首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated rat brain synaptosomes were used to evaluate the action of pyrethroid mixtures on Ca2+ influx and subsequent glutamate release under depolarizing conditions. In equipotent binary mixtures at their respective and/or estimated EC50s with deltamethrin always as one of the two components, cismethrin, λ-cyhalothrin, cypermethrin, esfenvalerate and permethrin were additive and S-bioallethrin, fenpropathrin and tefluthrin were less-than-additive on Ca2+ influx. In binary mixtures with deltamethrin always as one of the two components, esfenvalerate, permethrin and tefluthrin were additive and λ-cyhalothrin was less-than-additive on glutamate release. Binary mixture of S-bioallethrin and cismethrin was additive for both Ca2+ influx and glutamate release. Only a subset of pyrethroids (S-bioallethrin, cismethrin, cypermethrin, and fenpropathrin) in binary mixtures with deltamethrin caused a more-than-additive effect on glutamate release. These binary mixtures were, however, only additive (cismethrin and cypermethrin) or less-than-additive (S-bioallethrin and fenpropathrin) on Ca2+ influx. Therefore, increased glutamate release evoked by this subset of pyrethroids in binary mixture with deltamethrin is not entirely occurring by Ca2+-dependent mechanisms via their action at voltage-sensitive calcium channels. These results suggest that pyrethroids do not share a common mode of toxicity at presynaptic nerve terminals from rat brain and appear to affect multiple target sites, including voltage-sensitive calcium, chloride and sodium channels.  相似文献   

2.
BACKGROUND: Cismethrin (T-syndrome) and deltamethrin (CS-syndrome) pyrethroids have been previously shown to increase membrane depolarization and calcium influx, but only deltamethrin increased Ca(2+)-dependent neurotransmitter release from rat brain synaptosomes. Deltamethrin's action was blocked by omega-conotoxin GVIA, delineating a separate action at N-type Ca(v)2.2 channels that is consistent with the in vivo release of neurotransmitter. It is hypothesized that other CS-syndrome pyrethroids will elicit similar actions at presynaptic nerve terminals.RESULTS: Nine additional pyrethroids were similarly examined, and these data were used in a cluster analysis. CS-syndrome pyrethroids that possessed alpha-cyano groups, cypermethrin, deltamethrin and esfenvalerate, all caused Ca(2+) influx and neurotransmitter release and clustered with two other alpha-cyano pyrethroids, cyfluthrin and cyhalothrin, that shared these same actions. T-syndrome pyrethroids, bioallethrin, cismethrin and fenpropathrin, did not share these actions and clustered with two non-alpha-cyano pyrethroids, tefluthin and bifenthrin, which likewise did not elicit these actions. Deltamethrin reduced peak current of heterologously expressed wild-type Ca(v)2.2, increased peak current of T422E Ca(v)2.2 and was 20-fold more potent on T422E Ca(v)2.2 than on wild-type channels, indicating that the permanently phosphorylated form of Ca(v)2.2 is the preferred target.CONCLUSIONS: Ca(v)2.2 is directly modified by deltamethrin, but the resulting perturbation is dependent upon its phosphorylation state. The present findings may provide a partial explanation for the different toxic syndromes produced by these structurally distinct pyrethroids.  相似文献   

3.
The action of 11 commercial pyrethroids on Ca2+ influx and glutamate release was assessed using high-throughput functional assays with rat brain synaptosomes to better understand the mechanistic nature of pyrethroid-induced neurotoxicity and aid in the reassessment of pyrethroids in vivo. Concentration-dependent response curves for each of the non-cyano and α-cyano containing pyrethroids were determined and the data used in a cluster analysis. The previously characterized α-cyano pyrethroids that induce the CS-syndrome (cypermethrin, deltamethrin, and esfenvalerate) increased Ca2+ influx and glutamate release, and clustered with two other α-cyano pyrethroids (β-cyfluthrin and λ-cyhalothrin) that shared these same actions. Previously characterized T-syndrome pyrethroids (bioallethrin, cismethrin, and fenpropathrin) did not share these actions and clustered with two other non-cyano pyrethroids (tefluthrin and bifenthrin) that likewise did not elicit these actions. Our current findings indicate that pyrethroids that have an α-cyano group (with the exception of fenpropathrin) were more potent enhancers of Ca2+ influx and glutamate release under depolarizing conditions than pyrethroids that did not possess this functional group. The collective data set does not support the hypothesis that pyrethroids, as a class, act in a similar fashion at presynaptic nerve terminals.  相似文献   

4.
Isolated presynaptic nerve terminals prepared from whole rat brain were used to evaluate the action of deltamethrin on voltage-sensitive calcium channels by measuring calcium influx and endogenous glutamate release. Deltamethrin-enhanced K+-stimulated calcium influx and subsequent Ca2+-dependent glutamate release. The effect of deltamethrin was concentration-dependent, stereospecific, blocked by ω-conotoxin MVIIC but unaltered in the presence of tetrodotoxin. These results suggest that N-type voltage-sensitive calcium channels are a site of action at the presynaptic nerve terminal. Electrophysiological studies were carried out using rat brain Cav2.2 and β3 subunits coexpressed in Xenopus oocytes to validate such action. Deltamethrin reduced barium peak current in a concentraion-dependent and stereospecific manner, increased the rate of activation, and prolonged the inactivation rate of this channel. These experiments support the conclusion that N-type voltage-sensitive calcium channel operation is altered by deltamethrin.  相似文献   

5.
When applied at concentrations of one nM or higher to a house fly larval neuromuscular preparation, deltamethrin (DM) and fenvalerate (FV) greatly increased miniature excitatory postsynaptic potential (mepsp) rate and blocked neuromuscular transmission. The DM-induced mepsp discharge was abolished by tetrodotoxin (TTX), removal of Ca2+ from the saline, or by application of hyperpolarizing stimuli to the nerve, indicating that it was due to depolarization of the presynaptic terminals. Also, in the presence of TTX, K+ depolarization increased mepsp rate at the same external K+ concentration before and after DM treatment, confirming that DM released transmitter by depolarizing the nerve terminals rather than by altering the voltage dependence of transmitter release. The potassium channel blocker tetraethylammonium (TEA) increased mepsp rate somewhat, while aconitine (20 μM), which keeps sodium channels open, increased mepsp rate consistently. Pretreatment of nerves with a subthreshold dose of TEA greatly increased the mepsp rate-increasing activity of DM and aconitine, while a subthreshold level of aconitine did not synergize DM. These observations suggest that DM, like aconitine, depolarized nerves by modifying the sodium channels. Knockdown resistant (kdr) larvae were resistant to the depolarizing action of DM and aconitine but not to that of TEA, indicating that the kdr gene produced a modified sodium channel which was less sensitive to the action of pyrethroids and aconitine. During sustained transmitter release by DM, evoked release gradually declined, resulting in a condition called early block in which spontaneous release was high and release could be evoked by electrotonic depolarization of the nerve terminals, but not by a nerve action potential. Early block was probably due to conduction block in the nerve terminals. Early block eventually gave way to late block, characterized by the decline of spontaneous release to subnormal levels and complete failure of evoked release. After late block, the calcium ionophore X-537A could not release transmitter, suggesting that late block was due to depletion of available transmitter. DM did not have a direct effect upon extrasynaptic muscle membrane. However, after late block, muscles were left insensitive to the putative transmitters glutamate and aspartate when these were bath or iontophoretically applied. A low rate of mepsps persisted after late block, indicating that the muscles were still sensitive to the natural transmitters.  相似文献   

6.
The actions of a cyano pyrethroid (deltamethrin) and a non-cyano pyrethroid (cismethrin) upon trigeminal motor reflexes and isolated muscle responses were studied in the rat. Deltamethrin caused a marked facilitation of the muscle response to nerve stimulation in pithed rats at 2.5 μmol kg−1. In intact anaesthetised rats this was associated with abnormal repetitive EMG discharges and, at 4 μmol kg−1 with a suppression of late components of the reflex response to sensory stimuli in the spinal trigeminal nucleus and trigeminal motor nucleus. In contrast cismethrin had no effect on the muscle response to direct nerve stimulation at up to 15 μmol kg−1, but produced abnormal extra responses to sensory stimuli in the trigeminal ganglion, spinal and motor nuclei, and jaw muscles at 9 μmol kg−1. It is concluded that whilst deltamethrin produces reflex excitation within the trigeminal system at a primarily muscular site, cismethrin produces excitation at all stages of the reflex loop. This contrast is consistent with the known difference in duration of sodium current prolongation produced by the two pyrethroids. These findings, together with other known central actions of deltamethrin suggest that it has multiple sites of action in the intact animal, both central and peripheral, whilst most of the simpler symptoms produced by cismethrin may adequately be explained by action at a reflex level.  相似文献   

7.
The effects of a range of pyrethroids on end-plate potentials and muscle action potentials were studied in the pectoralis nerve-muscle preparation of the clawed frog, Xenopus laevis. The noncyano pyrethroids allethrin, cismethrin, bioresmethrin, and IR-cisphenothrin caused moderate presynaptic repetitive activity only, resulting in the occurrence of multiple end-plate potentials (epps). Trains of repetitive muscle action potentials without presynaptic repetitive activity were observed after the α-ethynyl pyrethroid S-5655 and after the α-cyano pyrethroids cypermethrin, deltamethrin, FCR 1272, and FCR 2769. An intermediate group of pyrethroids consisting of the non-cyano compounds 1R-permethrin, des-cyano-deltamethrin, NAK 1901 and NAK 1963, and the α-cyano pyrethroids cyphenothrin and fenvalerate caused both types of effect. The insecticidally inactive S-enantiomers of permethrin had no effect on the nerve-muscle preparation. Trains of repetitive action potentials in pyrethroid-treated muscle fibers were followed by a depolarizing afterpotential which in general decayed more rapidly for the non-cyano pyrethroids than for the α-cyano pyrethroids. The rate of decay of the depolarizing afterpotential decreased gradually as the temperature was lowered, whereas the pre- and postsynaptic repetitive activity remained largely unaffected over a large temperature range. It is concluded that in muscle membrane like in nerve membrane the pyrethroid-induced repetitive activity is due to a prolongation of the sodium current and that a clear distinction between non-cyano pyrethroids on the one hand and α-cyano compounds on the other cannot be made on the basis of the present results.  相似文献   

8.
Calcium regulation is an important event in synaptic transmission and neuronal function, which is governed by a very intricate signal transduction system which is not completely understood. Using a variety of pharmacological assays, we have characterized the action of deltamethrin on the ciliary voltage-sensitive calcium channel and on phospholipase C activity of Paramecium tetraurelia Sonneborn, an organism that does not possess a voltage-sensitive sodium channel. In fura-2 fluorometric assays, which examined whole cells and ciliary membrane vesicles enriched with calcium channels, deltamethrin stimulated Ca2+ uptake. We also determined that the phospholipase C activity of the ciliary membrane vesicles is regulated by the βγ-subunit from heterotrimeric G-proteins. Subsequent treatment with deltamethrin resulted in a substantial and highly significant increase in phospholipase C activity. These results provide evidence that the molecular mode of action of pyrethroids on the voltage-sensitive calcium channel is distinct from the action of this insecticide on the voltage-sensitive sodium channel and may be dependent, in part, upon an interaction with the βγ-subunit of heterotrimeric G-protein.  相似文献   

9.
The effects of pyrethroids were studied upon isolated segmental nerves and neuromuscular junctions in both susceptible (Cooper) and knockdown-resistant (kdr; super-kdr) strains of housefly larvae (Musca domestica L.). Isolated segmental nerves contained neither cell bodies nor synaptic contacts; thus, any effects of pyrethroids were attributed solely to their actions upon voltage-dependent Na+ channels. Threshold concentrations of the type II pyrethroid, deltamethrin, required to elevate the spontaneous firing rate of these nerves were determined. Both resistant strains were about ten times less sensitive to deltamethrin than the susceptible strain, but insensitivity of super-kdr nerves was no greater than in the less resistant kdr strain. At neuromuscular junctions, the minimum concentrations of pyrethroids needed to trigger massive increases in the frequency of miniature excitatory postsynaptic potentials (mEPSPs) were determined for deltamethrin and the type I pyrethroid, fenfluthrin. With fenfluthrin there was no detectable difference between the junctions of kdr and super-kdr strains, which were both about ten-fold less sensitive than Cooper junctions. With deltamethrin, kdr junctions were about 30 times less sensitive than those of Cooper; super-kdr junctions were dramatically insensitive to deltamethrin, being some 10000- and 300-fold less sensitive than those of Cooper and kdr respectively. Thus, in the synaptic assay, super-kdr conferred an extension in resistance over kdr only against the type II pyrethroid, it being ineffective against fenfluthrin. We suggest that kdr resistance comprises at least two site-insensitive areas within the nervous system. One involves insensitivity of the Na+ channel and has similar efficacy in both kdr and super-kdr strains against type I and II pyrethroids; the other is associated with the presynaptic terminal and is particularly effective in super-kdr resistance against type II pyrethroids. The latter could be associated with Ca2+-activated phosphorylation of proteins involved with neurotransmitter release. Such phosphorylation reactions are known to be perturbed by pyrethroids, especially by type II compounds.  相似文献   

10.
The actions of pyrethroid insecticides were tested on isolated giant axons of the cockroach Periplaneta americana, using oil-gap, single-fibre recording techniques. Current-clamp and voltage-clamp experiments were used to determine the actions of pyrethroids on axonal membrane potentials and ionic currents. Treatment with deltamethrin at micromolar concentrations caused gradual depolarisation of the axon accompanied by a reduction in amplitude of the action potential. This depolarisation was enhanced by an increase in stimulation frequency. Other synthetic pyrethroids: 3,4,5,6-tetrahydrophthalimidomethyl (1RS)-cis-3-[(RS)-2,2-dimethylcyclopropyl]-2,2-dimethylcyclopropanecarboxylate, biopermethrin and its (1S)-enantiomer, (1R)-tetramethrin, S-bioallethrin, bioresmethrin and its (1S)-enantiomer, cismethrin, and 5-benzyl-3-furylmethyl (E)-(1R)-cis-2,2-dimethyl-3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate (RU-15525, ‘Kadethrin’) were investigated. The (1S)-enantiomers were inactive, but all the other pyrethroids tested, apart from deltamethrin, induced prolonged negative (depolarising) after-potentials. All the treatments with the active pyrethroids resulted in the appearance of a voltage and time-dependent ‘maintained’ sodium conductance. The duration of this ‘slow’ conductance varied considerably depending on the pyrethroid under test. Clearly, the effectiveness of pyrethroids on whole insects is not determined only by the degree to which they directly modify the properties of sodium channels. Nevertheless, voltage-clamp experiments on isolated axons readily permit direct comparison of the actions of different pyrethroids on the sodium channels of insect neurones.  相似文献   

11.
Recent experiments on the mode of action of pyrethroids have indicated that those pyrethroids containing an α-cyano phenoxybenzyl group may act on GABA-mediated chloride channels. The crayfish stretch receptor neuron provides a useful preparation for examining the effects of pyrethroids on these channels and on sodium channels. The lowest concentration of deltamethrin to have an effect on sodium channels was 10−12 M, but the response of the preparation to GABA appeared to be unaffected by concentrations of deltamethrin up to 10−7 M. Although 10−6 M deltamethrin had a slight effect on the GABA response of the dactyl abductor muscle, it appears that the majority of the effects of cyano pyrethroids in invertebrates could be accounted for solely by their action on sodium channels.  相似文献   

12.
The effects of seven different pyrethroid insecticides on the lateral-line sense organ and on peripheral nerves of the clawed frog, Xenopus laevis, were investigated by means of electrophysiological methods. The results show that two classes of pyrethroid can be clearly distinguished. (i) Pyrethroids without an α-cyano group (permethrin, cismethrin, and bioresmethrin). These noncyano pyrethroids induce short trains of nerve impulses in the lateral-line sense organ. In peripheral nerve branches they induce a depolarizing afterpotential and repetitive firing. These effects are very similar to those previously reported for allethrin. (ii) Pyrethroids with an α-cyano-3-phenoxybenzyl alcohol (cypermethrin, fenpropathrin, deltamethrin, and fenvalerate). In the lateral-line sense organ these α-cyano pyrethroids induce very long trains of nerve impulses which may last for seconds and may contain hundreds or even thousands of impulses. The α-cyano compounds do not cause repetitive activity in peripheral nerves. Instead they induce a quickly reversible, stimulus frequency-dependent suppression of the action potential. Since the chemical structure of cypermethrin differs from that of permethrin only in the α-cyano group and because all four α-cyano compounds act in a very similar way, it is concluded that the α-cyano substituent is responsible for the large differences in neurotoxic effects. In the lateral-line sense organ the duration of nerve impulse trains induced by the noncyano as well as the α-cyano pyrethroids increases dramatically when the temperature is lowered. Further, in sensory fibers the effects of both classes of pyrethroid on the nerve action potential are more pronounced compared to their effects on motor fibers. It is argued that the different neurotoxic effects reported here originate from a common mechanism of action of pyrethroids, which is a prolongation of the transient increase of sodium permeability of the nerve membrane associated with excitation.It is concluded that the sodium channel in the nerve membrane is the major target site of noncyano and α-cyano pyrethroids.  相似文献   

13.
Voltage clamp electrophysiological studies using wild type CaV2.2 and its β3 subunit coexpressed in Xenopus oocytes revealed that deltamethrin increased the rate of activation, prolonged inactivation and reduced peak current. Site-directed mutagenesis of threonine 422 to glutamic acid (T422E, one of five protein kinase C (PKC)-dependent phosphorylation sites) resulted in a channel that acted as if it were permanently phosphorylated. This resulted in an increased probability of opening during depolarization and a reduced inhibition by the βγ subunit of heterotrimeric G-protein. Deltamethrin treatment of T422E CaV2.2 enhanced peak current ∼50% over ethanol-treated controls with an EC50 of 9.8 × 10−11 M.Phosphorylation of wild type CaV2.2 is evoked by the phorbol ester, phorbol 12-myristrate, 13 acetate (PMA), by activating endogenous protein kinase C (PKC) in oocytes. PKC-dependent phosphorylation activated by PMA of wild type CaV2.2 has been previously shown to slow channel deactivation and increased Ca2+ influx and subsequent neurotransmitter release. Following PMA-activated phosphorylation, deltamethrin significantly increased peak current and slowed deactivation of the phosphorylated channel, which would be consistent with slower channel closure, greater Ca2+ influx and enhanced neurotransmitter release seen in vivo. Deltamethrin treatment in the absence of PMA-activated phosphorylation resulted in no effect on the deactivation kinetics of unphosphorylated CaV2.2 or the T422E mutant. Thus, CaV2.2 is modified by deltamethrin but the resulting perturbations are dependent upon its PKC-dependent phosphorylation state.  相似文献   

14.
Deltamethrin perfused onto dissected last instar larvae of house fly, Musca domestica, at micromolar concentrations caused a blockage of synaptic transmission from excitatory axons to intersegmental muscles within 1 hr. Ultrastructure of the intersegmental muscles in treated preparations was indistinguishable from the appearance of untreated muscles. The presynaptic nerve terminals of treated larvae showed a general lack of synpatic vesicles in marked contrast to abundant synaptic vesicles in untreated tissues. Mitochondria of treated terminals showed swelling and vacuolated interiors whereas muscle mitochondria were normal in appearance. Neurosecretory terminals were similar in appearance between control and treated. The synaptic vesicle depletion reflected a presynaptic action of deltamethrin on house fly larvae motor nerve terminals as previously indicated by intracellular recordings.  相似文献   

15.
The release of [3H]neurotransmitters was used as a functional assay to assess the actions of selected neurotoxins on the synaptosomal membranes prepared from the invertebrate nervous systems of squid and house fly. A reproducible release of [3]neurotransmitter was evoked by pulsed-depolarization in the presence of elevated K+ or of veratridine. Pretreatment with deltamethrin resulted in a substantial enhancement of [3H]neuro-transmitter release during pulsed-depolarization. This enhanced neurotransmitter release was greatly reduced or absent when synaptosomes of knockdown-resistant house flies were examined. No enhanced neurotransmitter release due to deltamethrin pretreatment was apparent from any synaptosomal preparation under non-depolarizing conditions. Under similar conditions, collaborative experiments demonstrated that deltamethrin causes a significant change in protein phosphorylation activities which follow depolarization. The most significant change caused by deltamethrin was the prolonged elevation of the level of phosphorylation on a number of key synaptic proteins beyond the normal time of their recovery to the dephosphorylated state. The most notable protein reacting to deltamethrin in this manner was calcium-cadlmodulin-dependent protein kinase.  相似文献   

16.
The mechanism of the entomocidal action of Bacillus thuringiensis var. israelensis (BTI) in Periplaneta americana has been studied. Cockroaches treated with the alkali-solubilized BTI crystal gradually became sluggish and immobile. A physiological examination of poisoned cockroaches indicated that BTI possessed both myotoxic and neurotoxic activity. Following hemocoel or foregut administration of BTI, myotoxic effects were observed within 10–20 min whereas the onset of neurotoxic effects was considerably delayed. The results of this study suggest that the myotoxic action of BTI is probably important for the initial manifestation of its toxicity. The neurotoxic effects of BTI were ascribed to its ability to interfere with transmitter release. BTI exerted a dual action on transmitter release in the cockroach sixth abdominal ganglion. At lower doses (2–4 μg/ml) BTI was found to suppress transmitter release by interfering with calcium uptake. At higher concentrations (12 μg/ml or higher), however, BTI caused blockage of synaptic transmission which was preceded by massive transmitter release. In either case, the synapse blocking action of BTI was probably due to its effects upon presynaptic terminals. Postsynaptic membranes and axons in the ventral nerve cord apparently remained unaffected.  相似文献   

17.
Effects of deltamethrin on voltage-sensitive calcium channels (VSCC) from rat brain (Cav2.2) expressed in Xenopus oocytes were assessed electrophysiologically. Deltamethrin reduced peak current of wild-type Cav2.2 in a stereospecific and concentration-dependent manner with an EC50 of 1 × 10−9 M. Phosphorylation of threonine 422 enhances voltage-sensitive calcium current, increases the probability that Cav2.2 will open under depolarizing conditions and antagonizes the inhibition of the channel by the betagamma subunit of heterotrimeric G-protein (Gβγ). Site-directed mutagenesis of threonine 422 to glutamic acid (T422E) results in a channel that acts as if it were permanently phosphorylated. Deltamethrin (10−7 M) significantly enhanced peak current via the T422E channel (1.5-fold) compared to the nontreated control and the increase was significantly greater than for either the wild-type (T422) or T422A (permanently unphosphorylated mutant) channels. The effect of deltamethrin on T422E Cav2.2 was stereospecific and concentration-dependent with an EC50 of 9.8 × 10−11 M. Thus, Cav2.2 is modified by deltamethrin but the resulting perturbation is dependent upon the phosphorylation state of threonine 422.  相似文献   

18.
Effects of deltamethrin, a powerful pyrethroid insecticide, on the protein phosphorylation and dephosphorylation processes during depolarization in rat brain synaptosomes were studied by using [32P]phosphoric acid as a starting radiotracer and high external concentration of potassium ions or veratridine (10?-5 M) as depolarizing agents. At the onset of depolarization there was a quick rise in phosphorylation in various synaptic proteins for about 15–30 s followed by a gradual decline in levels of phosphorylation. The effect of deltamethrin (10?-7 M) on this system was found to be dependent on the length of preincubation of the synaptosome with the pesticide prior to depolarization. At an early stage (0–3 min preincubation period) it caused a modest suppression of protein phosphorylation activities. When the period of deltamethrin preincubation was extended to 5–20 min, however, it caused a significant increase in protein phosphorylation throughout the depolarization period. At the later stage of the action of deltamethrin (e.g. preincubation period of 30–40 min), deltamethrin-treated synaptosomes no longer responded to the depolarization signal to raise the level of phosphorylation on many proteins. These results indicate that deltamethrin's actions on the synaptic process are complex. Depending on the length of exposure, its effects on protein phosphorylation responses in intact synaptosomes could be either stimulatory or inhibitory. To study the cause of deltamethrin-induced synaptic block at the later stage, effects of deltamethrin on protein kinases were studied by using lysed synaptic membranes with [gamma-32P]ATP. Deltamethrin was shown to inhibit calcium–calmodulin-dependent protein phosphorylation activities at 10?-7 M when given directly to the enzyme source 10 min prior to the addition of [32P]ATP. Such an observation helps to explain the inhibitory action of deltamethrin on protein phosphorylation which occurs at the late stage of its action (i.e. preincubation time > 20 min).  相似文献   

19.
The biochemical process by which various pyrethroid insecticides affect membrane-bound ATPase activities of the squid nervous system was examined. Of the five ATP-hydrolyzing systems tested, only Ca2+-stimulated ATPase activities are seen to be clearly affected by pyrethroids. It was found that the “natural type” pyrethroids (e.g., pyrethrin and allethrin) primarily inhibit Ca-ATPase activity whereas the “highly modified type” pyrethroids (e.g., cypermethrin and decamethrin) mainly inhibit Ca + Mg-ATPase. permethrin, which is considered to possess structural similarities to both the natural type and the highly modified type pyrethroids, was found to have an intermediate property in terms of its inhibitory potency to both Ca- and Ca + Mg-ATPase activities. The level of inhibition of Ca2+-stimulated ATPase activities was generally high in the retinal axons and optic lobe synaptosomes but lowest in the axoplasmic preparations.  相似文献   

20.
A series of 25 pyrethroids were assessed for their effects on Na+-dependent norepinephrine release and on Ca2+ uptake in vitro using a crude rat brain synaptosomal preparation. The most effective pyrethroids required a concentration of 3–10 μM to promote norepinephrine release. Plotting release data versus lipophilicity (as log P) for each compound resulted in a parabolic curve with log Popt being 5.4 for maximal release. The release promoted by most of the compounds assessed at 30 μM could not be or was only partially reversed by either tetrodotoxin or substituting choline for Na+ conditions which readily reversed the release promoting effects of veratridine. Thus, many pyrethroids, particularly those without the α-cyano group, did not display their expected effects on the Na+ channel in rat brain. When assessed at 5 μM, pyrethroids inhibited, had no effect, or caused increases in the amount of Ca2+ incorporated in the presence of ATP. The effectiveness of the various pyrethroids to inhibit Ca2+ uptake again displayed a parabolic relationship with log Popt being 6.4. It was concluded that the variations in pyrethroid effects on norepinephrine release and Ca2+ uptake are not solely related to their particular chemical structures, but to lipophilicity. The effects of many pyrethroids on Ca2+ metabolism, particularly displacement of bound Ca2+, better explain the transmitter release promoting properties in vitro rather than a direct effect on the Na+ channel. No direct relationship between known toxicity to mammals and Ca2+ inhibition by pyrethroids was established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号