, and 52.17 g a.i. ha−1, respectively, close to the recommended field dose (50 g a.i. ha−1) of imazamox. Conversely, the ED10 values of JD372 and JJ818 were slightly lower than 50 g a.i. ha−1. These findings indicate that imazamox can control weedy rice production in JD372 and JJ818 fields. The acetolactate synthase (ALS) sensitivity of JD372 in vitro was 1714.89-fold lower to imazamox than was that of FN-5. ALS gene sequencing revealed a Ser653Asn point mutation—a common mutation that confers resistance to IMI herbicides in JD372. In addition, higher ALS expression levels in JD372 were found at 24 and 72 h after imazamox treatment. ALS overexpression might partially compensate for the ALS activity of JD372 that was suppressed by imazamox.  相似文献   

17.
部分中国栽培稻资源对稻瘟病的抗性分析   总被引:9,自引:0,他引:9       下载免费PDF全文
以苗期16个稻瘟病生理小种的抗谱测定以及成株期叶瘟、穗颈瘟鉴定结果为依据,分析了75份中国栽培稻稻瘟病抗性资源的抗瘟性。结果显示,不同抗性品种的抗谱以及对成株期叶瘟和穗颈瘟的抗性反应差异较大。相关分析表明,苗期抗谱测定结果与成株期叶瘟抗性显著相关,而与穗颈瘟,以及叶瘟与穗颈瘟间相关不显著。根据聚类分析结果,抗性资源可分成9个类群,其中以第6类群包含品种最多,抗谱最广(81.3%~100%),并高抗A、B、E、G群生理小种和抗穗颈瘟,可作为水稻稻瘟病抗性育种优先利用的种质资源。  相似文献   

18.
To examine the impact of weedy rice ( Oryza sativa L. f. spontanea ) populations on the growth and yield of direct-seeded and transplanted rice ( Oryza sativa ), a field experiment with a random two-factor design that included cultivation methods (direct-seeding and transplanting) and the density of weedy rice (0, 5, 25, and 125 plants per m2) was conducted. The data from the experiment showed that weedy rice had a significantly poorer performance in the direct-seeded fields than in the transplanted fields in terms of its vegetative (plant height) and reproductive traits (panicle and seed production). In contrast, with the interference of weedy rice, cultivated rice showed an improved performance in the direct-seeded fields than in the transplanted fields, with a significantly higher tiller production and grain yield. The results suggest that cultivated rice can tolerate more successfully the infestation of weedy rice in direct-seeded fields because of its enhanced competitive ability compared to that in transplanted fields.  相似文献   

19.
上海地区杂草稻种子主要分布在0~5 cm土层中,其次为5~10 cm的土层,分别占杂草稻种子库的67.02%和28.87%,不同土层深度中杂草稻种子越冬后的萌发率差异不显著,萌发率在33%~40%。随着土层深度增加,杂草稻种子越冬后出苗率逐渐降低,10 cm以上的杂草稻种子的出苗率均为0,且来源不同的杂草稻存在一定的差异;不同地点采集的杂草稻在室温条件下保存1~12个月均表现出较高的萌发率,但在土壤深埋的条件下,随着埋藏时间的延长不同地点采集的杂草稻萌发率逐渐降低,但是杂草稻萌发率下降速度显著低于水稻。  相似文献   

20.
在室内采用水培方法,比较草铵膦对抗草铵膦转基因水稻品系99-1与普通水稻品种越富和中作93的无影响浓度,从而明确该除草剂对水稻是否存在残留药害.结果表明,草铵膦对转基因水稻品系99-1的无影响浓度明显高于非转基因品种,对前者的种子和2叶龄幼苗的无影响浓度分别为8.28 mg/L和48.97 mg/L,而对后者的种子和2叶龄幼苗的无影响浓度分别为1.83 mg/L和2.06 mg/L.这些无影响浓度均高于推荐用量下草铵膦在土壤中的残留浓度.因此,正常用量下的草铵膦对转基因水稻品系和普通水稻均无土壤残留问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号