首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 14-week feeding trial was conducted to determine the effects of dietary organic acids. The experimental diets were added with 0, 1, 2 or 3 g kg−1 of a novel organic acid blend or with 2 g kg−1 of potassium diformate and fed to triplicate groups of red hybrid tilapia ( Oreochromis sp.). Upon completion, tilapia were challenged by immersion with Streptococcus agalactiae . There was no significant difference ( P >0.05) in the growth, feed utilization and nutrient digestibility among treatment groups despite a trend towards improved results with fish fed organic acid-supplemented diets. Diet pH decreased, causing a reduction in the digesta pH of the stomach and gut. Total bacteria per gram of faeces were significantly ( P <0.05) reduced from 1.81 × 108 colony-forming units (CFU) (control group) up to 0.67 × 108 CFU in the fish fed organic acid diets. A similar trend was observed for adherent gut bacteria. Cumulative mortality of fish fed no organic acids was higher compared with fish fed organic acid-supplemented diets at 16 days post challenge. The data showed that dietary organic acids can exert strong anti-microbial effects and have the potential to exert beneficial effects on growth, nutrient utilization and disease resistance in tilapia.  相似文献   

2.
A 20‐week feeding trial was conducted to measure growth, nutrient utilization and faecal/gut bacterial counts in triplicate groups of red hybrid tilapia, Oreochromis sp., when fed diets supplemented with 0.5% organic acids blend (OAB), 1.0% OAB, 0.5% oxytetracycline (OTC) or a control diet (no additives). At the end of the feeding trial, tilapia were challenged with Streptococcus agalactiae for 22 days. Fish fed the OTC diet had significantly higher (P < 0.05) growth than the control treatment, while growth between fish fed the OTC or OAB diets was not significantly different (P > 0.05). Phosphorus, dry matter and ash digestibility were significantly higher in the 1.0% OAB diet than the control diet. Fish fed the OAB diets had significantly lower colony‐forming units of adherent gut bacteria compared to the control or OTC treatments while those fed the 1.0% OAB diet had the lowest total faecal bacterial counts. Tilapia fed the 0.5% OTC or OAB diet had significantly higher resistance to S. agalactiae than those fed the control diet. This study indicates that dietary organic acids can potentially replace OTC as a growth promoter and antimicrobial in tilapia feeds.  相似文献   

3.
This study was conducted to evaluate the effect of linseed oil (LO) replacing different levels of fish oil (FO) on growth, muscle fatty acid composition and metabolism of gift tilapia (Oreochromis niloticus) (mean initial weight 22 ± 0.5 g) in indoor recycle aquarium tanks for 8 weeks. Fish fed the diet with 50% of the oil as LO had higher final body weight (FWG), specific growth rate (SGR) and protein efficiency ratio (PER) than the other groups (P < 0.05). Hepatopancreas lipid content of fish fed 50% LO was lower than the other groups. Total n‐3 and n‐6 PUFA contents in the dorsal muscle and superoxide dismutase (SOD) activity in serum increased with increasing dietary LO level. Fish fed 50% LO had higher alanine transaminase (ALT), aspartate transaminase (AST) and lipoprotein lipase (LPL) activities in hepatopancreas and total antioxidant capacity (T‐AOC) and alkaline phosphatase (AKP) activities in serum than the other groups (P < 0.05). However, malate dehydrogenase (MDH) activities and malondialdehyde (MDA) contents in hepatopancreas were lower than other groups (P < 0.05) with a 50% substitution level. Results of this study indicated that LO could substitute <50% FO without influencing the growth of tilapia. The higher substitution levels of LO induced negative influences on growth, feed utilization and antioxidant ability of tilapia, but could promote DHA synthesis in tilapia muscle.  相似文献   

4.
An 8-week feeding trial was conducted to determine the effects of various dietary lipids on the growth, tissue proximate composition, muscle fatty acid composition and erythrocyte osmotic fragility of red hybrid tilapia, Oreochromis sp. Five isonitrogenous and isoenergetic semipurified diets were supplemented with 10% of either cod liver oil (CLO), sunflower oil (SFO), crude palm oil (CPO), crude palm kernel oil (CPKO), or a combination of 5% CLO with 5% palm fatty acid distillates (PFAD), respectively. There were no significant effects (P > 0.05) of diet on growth but fish fed the CLO diet showed a significantly (P< 0.05) poorer feed efficiency ratio compared to fish fed the CPO diet. Lipid deposition in fish muscle was mostly similar among fish fed the various diets but bone ash was significantly higher in fish fed the CPO and CPKO diets. Muscle lipids of fish fed palm oil-based diets did not increase in saturated fatty acids content but showed significantly lower polyunsaturated fatty acid (PUFA) concentrations compared to fish fed the CLO diet. The concentrations of individual PUFA in muscle lipids were strongly influenced by dietary PUFA concentrations. Dietary lipids did not markedly affect the structural integrity of erythrocyte membranes but the erythrocytes of tilapia fed the CPO diet were slightly more resistant to osmotic lysis. It was concluded that palm oil products, especially CPO, could be successfully used in the diet of hybrid tilapia based on its availability, cheaper costs and its potential ability to enhance oxidative stability due to its low PUFA content and high natural concentrations of antioxidants.  相似文献   

5.
The objective of this study was to evaluate the effects of fishmeal (FM) replacement with corn protein concentrate (CPC) on growth performance, nutrient utilization, gut morphology and skin coloration of red hybrid tilapia, Oreochromis sp. Five isonitrogenous (350 g/kg crude protein) and isolipidic (10 g/kg lipid) diets were formulated to contain CPC that substituted 0%, 25%, 50%, 75% or 100% FM. Diets were fed to triplicate groups of tilapia (mean initial weight, 10.33 ± 0.02 g) twice daily for 63 days. The results showed that replacing up to 50% FM in red hybrid tilapia diet with CPC did not show any significant adverse effects on growth, feed utilization, haematocrit counts, condition factor and gut morphology of tilapia (p > 0.05). However, replacing 75% or 100% FM with CPC had deleterious effects (p < 0.05). Carotenoids in CPC contributed to skin yellowness, which was significantly higher in the diet where 100% FM was replaced with CPC. Using regression analysis, the optimal substitution level of FM by CPC was estimated at 25% for percentage weight gain, 33% for FCR and 29% for protein efficiency ratio. CPC could be used as a single plant protein source to substitute up to 50% FM in red hybrid tilapia diets.  相似文献   

6.
The effects of dietary protein (25%, 30%, 35%, 40% and 45%) on growth, survival, feed conversion ratio (FCR), protein efficiency ratio (PER) and body composition were investigated for four sizes (0.51, 45, 96 and 264 g) of Nile tilapia, Oreochromis niloticus L. In all four experiments, there was a progressive increase in growth with increasing dietary protein. In fry (0.51 g), significantly higher growth, survival and feed conversion were recorded for fish fed 40–45% rather than 25–35% protein diets. Similar trends for growth and FCR were also noted in 45 g fish. For larger (96 and 264 g) tilapia, significant differences in growth and FCR were found only between fish fed 25% and 30–45% protein diets. FCR and PER decreased with increasing weight of fish, and both were found to be negatively correlated with dietary protein level. Whole-body composition of the smallest fish was significantly influenced by dietary protein content. Percentage body protein of the fish fed 40–45% protein was higher than that of fish fed 25–35% protein diets, whereas lipid content decreased with increasing dietary protein level. In 45 g fish, both protein and lipid contents were higher in fish fed 25% and 30% protein diets than in those fed 35–45% protein diets. In larger tilapia, no significant influence of dietary protein level on body protein content was found. Percentage lipid decreased with increasing dietary protein level, and no definite trends in ash content were found. The results of these studies indicate that O. niloticus fry (0.51 g) should be reared on a practical diet containing 40% protein, and larger tilapia (96–264 g) on a diet containing 30% protein.  相似文献   

7.
8.
Three diets were formulated to be iso‐nitrogenous (450 g kg?1), iso‐lipidic (65 g kg?1) and iso‐energetic (18.5 KJ g?1), varying only in their lipid sources and designated as 100% fish oil (FO), 100% crude palm oil (CPO) and 100% palm fatty acid distillate (PFAD). Feed were hand fed to homogenous groups of 12 Channa striatus fingerlings (mean weight 3.5 ± 0.3 g) per tank in triplicate for 12 weeks, in a recirculation system. The growth performance and feed intake in the CPO and PFAD treatments were significantly (P<0.05) higher than those in the fish fed the control diet (FO), respectively, whereas the feed conversion ratio was better in PFAD than that in the other treatments respectively. The biological indices monitored (hepatosomatic index and viscerosomatic index) as well as carcass yield did not vary significantly among all the treatments respectively. The muscle fatty acid (FA) profile of fish was influenced by the composition of the diets fed, whereas no differences were recorded in the activities of the hepatic lipogenic enzymes monitored (fatty acid synthetase, citrate cleavage enzyme and malic enzyme). Whole‐body proximate composition analysis revealed that PFAD treatment, compared with others, contained significantly higher protein and ash, but lower lipid contents, although the muscle content of these nutrients was similar among all the treatments. Based on the results of this trial, CPO and PFAD could be used to partially substitute FO in the diet for C. striatus fingerling, to achieve good growth performance without any negative effects or compromising the muscle n‐3 FA composition (especially in the docosa hexaenoic acid and eicosa pentaenoic acid content).  相似文献   

9.
This study aimed to investigate the effects of dietary crude palm oil (CPO) on fatty acid metabolism in liver and intestine of rainbow trout. Triplicate groups of rainbow trout for 10 weeks at 13 °C were fed on diets in which CPO replaced fish oil (FO) in a graded manner (0–100%). At the end of the trial, fatty acid compositions of flesh, liver and pyloric caeca were determined and highly unsaturated fatty acid (HUFA) synthesis and fatty acid oxidation were estimated in isolated hepatocytes and caecal enterocytes using [1‐14C]18:3n‐3 as substrate. Growth performance and feed efficiency were unaffected by dietary CPO. Fatty acid compositions of selected tissues reflected the dietary fatty acid composition with increasing CPO resulting in increased proportions of 18:1n‐9 and 18:2n‐6 and decreased proportions of n‐3HUFA, 20:5n‐3 and 22:6n‐3. Palmitic acid, 16:0, was also increased in flesh and pyloric caeca, but not in liver. The capacity of HUFA synthesis from 18:3n‐3 increased by up to threefold in both hepatocytes and enterocytes in response to graded increases in dietary CPO. In contrast, oxidation of 18:3n‐3 was unaffected by dietary CPO in hepatocytes and reduced by high levels of dietary CPO in enterocytes. The results of this study suggest that CPO can be used at least to partially replace FO in diets for rainbow trout in terms of permitting similar growth and feed conversion, and having no major detrimental effects on lipid and fatty acid metabolism, although flesh fatty acid compositions are significantly affected at an inclusion level above 50%, with n‐3HUFA reduced by up to 40%.  相似文献   

10.
The aim of this study was to evaluate whether pretreatment of palm kernel meal (PKM) with a commercial feed enzyme (Allzyme Vegpro?) or solid‐state fermentation of PKM with the cellulolytic fungus Trichoderma koningii (Oudemans) could improve the nutritive value of raw PKM in the diets of red hybrid tilapia, Oreochromis sp. Seven isonitrogenous (30% crude protein) and isoenergetic (15.1 kJ g?1) practical diets were formulated and fed close to apparent satiation to triplicate groups of 14 fish (mean initial weight 5.1 ± 0.1 g) for 10 weeks. The diets consisted of a control diet which did not contain any PKM, raw PKM diets, enzyme‐treated PKM (EPKM) or fermented PKM (FPKM) diets at 20% and 40% (dry weight basis) inclusion rates. The growth performance and feed utilization efficiency of tilapia fed 20% PKM or 20% EPKM were not significantly different (P > 0.05) from those of fish fed the control diet. Fish fed diets containing 40% EPKM showed significantly higher growth and feed utilization efficiency than fish fed 40% raw PKM owing to the improved dry matter, protein, lipid and energy digestibility of the enzyme‐treated PKM diets. The apparent protein and lipid digestibility of the 20% EPKM and 40% EPKM diets were not significantly different, and nor was the growth and feed utilization efficiency of fish fed these two diets. Hybrid tilapia fed FPKM‐based diets at all dietary inclusions tested showed the poorest growth, and this might indicate the presence of antinutrients in the resultant fungal biomass. In conclusion, it is anticipated that, with further optimization of enzyme pretreatment of PKM, higher levels of PKM could be included in the diets of hybrid tilapia, thereby reducing the impact of rising costs to feed tilapia.  相似文献   

11.
A 309 days feeding experiment was carried out on gilthead sea bream fingerlings (initial weight 14.7±4.4 g) to evaluate effects of substitution of fish oil with soybean oil in diets on growth and sensory characteristics and muscle fatty acid composition. Duplicate groups of fish were hand fed with four isoenergetic and isonitrogenous diets (46% protein, 14% lipid and 22 MJ kg−1) in which 0%, 24%, 48% or 72% of the fish oil was replaced by soybean oil. Fish fed diet 72% reached a lower final weight (324 g) than fish fed diets 0%, 24% and 48% (349, 343 and 338 g respectively). Feed intake, protein efficiency ratio, body composition and economic profitability were not influenced by the amount of soybean oil in the diets, but muscle fatty acid composition differed with diets. Panellists observed significant sensory differences between fish fed diet 0% and diet 72%. These results verified the possibility of feeding sea bream until they reached commercial weight with a 48% dietary substitution of fish oil for soybean oil.  相似文献   

12.
Fish oil (FO) substitution has been studied in many marine carnivorous fish, but seldom in marine herbivorous or omnivorous species. To evaluate the feasibility of using soybean oil (SO) as a dietary lipid and confirm its capability of converting C18 polyunsaturated fatty acid (PUFA) into long chain polyunsaturated fatty acid (LC‐PUFA) in the marine herbivorous teleost Siganus canaliculatus, juvenile fish were fed with four formulated diets differing in lipid composition, with SO accounting for 0.76% (SO0), 23% (SO23), 45% (SO45) and 67% (SO67) of total dietary lipid respectively. After feeding for 8 weeks, growth performance including weight gain, specific growth rate, feed conversion ratio and protein efficiency rate were better in the SO23 and, especially, SO45 groups than in the SO0 and SO67 groups (< 0.05). Tissue fatty acid compositions were affected by diet, with the liver contents of eicosapentaenoic (EPA), docosapentaenoic (DPA), docosahexaenoic (DHA) acids and total n‐3 PUFA displaying parallel changes with the corresponding dietary fatty acids. While the muscle contents of EPA, DPA and total n‐3 PUFA between SO0 and SO23 groups, and the liver contents of arachidonic acid (ARA) and 20:4n‐3, as well as the muscle content of 20:3n‐6 between SO0 and SO45 groups showed no difference, confirming the biosynthesis of LC‐PUFA from C18 precursors in vivo as the contents of corresponding fatty acids in diets SO23/SO45 were much lower than those in diet SO0 (< 0.05). The results indicate that SO may be a suitable dietary lipid source for S. canaliculatus, and can replace up to 67% or 45% of total dietary FO without negatively compromising growth performance or nutritional quality of fish respectively. Moreover, the study increases our knowledge of FO substitution in marine herbivorous fish.  相似文献   

13.
柠檬酸对罗非鱼生长、体成分和消化酶活性的影响   总被引:17,自引:0,他引:17       下载免费PDF全文
研究了饲料中添加不同水平柠檬酸 (0 .1%、0 .2 %、0 .3%、0 .4 % )对奥尼罗非鱼 (Oreochromisniloticus×O .aureus)幼鱼 (初始平均体重约 2 .0g)生长、饲料利用、体成分和消化酶活性的影响。共设 5组试验饲料 ,每一饲料组设 3个重复水族箱 ,每箱随机放鱼 15尾 ,投喂率为 6 % ,自然光周期 ,循环过滤水系统饲养 9周 ,每周称重 1次并相应调节投喂量。结果表明 :随着柠檬酸添加量的增大 ,饲料pH值呈下降趋势 ;添加 0 .2 %柠檬酸的试验组罗非鱼的特定生长率显著高于对照组 (P <0 .0 5 ,LSD多重比较 ,下同 ) ;饲料效率在 0 .3%柠檬酸组显著高于对照组 (P <0 .0 5 ) ;罗非鱼血清葡萄糖含量在0 .4 %组显著低于对照组、0 .1%组和 0 .3%组 (P <0 .0 5 ) ;0 .2 %组和 0 .3%组血清甘油三酯含量最高 ,但组间差异不显著(P >0 .0 5 ) ;全鱼水分、粗蛋白、粗脂肪和灰分含量在组间差异不显著 (P >0 .0 5 ) ;胃蛋白酶、胰蛋白酶和肠蛋白酶活性随柠檬酸添加量增加呈先上升后下降的趋势 ,0 .2 %组的最高 ,但组间差异不显著 (P >0 .0 5 ) ;肝胰脏和肠淀粉酶活性分别在 0 .2 %和 0 .3%组最高 ,组间差异亦不显著 (P >0 .0 5 )。结果提示 ,饲料中适量添加柠檬酸 ,能提高罗非鱼幼鱼消化酶活性 ,提高饲料利用率 ,促进罗非鱼生长  相似文献   

14.
A growth trial was conducted to feed juvenile tilapia (initial weight, 9.1±0.1 g), Oreochromis niloticus×O. aureus, isonitrogenous diets for 8 weeks. Six diets were formulated containing 29% crude protein from casein and gelatin, 10% crude fat from soybean oil and refined soybean lecithin and varying levels of corn starch ranging from 6% to 46% at increments of 8%, with corresponding energy to protein (E/P) ratios of 35.6, 37.9, 40.2, 42.5, 44.8 and 47.1 kJ g?1. Weight gain (WG), specific growth rate, feed efficiency ratio and protein efficiency ratio were significantly higher in fish fed diets with starch ≥22% (or E/P ratio ≥40.2 kJ g?1) than in fish fed diets with 6% or 14% starch (or E/P ratio of 35.6 or 37.9 kJ g?1). No further improvement was measured when dietary starch content increased beyond 22%. Body protein retention showed the same general pattern as WG, and was highest in fish fed the 22% starch diet. Body composition was significantly affected by dietary starch level. Fish fed diets with starch ≥30% had significantly higher lipid content than fish fed diets with 6% or 14% starch. Ash content was negatively correlated with starch inclusion level, but moisture and protein contents did not show discernible trends among treatments. Results indicate that hybrid tilapia can utilize 46% dietary starch without growth retardation, while 22% starch in feed for juvenile tilapia containing 29% protein and 10% lipid, or an E/P ratio of 37.9 kJ g?1 is optimal.  相似文献   

15.
Pike perch (Sander lucioperca) has been identified as specie destined to diverse European inland aquaculture, but knowledge on the nutritional requirements is weak. Therefore, we investigated the effect of varying dietary fatty acid (FA) profile by partial replacement of fish oil (FO) with vegetable oils on growth, FA and body composition of juvenile pike perch. An extruded basal diet containing 59 g kg?1 crude lipids (FO) was added with 60 g kg?1 FO, 60 g kg?1 linseed oil (LO) or 60 g kg?1 soybean oil (SO). The resulting dietary FA composition differed mainly in the triglyceride fraction and was characterized by highest amounts of linolenic acid (18:3 n‐3) in the LO diet and linoleic acid in the SO diet. Diet enriched with FO contained highest contents of highly unsaturated FA 20:5 n‐3 (eicosapentaenic acid) and 22:6 n‐3 (docosahexaenic acid). Pike perch were held in a recirculation system and each feeding group (in triplicate) was fed with experimental diets at a daily rate of 35 g kg?1 of biomass for 57 days by automatic feeders. Weight gain and specific growth rate of experimental feeding groups ranged between 18.47 and 19.58 g and 1.37–1.45% day?1 and was not affected by the dietary composition indicating that FO can be replaced by vegetable oils without negative impact on growth performance. In contrast to the whole body and muscle composition, liver tissue was affected by the varying diets. Liver tissues of fish fed diets enriched with vegetable oils showed significantly increased lipid contents of 162 (LO) and 147 (SO) g kg?1 and indicate decreased lipid utilization compared with fish fed FO diet (liver lipid content 112 g kg?1). Nevertheless, hepatosomatic index of pike perch was not influenced by dietary lipid composition. The FA profile of pike perch was generally determined by the dietary FAs.  相似文献   

16.
The replacement of dietary marine fish oil with vegetable oils was examined in fingerling humpback grouper, Cromileptes altivelis, over the course of an 8‐week growth trial. Five isolipidic (10%) and isoproteic (50%) fish meal‐based practical diets were formulated to contain iso‐ingredients but with different sources of lipids [crude palm oil (CPO), refined, bleached and deodorized, palm olein (RBDPO), soybean oil (SBO) or canola oil (CNO)], and their performance was compared with the control diet, which contained cod liver oil (CLO) as the added lipid source. The experimental diets were fed close to apparent satiation twice a day to triplicate groups of fish (10.6 ± 2.2 g). The grouper fingerlings were randomly distributed into groups of 12 fish in cylindrical cages (61 cm depth and 43 cm diameter) that were placed in a 150 tonne polyethylene seawater tank. There were no significant differences (P>0.05) in terms of growth, survival, feed conversion ratio, protein efficiency ratio, net protein utilization, hepatosomatic index and condition factor among fish fed the various dietary treatments. Similarly, the dietary lipid source did not significantly affect the whole body proximate composition of the fish. Muscle and liver fatty acid composition of fish was influenced by the experimental diets. Replacement of dietary CLO with CPO, RBDPO, SBO or CNO produced fish with lower n‐3 highly unsaturated fatty acids and increased levels of 18:2n‐6 in the muscle and liver. The n‐3:n‐6 fatty acid ratio in the muscle of fish fed the CLO‐based diet was 3.0 compared with 0.5–0.8 in the muscle of fish fed the various vegetable oil‐based diets. The present study demonstrated that various vegetable oils can be used in fish meal‐based dietary formulations for humpback grouper without compromising growth or feed utilization efficiency.  相似文献   

17.
A 60‐day feeding study was performed to evaluate the role of dietary commercial wood charcoal (CWC) in fish growth performance, body composition and water quality of fingerlings red tilapias (Oreochromis mossambicus × Oreochromis niloticus). Four levels of charcoal (10, 20, 30 and 40 g kg?1) were added to the control diet (0 g kg?1 CWC) and fed to red tilapias (initial weight of 1.20 ± 0.04 g). At the end of the feeding trial, the fish weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio and energy retention of the fish groups fed 30 and 40 g kg?1 (CWC) in diet were significantly (P < 0.05) higher comparing with all other tested fish groups. Moreover, some proximate composition such as crude protein and nitrogen retention efficiency g kg?1 of the fish groups fed on 30 and 40 g kg?1 CWC diets showed higher values (P < 0.05) than those of other tested fish groups (0, 10 and 20 g kg?1 CWC). Apparent digestibility coefficients of protein and dry matter were improved (P < 0.05) in CWC‐tested fish groups compared to the control fish group. These data were powered by the data of the water quality that showed significant (P < 0.05) enhancement in both dissolved oxygen and ammonia concentrations by the increment in dietary charcoal levels. The above‐mentioned parameters' data suggested that 30 g kg?1 dietary CWC can be considered as a suitable level to maintain normal growth of red tilapia juveniles as well as to enhance water quality of the rearing area.  相似文献   

18.
A comparison of composition and sensory evaluation were performed on fillets of Oreochromis niloticus (wild type) and red hybrid tilapia (RHT) (Florida red tilapia ♂× red O. niloticus♀). Fifty male tilapia, 25 O. niloticus (initial weight 159.3 g) and 25 red hybrid (initial weight 132.4 g), were placed in each of three 2.0 m3 volume tanks. The fish were fed a commercial feed containing 35.9% crude protein during the 120‐day experimental period and then killed in cold water (3°C). All the fish were filleted. Twelve fillets from each treatment were used for proximate analyses, five fillets from each treatment were used for fatty acids analyses and the remaining fillets were used for sensory evaluation. The compositional analyses showed similar moisture, true protein and ash content in both genetic groups, but a lower crude fat content was measured in the red hybrid fillets (0.70%) compared with that of O. niloticus fillets (0.97%). No differences between O. niloticus and the red hybrid were observed in their fillet profile of fatty acids. In the sensory evaluation test, a difference in fillet flavour between both genetic groups was perceived. Of the 112 consumers in the preference test, 81.2% perceived a difference in fillet flavour between the two tilapias, with a general preference for the red hybrid over the wild‐type O. niloticus. The benefits of cultivating a RHT with a low lipid content are discussed.  相似文献   

19.
Vitamin E, a potent antioxidant consisting of four isomers each (α, β, γ, δ) of tocopherol (T) and tocotrienol (T3), is found naturally in plant oils at different concentrations. In this study, four semi-purified isonitrogenous and isolipidic (10 %) diets containing canola oil, cold-pressed soybean oil, wheat germ oil, or palm fatty acid distillates (PFAD) as the sole vitamin E source were fed to triplicate groups of red hybrid tilapia (Oreochromis sp.) fingerlings (14.82 ± 0.05 g) for 45 days. Vitamin E concentrations and composition were measured in the muscle, liver, skin, and adipose tissue. Deposition of α-T (53.4–93.1 % of total vitamin E) predominated over deposition of other isomers, except in the liver of fish fed the SBO diet, where α-T and γ-T deposition was in the ratio 40:60. T3 deposition (2.6–29.4 %) was only detected in tissues of fish fed the PFAD diet; adipose tissue was the major storage depot. Fish fed the SBO diet contained significantly more (P < 0.05) muscle thiobarbituric acid-reactive substances. Muscle fatty acid composition reflected dietary fatty acid profile. This is the first study to compare the deposition in fish tissues of the naturally occurring vitamin E isomers present in plant oils. The type and concentration of endogenous vitamin E and the fatty acid composition of plant oils can affect the oxidative stability of tilapia tissues.  相似文献   

20.
Two consecutive experiments were conducted to study the effects of stocking density on growth, food utilization, production and farming profitability of Nile tilapia (Oreochromis niloticus) fingerlings (initial mean weight: 16.2 ± 0.2 g) fed Azolla, as a main component in diet. In experiment 1, fish were hand‐fed twice daily with three isonitrogenous (28.5% crude protein) and isocaloric (14.5 kJ g−1) diets A30, A35 and A40 containing 30%, 35% and 40%Azolla, respectively, for 90 days. Diets were formulated by mixing Azolla with locally available by‐products. No significant differences were found in growth parameters and production (P>0.05). Total investment cost was significantly higher with A30 (P<0.05), but same profitability values were obtained with all diets (P>0.05). In experiment 2, three stocking densities, 1, 3 and 5 m−2, were assigned to three treatments T1, T2 and T3 respectively. Fish were hand‐fed twice daily with diet A40. The final mean weight (89.53–115.12 g), the mean weight gain (0.81–1.10 g day−1), the specific growth rate (1.90–2.20% day−1) and the apparent food conversion ratio (1.29–1.58) were affected by stocking density, with significant difference (P<0.05) at 5 m−2, compared with the other densities. Stocking density did not affect survival rate (P>0.05). Yield and annual production increased with increasing stocking density, ranging from 7.10 ± 0.90 to 25.01 ± 1.84 kg are−1 and 28.79 ± 3.66 to 101.42 ± 7.48 kg are−1 year−1, respectively, with significant differences between all densities (P<0.05). Higher stocking density resulted in higher gross return and lower cost of fish production, with significant variations (P<0.05). The net return increased with increasing stocking density (P<0.05). However, both densities of 3 and 5 m−2 produced the same profitability values. On the basis of growth values and economic return, it was concluded that Nile tilapia could be raised at a density of 3 fish m−2 with A40 to improve production and generate profit for nutritional security and poverty alleviation in rural areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号