首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, we have investigated relationships among several soil parameters (pH, organic matter, total carbonate, macronutrients, electrical conductivity, cation‐exchange capacity) and macronutrient and cardenolide contents in leaves of wild Digitalis obscura plants. Young and mature leaves and soil samples were collected in ten different areas, corresponding to three Mediterranean bioclimatic belts (thermo‐, meso‐, and supramediterranean belts). Soil and leaf macronutrient (N, P, K, Ca, and Mg) contents and leaf cardenolide contents were determined. Bioclimatic conditions influenced the development of D. obscura, biomass being lowest in plant populations of the supramediterranean belt, but they did not exert any relevant effect on the contents of macronutrients in soils and plants. Magnesium (total and EDTA‐extracted) was the only soil macronutrient significantly correlated with its content in the plant. Cardenolide contents were negatively correlated with the N, P, and K contents in young leaves, whereas such correlations were highly significant and positive for Mg.  相似文献   

2.
Corn (Zea mays L.) producers in the rainfed regions sometimes sidedress fertilizer N according to pre‐plant–nitrate test (PPNT) results based on the assumption that there is a linear relationship between pre‐sidedress nitrate test (PSNT) and the PPNT. There has been no report on such relationship in Ontario (Canada) and elsewhere in the nonirrigated corn‐growing regions. A field study was conducted near Ottawa, Canada for 7 y to (1) determine changes in soil available N from pre‐planting to shortly after the sidedress stage (late June) for corn and (2) establish a quantitative relationship between PPNT and PSNT. In each year, soil samples from fields of three to four plot experiments with different cropping histories, soil textures, and management levels, taken at 7 to 10 d intervals, and from on‐farm trials taken at pre‐planting and pre‐sidedress, were extracted with 2 M KCl. The concentrations of NO ‐N were determined colorimetrically. It was found that soil NO ‐N concentration of PSNT was a linear function of PPNT with an average slope of 1.7. However, the slope of the regression equations differed dramatically among cropping sequences, and to a lesser extent, soil textures. The NO ‐N concentration after planting to pre‐sidedress was influenced by air temperature and precipitation during this period of time. Both PPNT and PSNT positively correlated with corn‐grain yield. Our data suggest that cautions must be taken when deciding the rate of fertilizer N for sidedress application to corn based on PPNT test, especially under more humid northern climate conditions.  相似文献   

3.
4.
Under‐ as well as overfertilization with nitrogen (N) will result in economic loss for the farmer due to reduced yields and quality of the products. Also from an ecological perspective, it is important that the grower makes the correct decision on how much and when to apply N for a certain crop to minimize impacts on the environment. To aggravate the situation, N is a substance that is present in many compartments in different forms (nitrate, ammonium, organic N, etc.) in the soil‐plant environment and takes part in various processes (e.g., mineralization, immobilization, leaching, denitrification, etc.). Today, many N‐recommendation systems are mainly based on yield expectation. However, yields are not stable from year to year for a given field. Also the processes that determine the N supply from other sources than fertilizer are not predictable at the start of the growing season. Different methodological approaches are reviewed that have been introduced to improve N‐fertilizer recommendations for arable crops. Many soil‐based methods have been developed to measure soil mineral N (SMN) that is available for plants at a given sampling date. Soil sampling at the start of the growing period and analyzing for the amount of NO ‐N (and NH ‐N) is a widespread approach in Europe and North America. Based on data from field calibrations, the SMN pool is filled up with fertilizer N to a recommended amount. Depending on pre‐crop, use of organic manure, or soil characteristics, the recommendation might be modified (±10–50 kg N ha–1). Another set of soil methods has been established to estimate the amount of N that is mineralized from soil organic matter, plant residues, and/or organic manure. From the huge range of methods proposed so far, simple mild extraction procedures have gained most interest, but introduction into practical recommendation schemes has been rather limited. Plant‐analytical procedures cover the whole range from quantitative laboratory analysis to semiquantitative “quick” tests carried out in the field. The main idea is that the plant itself is the best indicator for the N supply from any source within the growth period. In‐field methods like the nitrate plant sap/petiole test and chlorophyll measurements with hand‐held devices or via remote sensing are regarded as most promising, because with these methods an adequate adjustment of the N‐fertilizer application strategy within the season is feasible. Prerequisite is a fertilization strategy that is based on several N applications and not on a one‐go approach.  相似文献   

5.
It is essential to consider soil characteristics when establishing vegetation in arid lands. In this study, the redundancy analysis (RDA) ordination method was used in this study to evaluate the habitats of Halocnemum strobilaceum, Limonium iranicum and Tamarix passerinoides growing in the Sejzy region, east of Isfahan. The study area was stratified into six ecologic‐floristic complexes. Stratified random sampling was then employed to collect soil and vegetation data from 1‐ha quadrats on nine sites. The soil samples were analysed to determine the characteristics of the soil in which the three species grew and to examine the soil profiles up to a depth of 2 m. Soil analyses revealed that high amounts of gypsum, silt, clay, saline, alkali and sulphate in the soil constituted a favourable habitat for Halocnemum strobilaceum. However, the per cent of silt and sulphate concentration in deep layers were negatively correlated with the growth of this species. Evaluation of the L. iranicum habitat revealed that the amounts of carbonate and CCE in the topsoil were positively correlated with the establishment and growth of the species but salinity and alkalinity were negatively correlated. The primary soil characteristics that positively influenced T. passerinoides included the presence of organic matter and bicarbonate ions in the soil layers and the total Ca and Mg content of the topsoil. However, Na was negatively correlated with Tamarix species. Determination of the soil characteristics that are associated with each of these xerophytic species can be used to determine which species is suitable for rehabilitating degraded sites in the study area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Long‐term monoculture of watermelon results in inhibited growth and decreased crop yields, possibly because of imbalance in microbial ecology caused by accumulation of the pathogen in soil. This results in serious problems in the economics of watermelon production. We investigated the build‐up of Fusarium in soil under watermelon cultivation and changes over 3 yr of fallow in a microcosm. We focused on changes in the microbial community of Fusarium‐infected soil, including the diversity of the microfloral species composition, and species abundance. Long‐term monoculture of watermelon leads to changes in microbial diversity and community structure. The microbes most readily cultured from infested soil were suppressed by watermelon wilt pathogen Fusarium oxysporum f. sp. niveum (FON). Of 52 isolated and identified culturable microbes, 83.3% of bacteria, 85.7% of actinomycetes, 31.6% of fungi and 20.0% of Fusarium sp. were inhibited by FON on bioassay plates. Prior to fallowing, infested soil was a transformed ‘fungus‐type’ soil. After 3 yr of fallow, the infested soil had remediated naturally, and soil microbial diversity recovered considerably. Abundance of dominant bacterial populations was increased by 118–177%, actinomycetes, fungi and FON were decreased by 23–32, 33–37 and 50%, respectively. The ratio of bacteria: actnomycetes: fungus: Fusarium sp. in infested soil changed from 24 000:100:4:1 prior to fallow to 57 000:100:3.5:1 after fallowing, nearer to the 560 000:400:8:1 ratio of healthy soil not used for watermelon cultivation. This suggests the ‘fungus‐type’ soil was converting to ‘bacteria‐type’ soil and that disrupted microbial communities in infested soil were restored during fallow.  相似文献   

7.
Soil quality is important in measuring sustainable land‐use and soil‐management practices. It is usually assessed by evaluating important physical, chemical, and biological soil properties. For this study, a site‐specific 22 variables representing pertinent soil (0–10 cm) and groundwater properties were selected as potential soil‐quality indicators in a coastal salt‐affected farmland of E China. To investigate the role of groundwater in soil‐quality assessment, we designed two sets of minimum data sets (MDSs). Minimum data set 1 (MDS1) had inputs of the 19 soil chemical and physical properties whereas MDS2 was based on the 22 soil and groundwater properties. Using principal‐component analysis, discriminant analysis, and soil‐quality‐index (SQI) model, we demonstrated the procedures of MDS selection, indicator normalization, and integration of MDS into SQI value for soils used for the two cropping systems. Results indicated selection of SOCD, AK, and ρb as MDS1 indicators but MDS2 indicators included SOM, SOCD, Cl, Na, WTg, and ECg. These were found to be the most effective discriminators between the two cropping systems. Available K (AK) made greatest contribution to SQI using MDS1 indicators, however, WTg, ECg, and Cl were the greatest contributors to the SQI for MDS2. Contribution of SOCD to SQI was severely inhibited in cotton–barley rotation system while ECg and WTg contributions to SQI were inhibited in rice–rape rotation system. In general, cotton–barley rotation system had a better soil quality over rice–rape rotation system as the former had higher SQI values than the latter for both MDSs. Crop parameters did also exhibit significant relationship with the SQI values using MDS2 but it was not significant for MDS1. Our results suggest that in addition to soil chemical, physical, and biological indicators, groundwater properties particularly the WTg and ECg are also important for assessing soil quality in an intensively farmed coastal area.  相似文献   

8.
Mineral nutrients in grains act as a source of nutrients in human diets, in which deficiencies of key minerals including calcium, magnesium, copper, iron, and zinc have prompted efforts to increase their concentrations in the edible portions of staple grain crops. Wheat (Triticum aestivum L.) crops in many regions often suffer abiotic stresses such as drought, extreme heat or frost during grain filling, which affect mineral source–sink relationships. We hypothesized that these stresses would have nutrient‐specific impacts on grain nutrient concentrations due to differences among nutrients in phloem mobility, post‐anthesis uptake and grain loading patterns. Nutrient loading patterns into wheat grains were investigated in two wheat cultivars in the field by sequentially harvesting tagged ears and analyzing tissues for key nutrients. In addition, the impact of perturbed source–sink relations during grain filling on nutrient loading was investigated by inducing post‐anthesis drought /floret abortion in a glasshouse study. Over 90% of Ca and around 70% of Na, K, and Mg accumulated in both wheat cultivars in the field during the first 14 d of grain development. The concentrations of micronutrients (Mn, Fe, Cu and Zn), Mg and P in grains generally increased when florets were aborted, and were unchanged under drought stress, while concentrations of Ca and K were highest under drought stress and lowest under the 66% floret abortion treatment. The observed changes in grain nutrient concentrations from post‐anthesis drought/floret abortion could not be fully explained by nutrient‐specific differences in phloem mobility, post‐anthesis uptake and grain loading patterns. This study will inform future research to define the precise roles of individual nutrients within developing grains and to fully understand the observed variations in grain nutrient concentrations due to source/sink modifications.  相似文献   

9.
A large variety of extraction methods are used worldwide for the estimation of “plant‐available P” in soils. In Germany, the standard extractants are Calcium‐Acetate‐Lactate (CAL) and Double‐Lactate (DL). Until now there is no validated transformation procedure available and studies on the comparability of both methods have reported conflicting evidence. The uncertainty about the equivalence of CAL‐P and DL‐P hinders a direct comparison of the P fertility status and P fertilizer recommendations across Germany. Based on 136 datasets for soil samples from an interlaboratory comparison program and three P fertilization field trial sites, for which plant‐available P had been determined by both the CAL and DL method, we assessed the comparability of both extraction methods and derived simple and multiple regression equations to transform DL‐P into CAL‐P values. On average, DL extracted 30% more P than CAL. However, this strongly depended on soil pH and carbonate content. A simple linear regression model explained 70% of the variance. However, if simple linear regression models were fitted to pH‐specific samples (pH range 4.5 to 7.0) the R2 increased to 0.96. Based on an independent validation dataset (n = 48) we demonstrated that such pH‐specific models were more accurate than models that did not consider pH when transforming DL‐P to CAL‐P values. Multiple regression results showed that out of soil pH, Corg, Nt, and C : N ratio, only soil pH improved the model. The transformation equations in this study provide a step towards an improved comparability of P fertility status assessments of soils across Germany.  相似文献   

10.
Application of hydrophilic polymers composed of cross‐linked polyacrylate can improve soil water‐holding capacity and accelerate the restoration of post‐mining substrates. In this work, we studied the persistence of a polyacrylate polymer incorporated into a soil and its impact on plant nutrients at a reclamation site of former lignite mining in Lusatia (Germany). In contrast to autumn application, the incorporation of the polymer enhanced the sequestration of plant‐derived carbon in the soil, which was reflected by a significant increase in the concentration of a lignin marker. Attenuated total reflexion–Fourier transform infrared spectra (ATR‐FTIR) and total elemental contents in the applied polymer suggested an intensive cation exchange between the polymer framework and the soil‐forming substrate. In addition, there was an enrichment of carbonaceous material, which seems to reduce the swelling and thus the water‐holding capacity of the cross‐linked polyacrylate. Conversely, this process protected the polymer structure from rapid decomposition.  相似文献   

11.
Concentrations of six elements copper (Cu), molybdenum (Mo), cobalt (Co), boron (B), sulphur (S) and zinc (Zn) are summarized for Scottish advisory soil samples collected during the period 1996–2008. Accompanying cropping information indicated that the majority of samples collected for Co analysis were from grassland compared with B, S and Zn where sampling was predominantly prior to either potatoes or vegetables. The proportion of samples measured as potentially deficient [very low (VL) or low categories] were 80% for Co, compared with 50, 40, 38, 25 and 18% for Mo, S, Zn, Cu and B, respectively. Only S displayed a significant decline (ca. 2 mg S/kg) over this 13‐year period. However, comparison of Cu and Co data with some collected from an earlier time period (1973–1980) suggested little difference for Cu but a smaller number of VL and low Co status samples. A predicted risk assessment using soil parent material, texture and drainage status suggested that 22, 38 and 40% of the agricultural area of Scotland were at a high, medium and low risk of Cu deficiency; comparable numbers for Co were 48, 30 and 22%. The reliability of the risk assessment was tested using a sub‐set of advisory samples with specific information on soil series. Of the soils predicted to have a high risk of Cu deficiency, 52% actually fell into the ‘deficient’ status. A similar comparison for Co indicated 90% of the samples predicted as having a high risk of deficiency were measured as VL or low.  相似文献   

12.
Currently, potassium (K)‐ and phosphate (P)‐fertilizer recommendation in Germany is based on standardized soil‐testing procedures, the results of which are interpreted in terms of nutrient availability. Although site‐specific soil and plant properties (e.g., clay and carbon content, pH, crop species) influence the relation between soil nutrient content and fertilizer effectiveness, most of these factors are not accounted for quantitatively when assessing fertilizer demand. Recent re‐evaluations of field observations suggest that even for soil nutrient contents well within the range considered to indicate P or K deficiency, fertilizer applications often resulted in no yield increase. In this study, results from P‐ and K‐fertilization trials (in total about 9000 experimental harvests) conducted during the past decades in Germany and Austria were re‐analyzed using a nonparametric data‐mining procedure which consists of a successive segmentation of the data pool in order to elaborate a modified recommendation scheme. In addition to soil nutrient content, fertilizer‐application rates, nutrient‐use efficiency, and site properties such as pH, clay content, and soil organic matter, have a distinct influence on yield increase compared to an unfertilized control. For K, nutrient‐use efficiency had the largest influence, followed by soil‐test K content, whereas for P, the influence of soil‐test P content was largest, followed by pH and clay content. The results may be used in a novel approach to predict the probability of yield increase for a specified combination of crop species, fertilizer‐application rate, and site‐specific data.  相似文献   

13.
Abstract

A rapid colorimetric method for the determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solution is proposed. The method is rapid, reliable and carried out in aqueous solution. A marked advantage is that boron can be determined in the same soil extract or plant material digest used for determination of other elements.  相似文献   

14.
15.
天然植物提取物在果蔬保鲜中应用研究进展   总被引:43,自引:7,他引:43  
农产品采后保鲜始终是关系到农业可持续发展的重要问题,采用天然植物提取物对果蔬进行保鲜可以减少化学合成杀菌剂对人类健康的不良影响,并有效防止植物病原菌的抗药性。能够应用到果蔬贮藏保鲜中的天然植物提取物主要是天然香辛料和部分中草药, 其提取物对果蔬贮藏保鲜过程中的主要病原菌具有较强的抑制作用。天然防腐保鲜剂的活性成分大多是挥发性精油,主要通过作用于微生物的细胞膜或者能量代谢途径达到抗菌效果。天然植物提取物在果蔬保鲜中的主要应用方式有浸蘸、熏蒸、喷洒或与保鲜纸及涂膜剂等载体相结合,但目前尚缺乏成熟的产业化应用技术。发展植物源果蔬保鲜剂的未来研究应集中于确定植物提取物的活性成分与构效关系,以及产业化应用的系统工程技术。  相似文献   

16.
In sub‐Saharan Africa, urban and peri‐urban food production has been identified as an important resource for meeting the challenges of rapidly growing cities, and the positive aspects of such production have been well documented in the literature. This paper examines some of the health and environmental concerns associated with urban and peri‐urban agriculture (UPA). Empirical evidence from the city of Kano in northern Nigeria suggests that there is currently much reason for concern as industrial and domestic toxins are reaching dangerously high levels. As soils and water channels become increasingly polluted, the sustainability of urban and peri‐urban food production is questioned. Since the health implications of long‐term exposure to toxins are unclear, it is suggested that coordinated longitudinal research involving urban planners, agricultural scientists and health specialists is urgently needed. In addition, it remains crucial that government and institutional actors effectively monitor and enforce both environmental and zoning by‐laws, if the health and environmental constraints of UPA are to be overcome, and the future sustainability of production is to be assured. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The use of wastewater for irrigation is increasingly being considered as a technical solution to minimize soil degradation and to restore nutrient contents of soils. The aim of this study is to increase fertility and minimize degradation of soils irrigated with wastewater exposed to different purification treatments. A field experiment was conducted to investigate the effects of control and irrigation with wastewater, which had undergone different purification treatments, on macro‐ and micronutrient distribution within the soil profile and nutrient contents of cabbage (Brassica olerecea var. Capitate cv. Yalova‐1) in Erzurum, Turkey. Wastewater irrigation and preliminary treatment–wastewater irrigation significantly affected soil chemical properties especially at 0–30 cm soil depth and plant nutrient contents after one year. Application of wastewater increased soil salinity, organic matter, exchangeable Na, K, Ca, Mg, plant‐available P, and micro‐elements and decreased soil pH. Wastewater increased also yield and N, P, K, Fe, Mn, Zn, Cu, B, and Mo contents of cabbage plants. Undesirable side effects were not observed in plant heavy‐metal contents, due to salinity and toxic concentrations of metals from the application of wastewater to soil.  相似文献   

18.
Archived soil samples from the beginning and end of three long‐term field trials conducted in central France were analysed for total uranium (U) and thorium (Th) contents to evaluate the effect of 15–30 yr of phosphorus (P) fertilizer treatments on the accumulation of these elements in the topsoil. For comparison, the soil samples were also analysed for total P. Three treatments were compared: no P application (P0), 26 kg P/ha/yr (P26) and 52 kg P/ha/yr (P52). Significant effects of P fertilizer were observed on U content and, to a lesser extent, on Th content as a result of the P52 treatment at two of the field trials. This effect was demonstrated both in the analyses at the end of the field trials [P52–P0: +0.25 and +0.44 mg U/kg soil, +0.58 (not significant) and +1.03 mg Th/kg soil] and when considering the changes in U and Th contents between the beginning and the end of the field trials (end–start: +0.18 and +034 mg U/kg soil, +0.35 and +0.45 mg Th/kg soil). The P fertilizer effect was also supported by the correlations of U and Th with total levels of P in the soil. However, in one of the three trials, no significant accumulation of U or Th because of fertilizer could be seen, suggesting either that less U and Th were applied using a different P fertilizer and/or that soil heterogeneity masked significant effects.  相似文献   

19.
Plant growth–promoting rhizobacteria (PGPR) have been reported to stimulate the growth and yield of grain crops, particularly when nutrient supply is poor. However, the mechanisms underlying stimulation of plant growth may vary depending not only on growth conditions and crop management but also on plant and bacterial species. The present study assessed the effect of an inoculation with single or multiple PGPR strains on phosphorus (P)‐solubilization processes in the soil and on grain yield in wheat. Single inoculation with Bacillus subtilis OSU‐142, Bacillus megaterium M3, or Azospirillum brasilense Sp245 increased grain yield by 24%, 19%, and 19%, respectively, while a mixed inoculation with OSU‐142, M3, and Sp245 increased grain yield by 33% relative to noninoculated plants. Single inoculations with Paenibacillus polymyxa RC05 or Bacillus megaterium RC07 were less effective. Single or mixed treatments with OSU‐142, M3, and Sp245 increased the concentrations of the labile and moderately labile P fractions in rhizosphere soil. The growth‐stimulating effect of OSU‐142, M3, and Sp245 was also reflected by higher P concentrations in most plant organs. Among all inocula tested, the highest plant P acquisition was obtained in the presence of M3 and accompanied by the highest microbial P levels and the highest phosphatase activities in the rhizosphere soil. In conclusion, seed inoculation with mixed PGPR strains may effectively substitute for a part of P‐fertilizer application in extensive wheat production, and in particular M3 appears to improve the solubilization of inorganic soil P.  相似文献   

20.
Deficient trace elements concentration in soils, forages, and animals have been reported in several areas of Balkan region. Main challenge in overcoming low productivity of forage and animal production in this region is the lack of data on the nutritional status of the pastures and soils. This study examined the nutrient and pseudo total concentration of trace elements in soil and herbage plants, and the potential deficiency or excess with regards to crop and livestock production. Soil and plant samples from 100 sampling points were collected in the mountainous grasslands of Manja?a (between longitudes 16°56′ and 17°8′ east; and latitudes 44°33′ and 44°42′ north) and Vla?i? (between longitudes 17°14′ and 17°29′ east; and latitudes 44°25′ and 44°37′ north). Soil samples were analysed for soil texture, pseudo total concentration (5?ml HNO3) of trace elements (TE), pH, soil organic carbon (SOC), while plant samples were analysed for TE. The soil pH varied from strongly acidic to moderately alkaline. The concentration of SOC varied from 0.5% to 12.3%. Most of the soil samples were finer-textured soils high in silt content. The average concentrations of Na, P, Zn, Se, Cu, Co, and B were low in both soil and herbage plants. Plant K, Ca, Mg, Mo, and Mn concentrations were sufficiently high to meet the requirements of grazing animals, while Fe concentrations was elevated in certain areas. High levels of Mo were found in both soil and plants. The results suggest that imbalances observed in natural pastures of Manja?a and Vla?i? area, caused by low soil TE concentration and other soil and plant properties, could contribute to poor animal nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号