首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Mosquitoes are the most important vectors of human pathogens. Wide‐scale use of pesticides has led to the development of resistance to most common insecticide groups. The need to develop novel products that have a low impact on human health and the environment is well established. The toxicity of selected semiochemicals with molecular structures indicative of insecticidal activity was determined against adult Aedes aegypti (L.) and Anopheles quadrimaculatus (Say). The two most active insecticides against Ae. aegypti were also evaluated against Ae. albopictus (Skuse). RESULTS: Fifteen semiochemicals classified as terpenoid alcohols, ketones or carboxylic esters showed toxicity to both mosquito species. Geranyl acetone (LC50 = 38.51 µg cm?2) followed by citronellol (LC50 = 48.55 µg cm?2) were the most toxic compounds to Ae. aegypti, while geraniol and lavonax, with LC50 values of 31.88 and 43.40 µg cm?2, showed the highest toxicity to An. quadrimaculatus. Both geranyl acetone and citronellol were highly toxic to Ae. albopioctus. No semiochemical showed fumigation activity against either species. All semiochemicals persisted for less than 24 h when tested on filter paper. CONCLUSION: Quantification of LC50 values of several semiochemicals against Ae. Aegypti, An. quadrimaculatus and Ae. albopioctus showed that semiochemicals not only modify insect behaviors but also hold potential as potent insecticides for mosquito control programs. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Aedes aegypti L. is the major vector of dengue fever and dengue hemorrhagic fever. In an effort to find effective tools for control programs to reduce mosquito populations, the authors assessed the acute toxicities of 14 monoterpenoids, trans‐anithole and the essential oil of rosemary against different larval stages of Ae. aegypti. The potential for piperonyl butoxide (PBO) to act as a synergist for these compounds to increase larvicidal activity was also examined, and the oviposition response of gravid Ae. aegypti females to substrates containing these compounds was evaluated in behavioral bioassays. RESULTS: Pulegone, thymol, eugenol, trans‐anithole, rosemary oil and citronellal showed high larvicidal activity against all larval stages of Ae. aegypti (LC50 values 10.3–40.8 mg L?1). The addition of PBO significantly increased the larvicidal activity of all test compounds (3–250‐fold). Eugenol, citronellal, thymol, pulegone, rosemary oil and cymene showed oviposition deterrent and/or repellent activities, while the presence of borneol, camphor and β‐pinene increased the number of eggs laid in test containers. CONCLUSIONS: This study quantified the lethal and sublethal effects of several phytochemical compounds against all larval stages of Aedes aegypti, providing information that ultimately may have potential in mosquito control programs through acute toxicity and/or the ability to alter reproductive behaviors. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Myracrodruon urundeuva Fr. Allemao is a common tree in the Caatinga that has been widely used for various medical purposes. Previous studies showed that the ethanol seed extract of M. urundeuva has potent activity against the larval stage of the dengue vector Aedes aegypti. Given this potential insecticidal activity, bioguided separation steps were performed in order to isolate the active compound(s). RESULTS: The isolation process resulted in only one active chemical compound, identified by infrared spectroscopy and mass spectrometry as m-pentadecadienyl-phenol. This compound presented potent larvicidal and pupicidal activity (LC50 10.16 and 99.06 µg mL−1 respectively) and great egg hatching inhibitory activity (IC50 49.79 µg mL−1). The mode of action was investigated through observations of behavioural and morphological changes performed in third-instar larvae treated with m-pentadecadienyl-phenol solution after 1, 6, 12, 16 and 20 h of exposure. Some changes were observed as flooding of the tracheal system, alterations in siphonal valves and anal gills and lethargy, probably caused by the strong anticholinesterasic activity reported previously. CONCLUSION: The compound isolated from M. urundeuva seeds, m-pentadecadienyl-phenol, showed potent activity against immature stages of dengue vector, Ae. aegypti, being considered the main larvicidal principle. Copyright © 2012 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Dengue fever is a severe public health problem for several countries. In order to find effective larvicides to aid control programs, the structure‐activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae were evaluated. Additionally, the composition and larvicidal activity of Syzygium aromaticum essential oil was assessed. RESULTS: Four compounds representing 99.05% of S. aromaticum essential oil have been identified. The essential oil was active against Ae. aegypti larvae (LC50 = 62.3 and 77.0 ppm, field‐collected and Rockefeller larvae respectively). The larvicidal activity of eugenol, the major compound of the essential oil, was further evaluated (LC50 = 93.3 and 71.9 ppm, field‐collected and Rockefeller larvae respectively). The larvicidal activity and structure‐activity relationships of synthetic derivatives of eugenol were also assessed. The larvicidal activity of the derivatives varied between 62.3 and 1614.9 ppm. Oxidation of eugenol allylic bond to a primary alcohol and removal of the phenolic proton resulted in decreased potency. However, oxidation of the same double bond in 1‐benzoate‐2‐methoxy‐4‐(2‐propen‐1‐yl)‐phenol resulted in increased potency. CONCLUSION: Structural characteristics were identified that may contribute to the understanding of the larvicidal activity of phenylpropanoids. The present approach may help future work in the search for larvicidal compounds. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Field trials were conducted during the wet and dry seasons in periurban and semi‐rural cemeteries in southern Mexico to determine the efficacy of a suspension concentrate formulation of spinosad (Tracer 480SC) on the inhibition of development of Aedes albopictus L. and Ae. aegypti Skuse. For this, oviposition traps were treated with spinosad (1 or 5 mg L?1), Bacillus thuringiensis israelensis (Bti, VectoBac 12AS), a sustained release formulation of temephos and a water control. RESULTS: Ae. albopictus was subordinate to Ae. aegypti during the dry season, but became dominant or codominant during the wet season at both sites. The two species could not be differentiated in field counts on oviposition traps. Mean numbers of larvae + pupae of Aedes spp. in Bti‐treated containers were similar to the control at both sites during both seasons. The duration of complete absence of aquatic stages varied from 5 to 13 weeks for the spinosad treatments and from 6 to 9 weeks for the temephos treatment, depending on site, season and product concentration. Predatory Toxorhynchites theobaldi Dyar and Knab suffered low mortality in control and Bti treatments, but high mortality in spinosad and temephos treatments. Egg counts and percentage of egg hatch of Aedes spp. increased significantly between the dry and wet seasons, but significant treatment differences were not detected. CONCLUSION: Temephos granules and a suspension concentrate formulation of spinosad were both highly effective larvicides against Ae. aegypti and Ae. albopictus. These compounds merit detailed evaluation for inclusion in integrated control programs targeted at Ae. aegypti and Ae. albopictus in regions where they represent important vectors of human diseases. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Plant essential oils have been recognised as an important natural source of insecticide. This study analysed the chemical constituents and bioactivity of essential oils that were isolated via hydrodistillation from Origanum vulgare L. (oregano) and Thymus vulgaris L. (thyme) against eggs, second instar and adults of Nezara viridula (L.). RESULTS: The major component of oregano was p‐cymene, and, for thyme, thymol. The ovicidal activity was tested by topical application; the essential oil from thyme was more effective. The fumigant activity was evaluated in an enclosed chamber; the LC50 values for oregano were 26.8 and 285.6 µg mL?1 for nymphs and adults respectively; for thyme they were 8.9 µg mL?1 for nymphs and 219.2 µg mL?1 for adults. To evaluate contact activity, a glass vial bioassay was used; the LC50 values for oregano were 1.7 and 169.2 µg cm?2 for nymphs and adults respectively; for thyme they were 3.5 and 48.8 µg cm?2 respectively. The LT50 analyses for contact and fumigant bioassays indicated that thyme was more toxic for nymphs and adults than oregano. Both oils produced repellency on nymphs and adults. CONCLUSION: These results showed that the essential oils from O. vulgare and T. vulgaris could be applicable to the management of N. viridula. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Recent studies have indicated that spinosad, a mixture of two tetracyclic macrolide compounds produced during the fermentation of a soil actinomycete, may be suitable for controlling a number of medically important mosquito species, including the dengue vector, Aedes aegypti L. The authors determined the effects of a 1 h exposure to a 50% lethal concentration (LC50) of spinosad in the larval stage on the wing length, longevity and reproductive capacity of the adult survivors. RESULTS: The LC50 of spinosad for a wild‐caught population of Ae. aegypti from Chiapas, southern Mexico, was estimated to be 0.06 mg AI L?1 in late third instars. Paradoxically, the female survivors of exposure to this concentration were significantly larger (as determined by wing length) laid more eggs, but were slightly less fertile than control females. This was probably due to elimination of the smaller and more susceptible fraction of mosquito larvae from the experimental population following spinosad treatment. Male survivors, in contrast, were significantly smaller than controls. No significant differences were detected in the adult longevity of treated and control insects of either sex. CONCLUSIONS: The increase in reproductive capacity of spinosad‐treated females did not compensate for mortality in the larval stage and would be unlikely to result in population increase in this mosquito under the conditions that were employed. Sustained‐release formulations would likely assist in minimizing the occurrence of sublethal concentrations of this naturally derived product in mosquito breeding sites. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
Aedes albopictus (Skuse) is a globally significant vector that complexifies management programs already contending with Aedes aegypti (L.). The Ae. albopictus mosquito is a daytime biting, container breeding, anthropophilic mosquito that is generally considered unresponsive to operational larviciding that does not also incorporate source reduction. S-methoprene is a readily available juvenile hormone mimic common to pest management. This 14-week study examines direct and indirect treatment efficacy using s-methoprene as an ultra-low volume (ULV) truck spray in area-wide operations against Ae. albopictus in the southeastern United States. An overall 63.3% reduction of Ae. albopictus adults and 47.8% reduction of deposited eggs in treatment areas were observed compared with control. Indirect plots saw reduction in Ae. albopictus adults by 32.7% and eggs by 32.3%. Using insect growth regulator bioassays, truck-mounted ULV application of s-methoprene was effective to an inhibition of emergence (IE) of ≥92% within directly treated (sprayed) areas and >65% IE among containers placed up to 90 m away. S-methoprene could still benefit urban vector management programs when applied at an operational scale.  相似文献   

9.
BACKGROUND: The pea aphid, Acyrthosiphon pisum (Harris), is a cosmopolitan pest that attacks a wide range of legume crops and vectors important plant virus diseases. In this project, essential oils from the leaf (L) and bark (B) of Laurelia sempervirens (Ruiz & Pavón) Tul. (L) and Drimys winteri JR Forster & G Forster (D) were extracted, and their deterrent and insecticidal activities were tested under laboratory conditions. RESULTS: By use of GC‐MS, safrole was found as the main constituent in LL and LB oils, while the main constituents were more diverse in DL and DB oils. In the deterrent bioassays with A. pisum under choice conditions, the four oils were active, with LL being the most active, followed by LB, DB and DL. The respective deterrence indices were 1.0, 0.89, 0.87 and 0.46 when aphids were exposed for 24 h to 4 µL mL?1. Although there was no aphid mortality when oils were sprayed on faba bean leaves before aphid infestation, there was 58 and 42% mortality when settled aphids were directly sprayed with 4.0 µL mL?1 of LL and LB respectively; DB and DL oils caused ≤18% mortality. In a third series, the essential oils of LL and LB caused 100% mortality when applied at a dose of 64 µL L?1 air by fumigation to faba bean plants infested with A. pisum; at the same dose, DB and DL oils caused 68 and 63% mortality respectively. When fumigation was limited to 2 h, the respective LC50 values for LL and LB oils were 10.6–14.3 µL L?1 air and 9.8–13.2 µL L?1 air. CONCLUSION: Because of their high deterrent and insecticidal activities, the essential oils from leaf and bark of L. sempervirens may be explored as potential natural aphicides. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
The efficacy of copepod Mesocyclops aspericornis (Daday) combined with the larvicide Bacillus sphaericus (Bs) and a plant extract of Plectranthus amboinicus leaf abstract (PALE), used jointly and singly, was studied against Aedes aegypti in the laboratory. P. amboinicus leaf extract of 20, 40, 60, 80 and 100 ppm caused significant mortality against Ae. aegypti larvae. The LC50 and LC90 values for I to IV instars larvae and pupae were 26.12, 35.36, 45.76, 52.32 and 63.82 ppm, respectively. The LC90 values for I to IV instars larvae and pupae were 82.53, 92.65, 108.06, 119.47 and 131.71 ppm, respectively. Under laboratory conditions, copepods treatment produced 7.9% predatory efficiency against 1st instar larvae of Ae. aegypti, at a copepod:larvae ratio of 1:10. When copepod treatment was combined with PALE this was increased to 8.7. The treatment of copepods combined with Bs and PALE yielded a better and more sustainable result (9.6%) than the agents used individually. This predation efficiency may be caused by detrimental effects of the P. amboinicus active principle compound (carvacrol) on the mosquito larvae. Our results suggest that the combined application of microbial insecticide (Bs), copepods and P. amboinicus leaf extract may be used to control Aedes populations.  相似文献   

11.

BACKGROUND

Aedes aegypti is an important mosquito species that can transmit several arboviruses such as dengue fever, yellow fever, chikungunya and zika. Because these mosquitoes are becoming resistant to most chemical insecticides used around the world, studies with new larvicides should be prioritized. Based on the known biological profile of imidazolium salts (IS), the objective of this study was to evaluate the potential of six IS as larvicides against Ae. aegypti, as tested against Ae. aegypti larvae. Larval mortality was measured after 24 and 48 h, and residual larvicidal activity was also evaluated.

RESULTS

Promising results were obtained with aqueous solutions of two IS: 1‐n‐octadecyl‐3‐methylimidazolium chloride ( C 18 MImCl ) and 1‐n‐hexadecyl‐3‐methylimidazolium methanesulfonate ( C 16 MImMeS ), showing up to 90% larval mortality after 48 h exposure. C 18 MImCl was more effective than C 16 mIMeS , causing mortality until day 15 after exposure. An application of C 18 MImCl left to dry under ambient conditions for at least 2 months and then dissolved in water showed a more pronounced residual effect (36 days with 95% mortality and 80% mortality up to 78 days).

CONCLUSION

This is the first study to show the potential of IS in the control of Ae. aegypti. Further studies are needed to understand the mode of action of these compounds in the biological development of this mosquito species. © 2017 Society of Chemical Industry
  相似文献   

12.
The fumigant toxicity of various volatile constituents of essential oils extracted from sixteen Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae L (Coleoptera: Curculionidae), was determined. The most potent toxicity was found in the essential oil from Mentha arvensis L var piperascens (LC50 = 45.5 µl litre?1 air). GC–MS analysis of essential oil from M arvensis showed it to be rich in menthol (63.2%), menthone (13.1%) and limonene (1.5%), followed in abundance by β‐pinene (0.7%), α‐pinene (0.6%) and linalool (0.2%). Treatment of S oryzae with each of these terpenes showed menthone to be most active (LC50 = 12.7 µl litre?1 air) followed by linalool (LC50 = 39.2 µl litre?1 air) and α‐pinene (LC50 = 54.9 µl litre?1 air). Studies on inhibition of acetylcholinesterase activity of S oryzae showed menthone to have a nine‐fold lower inhibitory effect than menthol, despite menthone being 8.1‐fold more toxic than menthol to the rice weevil. Different modes of toxicity of these monoterpenes towards S oryzae are discussed. © 2001 Society of Chemical Industry  相似文献   

13.
Five species of invasive Aedes mosquitoes have recently become established in Europe: Ae. albopictus, Ae. aegypti, Ae. japonicus japonicus, Ae. koreicus and Ae. atropalpus. These mosquitoes are a serious nuisance for people and are also competent vectors for several exotic pathogens such as dengue and chikungunya viruses. As they are a growing public health concern, methods to control these mosquitoes need to be implemented to reduce their biting and their potential for disease transmission. There is a crucial need to evaluate methods as part of an integrated invasive mosquito species control strategy in different European countries, taking into account local Aedes infestations and European regulations. This review presents the control methods available or in development against invasive Aedes mosquitoes, with a particular focus on those that can be implemented in Europe. These control methods are divided into five categories: environmental (source reduction), mechanical (trapping), biological (e.g. copepods, Bacillus thuringiensis var. israelensis, Wolbachia), chemical (insect growth regulators, pyrethroids) and genetic (sterile insect technique and genetically modified mosquitoes). We discuss the effectiveness, ecological impact, sustainability and stage of development of each control method. © 2015 Society of Chemical Industry  相似文献   

14.

BACKGROUND

1,3,4‐Oxadiazole and imidazolidine rings are important heterocyclic compounds exhibiting a variety of biological activities. In this study, novel compounds with oxadiazole and imidazolidine rings were synthesized from 3‐(methylsulfonyl)‐2‐oxoimidazolidine‐1‐carbonyl chloride and screened for insecticidal activities. The proposed structures of the 17 synthesized compounds were confirmed using elemental analysis, infrared (IR), proton nuclear magnetic resonance (1H‐NMR), and mass spectroscopy.

RESULTS

None of the compounds showed larvicidal activity at the tested concentrations against first‐instar Aedes aegypti larvae. However, nine compounds exhibited promising adulticidal activity, with mortality rates of ≥80% at 5 µg per mosquito. Further dose–response bioassays were undertaken to determine median lethal dose (LD50) values. Compounds 1 , 2b , 2c , 2d , 2 g , 3b , 3c , 3 g, and 3 h were effective, with typical LD50 values of about 5 ? 10 µg per mosquito against female Ae. aegypti. Compounds 2c (bearing a nitro group on the aromatic ring; LD50 = 2.80 ± 0.54 µg per mosquito) and 3 h ( double halogen groups at 2,4 position on the phenyl ring; LD50 = 2.80 ± 0.54 µg per mosquito) were the most promising compounds.

CONCLUSION

Preliminary mode of action studies failed to show consistent evidence of either neurotoxic or mitochondria‐directed effects. Further chemical synthesis within this series may lead to the development of new effective insecticides. © 2017 Society of Chemical Industry
  相似文献   

15.
BACKGROUND: The cotton bollworm, Helicoverpa armigera (Hübner), is one of the most serious insect pests of cotton. It has developed resistance to almost all groups of chemical insecticides because of their intensive use. The failure of insecticides to control H. armigera has been a strong incentive for the adoption of transgenic cotton (Bt cotton). However, the value of Bt could be diminished by widespread resistance development to Bt toxins in insect populations. Therefore, understanding the genetic basis of resistance is essential for developing and implementing strategies to delay and monitor resistance. RESULTS: A resistant strain designated as BM‐R was obtained from the cross of adults from Bathinda () and Muktsar (), Punjab, India, which showed the highest survival (60.68%) and LC50 value (1.396 µg mL?1 diet). Similarly, a laboratory‐maintained strain from Hoshiarpur, Punjab, showed maximum susceptibility to Cry1Ac toxin with the lowest LC50 value (0.087 µg mL?1), and was designated as HP‐S. The genetic purity of both strains was confirmed by RAPD profile analysis at each generation, and genetic similarity reached more than 90% after the third generation. Continuous maintenance of the resistant BM‐R strain on Cry1Ac resulted in an increase in LC50 from 0.531 µg mL?1 in F0 to 4.28 µg mL?1 in F14 and 7.493 µg mL?1 in F19, while the LC50 values for HP‐S larvae on diet without Cry1Ac increased to 0.106 and 0.104 µg mL?1, which lay within the fiducial limits of the baseline LC50 value. The mode of inheritance of resistance was elucidated through bioassay response of resistant, susceptible heterozygotes and backcross progeny to Cry1Ac incorporated in semi‐synthetic diet. CONCLUSION: Based on dominance, degree of dominance and backcross values, resistance was inferred to be polygenic, autosomal and inherited as a recessive trait. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
The culture supernatant of a strain of Bacillus subtilis isolated from soil samples killed larvae of the mosquito Aedes aegypti. The metabolites produced by B. subtilis were characterized using high performance liquid chromatography (HPLC). Mortality rate was dose-dependent for all larval instars of A. aegypti. Log probit analysis (95% confidence level) revealed an LC50 of 1.73 and an LC90 3.71 μg/ml. Molecular weights/masses of B. subtilis metabolites were confirmed using SDS–PAGE analysis. B. subtilis metabolites were confirmed using HPLC analysis. We demonstrate that secondary metabolites from B. subtilis have larvicidal activity against A. aegypti and may be suitable for the control of this and other mosquito vectors of human disease. The larvae to the metabolites, significant reduction in the activities of acetylcholinesterse, α-carboxylesterase, and acid phosphatases were recorded.  相似文献   

17.
18.
Wang Z  Kim JR  Wang M  Shu S  Ahn YJ 《Pest management science》2012,68(7):1041-1047
BACKGROUND: An assessment was made of the toxicity of imperatorin and osthole identified in Cnidium monnieri fruit, 11 related compounds and five insecticides to larvae from insecticide‐susceptible Culex pipiens pallens (KS‐CP strain) and Aedes aegypti and wild C.p. pallens (YS‐CP colony) using a direct‐contact mortality bioassay. Results were compared with those of the conventional larvicide temephos. RESULTS: Imperatorin (LC50 = 3.14 and 2.88 mg L?1) was 1.9‐, 3.7‐ and 4.2‐fold and 2.4‐, 4.5‐ and 4.6‐fold more toxic than isopimpinellin, isoimperatorin and osthole against susceptible C. p. pallens and A. aegypti larvae respectively. Overall, all of the compounds were less toxic than temephos (0.011 and 0.019 mg L?1). The toxicity of these compounds was virtually identical against larvae from the two Culex strains, even though YS‐CP larvae were resistant to fenthion (resistance ratio RR = 390), deltamethrin (RR = 164), cyfluthrin (RR = 14) and temephos (RR = 14). This finding indicates that the coumarins and the insecticides do not share a common mode of action. The structure–activity relationship indicates that the chemical structure and alkoxy substitution and length of the alkoxyl side chain at the C8 position are essential for imparting toxicity. CONCLUSION: The C. monnieri fruit‐derived coumarins and the related coumarins described merit further study as potential insecticides or lead molecules for the control of insecticide‐resistant mosquito populations. Copyright © 2012 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Aedes (Stegomyia) albopictus (Skuse), the Asian tiger mosquito, is an introduced invasive species in the United States that is responsible for a significant proportion of service requests to local mosquito control programs. This container‐utilizing mosquito is refractory to standard mosquito abatement measures in the United States. This study is part of a USDA‐ARS project to develop an area‐wide management strategy for Ae. albopictus. The goal was to identify three study sites, similar in socioeconomic parameters, geography and Ae. albopictus abundance, in urban and suburban areas in Mercer and Monmouth counties in New Jersey. Prior service requests and light trap counts and also detailed county maps were used to chose nine preliminary sites (four in Mercer and five in Monmouth) where weekly surveillance for Ae. albopictus was performed throughout the 2008 active season. RESULTS: Although outliers were detected, socioeconomic variables in the study sites within each county were fairly consistent. Ae. albopictus abundance was associated with poverty levels and had the highest maxima in Mercer, although average mosquito abundance was similar in urban Mercer and suburban Monmouth. CONCLUSION: Three study sites in each county were identified for future studies. The summer‐long surveillance also revealed socioeconomic variables critical for the development of integrated mosquito management. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Many plant essential oils show a broad spectrum of activity against pests. This study investigated the effects of two essential oils on Tetranychus urticae, one of the most serious pests in the world. RESULTS: The chemical composition of the two oils was characterised by GC‐MS. The most abundant component in the Santolina africana (Jord. & Fourr) oil was terpinen‐4‐ol (54.96%), while thymol (61%) was prevalent in the Hertia cheirifolia (L.) oil. Mortality and fecundity were measured upon treatment with oil concentrations ranging from 0.07 to 6.75 mg L?1 with a Potter spray tower. Mite mortality increased with oil concentration, with LC50 values of 2.35 mg L?1 for S. africana and 3.43 mg L?1 for H. cheirifolia respectively. For both oils, a reduction in fecundity was observed at concentrations of 0.07, 0.09 and 0.29 mg L?1. Artificial blends of constituents of oils were also prepared and tested with individual constituents missing from the mixture. The results showed that the presence of all constituents was necessary to equal the toxicity of the two natural oils. CONCLUSION: S. africana and H. cheirifolia oils can provide valuable acaricide activity with significantly lower LC50 values. Thus, these oils cause important mortality and reduce the number of eggs laid by females. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号