首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction It is well known that over the past few decades, polymers have replaced many conventional materials, such as metal and wood in many applications. This is due to the advantages of polymers over conventional materials (Maurizio et al. 1998; Adr…  相似文献   

2.
Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic properties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.  相似文献   

3.
In order to improve the dimensional stability of wood-polymer composites, wood flour pre-treated by polyethylene glyco1 (PEG) at two different concentrations and then thermally treated at 140°C, was used as raw material to produce wood flour/polypropylene (PP) composites at a wood content of 40%. The structure of modified wood flour was analyzed with a scanning electron microscope (SEM) and its effect on the physical and mechanical properties of wood flour/PP composites was evaluated. The SEM results indicated the "bulking" effect of PEG on wood flour, which resulted in reduced water uptake. The combination of PEG and heat treatment further improved the moisture resistance of the composites. However, PEG modification had a negative effect on the flexural modulus of rupture (MOR) and the modulus of elasticity (MOE); whereas heat treatment partly compensated for this reduction. For dynamic mechanical properties, PEG treatment decreased the storage modulus (E′). However, the heat treatment resulted in an increase of E′ of the wood flour/PP composites, with the temperature of loss factor peaks shifting to a higher temperature.  相似文献   

4.
5.
研究了球磨胡桑木粉苄基化改性后的增重率与材料热塑性以及力学性能的关系。随着增重率的增加,即胡桑木粉苄基化反应程度的提高,产物的热塑性变好,但材料的拉伸强度和弯曲强度增加到一定程度后,反而随着增重率的增加而下降。以胡桑木粉苄基化产物为基体,分别以球磨胡桑木粉、蒙脱土为增强材料进行共混制备复合材料,探讨增强材料与木粉苄基化产物基体的质量比对复合材料力学性能的影响。试验结果表明,复合材料的力学性能优于胡桑木粉苄基化产物,其拉伸强度和弯曲强度随增强材料质量分数的增加而先增加后降低。  相似文献   

6.
Introduction Wood-Plastic Composite (WPC), due to its high stiffness, low density, low cost, environment friendly characteristics such as recyclablity and biodegradability, is gaining more and more interests, both in research and application. However, one…  相似文献   

7.
Interfacial compatibility is a crucial factor to the performance of wood-plastic composites (WPCs). Yet, so far, the coupling mechanisms of WPC have not been completely understood. In order to further clarify the interfacial coupling mechanism, the dielectric constant and dielectric loss factor of Simon poplar wood flour/polypropylene composites without additives at different wood contents were measured at oven-dry state, and parameters and thermodynamic quantities of the relaxation process were also analyzed and calculated. Consequently, an obvious relaxation process based on the reorientation of methanol groups in amorphous region of wood cell wall was observed exactly that its dielectric loss factor peak decreased with the decreasing wood content within the measured range of 50%-100%. With the trend of dielectric relaxation strength, the two changing trends both revealed that the existence of polypropylene could hinder reorientation of methanol groups. Following the decreasing wood contents, the effect of the hindrance on the dielectric properties turned obvious gradually. It elucidated that introduction of polypropylene caused the quantities of hydrogen bonds formed between each methanol group and the groups around it change. The same conclusion could be drawn from the analysis of thermodynamic quantities during the dielectric relaxation progress.  相似文献   

8.
对以铝酸酯为偶联剂对木粉进行表面改性处理后制备的木粉/聚丙烯复合材料的力学性能和形态学特征进行了研究。结果表明:铝酸酯偶联剂可以增加木塑复合材料的抗冲击强度,但会对复合材料的抗拉强度和抗弯强度造成负面的影响。对木塑复合材料的动态力学性能和微分扫描热量分析研究表明,以铝酸酯作为偶联剂,对木塑复合材料的储存模量和损失模量有少许增加,同时可降低材料的熔点和熔解热。利用扫描电镜观察木塑复合材料的木材与塑料界面发现,经铝酸酯处理过的木材与聚丙烯复合界面之间具有更好的相容性。这些研究结果表明,在木塑复合材料制造过程中利用廉价的铝酸酯作为木材化学改性剂,对改善复合材料的性质同样起作良好的作用。图6 表2 参16。  相似文献   

9.
10.
ABSTRACT

Thermomechanical wood fibers, as usually used for medium density fiberboard or cardboard production, feature promising characteristics, like a high aspect ratio, for the utilization in thermoplastic composites. The present study investigates the influence of fiber loading and fiber geometry on the mechanical properties of wood-polypropylene composites in order to confirm the results that were found in a previously published literature review. Composites were compounded at fiber contents from 20 to 60 wt.%, using a co-rotating twin-screw extruder and subsequently injection molded to test specimens. Field emission scanning electron microscopy was carried out to evaluate the fracture morphology of the composites. Fiber length was evaluated using an applying a dynamic image analysis system. Compounding reduced fiber lengths up to 97%. The mechanical properties decreased with increasing fiber content for composites without a coupling agent. Strength properties peaking at a fiber content of 50?wt.% for composites containing MAPP. Tensile strength and flexural strength reached 48.1 and 76.4 MPa, respectively. However, it was found that the processing of these fibers into conventional compounding equipment is still challenging.  相似文献   

11.
Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material.  相似文献   

12.
To improve the interfacial compatibility between wood fibers and polypropylene and the toughness of wood-fiber/polypropylene composites, maleic anhydride grafted polypropylene (PP-g-MAH) and maleic anhydride grafted styrene-ethylene-butadiene-styrene copolymers (SEBS-g-MAH) were used as modifiers. Mechanical properties of wood-fiber/polypropylene (WF/PP) composites were improved when PP-g-MAH or SEBS-g-MAH was added. When either of these copolymers was added, the composites had better interfacial compatibility than the unmodified composite. This was verified by scanning electron microscope (SEM) observations and dynamic mechanical analysis (DMA). The mechanical properties of the composites were significantly improved because of the good interfacial bonding between wood fibers and polypropylene when PP-g-MAH and SEBS-g-MAH were added. __________ Translated from Journal of Beijing Forestry University, 2007, 29(2): 133–137 [译自: 北京林业大学学报]  相似文献   

13.
The effect of steam-exploded wood flour (SE) added to wood flour/plastic composite was examined using SE from beech, Japanese cedar, and red meranti and three kinds of thermoplastic polymer: polymethylmethacrylate, polyvinyl chloride, and polystyrene. Addition of SE increased the fracture strength and water resistance of the composite board to an extent dependent on the polymer species and the composition of wood/SE/polymer. However, water resistance decreased with the increasing proportion of SE when SE meranti was added. Effects of the wood species of SE on the properties of resulting board were small. An increased moisture content of wood flour or SE (or both) increased the variation of board performance.  相似文献   

14.
激光以其能量密度高、运行轨迹自如、方向性好等优点,被广泛用于木质材料切削加工以及表面处理等领域.其中,木质材料激光表面处理,即利用激光热/光电子效应促进材料发生物理、化学变化,以实现改性的目的.笔者对木质材料激光表面处理原理、激光类型与用途以及激光表面处理技术特点与应用领域等内容的研究现状进行了综述与分析.现有研究表明...  相似文献   

15.
郭垂根  王清文 《林业研究》2007,18(3):203-207
MA-SEBS as compatibilizer and impact modifier was incorporated into Polypropylene/Wood Fiber (PP/WF) to enhance interface adhesion and impact strength of the composite. The effect of MA-SEBS content on the impact fracture behavior of PP/WF composites was studied. The impact properties of composites with 8% MA-SEBS reached the maximum value. And further increasing of MA-SEBS content to 10% did not improve the fracture toughness, but improved the stiffness of composites by DMA analysis. This was attributed to the improved PP/WF adhesion. As the MA-SEBS content is more than 8%, the molecule interaction of PP and WF was expected to much stronger than lower MA-SEBS. Scanning electron microscopy (SEM) was performed to analyze the impact fracture surface and showed a stronger affinity for the wood surfaces.  相似文献   

16.
马来酸酐接枝苯乙烯-乙烯-丁烯-苯乙烯(MA-SEBS)用作聚丙烯/木纤维复合体系的界面相容剂及冲击改性剂,来提高其界面粘接及冲击强度。研究了MA-SEBS含量对PP/WF复合材料冲击断裂行为的影响,当MA-SEBS含量达到8%时,冲击性能达到了最大值,进一步增加到10%并未提高其断裂韧性,但动态热机械分析(DMA)表明复合材料刚性的提高,这归因于PP/WF界面的改善,当MA-SEBS超过8%,聚丙烯与木纤维分子间的相互作用增强。扫描电子显微镜(SEM)分析了样品的断裂表面,表明木纤维与聚丙烯表面强烈的界面粘结。图5表1参11。  相似文献   

17.
In this paper, the influence of melamine polyphosphate (MPP) and aluminum hypophosphite (AHP) on mechanical properties, flame retardancy and thermal degradation of high-density polyethylene/wood flour composites (HDPE/WF) was investigated. The synergistic effect of MPP and AHP was investigated. Polyethylene grafted with maleic anhydride (PE-g-MAH) was used as coupling agent. The experimental data demonstrated that the HDPE/WF composites with 35 wt% MPP/AHP (3:2) could achieve a LOI value of 29.6 % and UL-94 V-0 rating. In addition, the cone value also revealed that the heat release rate and the smoke production rate were clearly reduced. SEM results showed that the synergistic system (MPP/AHP = 3:2) could form a dense and thick char layer and good adhesion between wood flour and HDPE matrix, which prevented the transfer of heat flux and fuel gases. Incorporation of MPP and AHP improved the thermal stability of HDPE/wood flour as observed from the thermogravimetric analysis results and also enhanced the thermal resistance of char layer at high temperature based on scanning electron microscopy observation.  相似文献   

18.
智能响应材料需具备3个基本要素,即感知、驱动和控制,在全球新材料研究领域中,仿生智能响应材料是目前世界各国技术战略发展中的竞争热点。木材是一种天然且可再生的生物质材料,具有良好的结构和功能特性。作为人类使用最早的材料,木材具有轻质、美观、生物调节等优良特性,是绿色环境人体健康的贡献者。木材的纤维素、半纤维素和木质素构成了木材精妙的微结构同时提供了许多官能团,为木材仿生智能材料的合成奠定了优良的基础。本文简要介绍了木质仿生智能响应材料的研究进展,综述了pH值、气体、光、机械力、湿度、温度和双重/多重刺激响应木质材料的制备、性能与潜在应用;重点介绍并总结了以木质材料为基材的仿生智能响应材料的发展现状。  相似文献   

19.
木纤维PP/PE共混物复合材料的流变和力学性能(英文)   总被引:2,自引:0,他引:2  
For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the interfacial adhesion between wood fiber and matrix. WPCs were prepared from wood fiber up to 60 wt.% and modified PP/PE was blended by extrusion. The rheological properties were studied by using dynamic measurement. According to the strain sweep test, the linear viscoelastic region of composites in the melt was determined. The result showed that the storage modulus was independent of the strain at low strain region (〈0.1%). The frequency sweep resuits indicated that all composites exhibited shear thinning behavior, and both the storage modulus and complex viscosity of MAH modified composites were decreased comparing to those unmodified. Flexural properties and impact strength of the prepared WPCs were measured according to the relevant standard specifications. The flexural and impact strength of the manufactured composites significantly increased and reached a maximum when MAH dosage was 1.0 wt%, whereas the flexural modulus after an initial decreased, also increased with MAH dosage. The increase in mechanical properties indicated that the presence of anhydride groups enhanced the interracial adhesion between wood fiber and PP/PE blends.  相似文献   

20.
由聚丙烯(PP)、高密度聚乙烯(HDPE)和聚苯乙烯(PS)组成的混合废旧塑料与木粉经高速混合机混合后,采用双螺杆/单螺杆串联挤出机组制备了木粉/混合废旧塑料复合材料。探讨了马来酸酐接枝苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS-g-MAH)和原位接枝马来酸酐(MAH)对木粉/混合废旧塑料复合材料力学性能的影响。结果表明,与使用MAH和DCP的原位反应共混相比,SEBS-g-MAH显著提高了复合材料的抗冲击性能,但对拉伸和弯曲性能的改善不如原位反应共混显著。总的来说,混合废旧塑料制备的复合材料的力学性能要低于纯塑料混合物制备的复合材料,尤其是拉伸断裂伸长率。微观形态研究表明,添加SEBS-g-MAH和原位接枝MAH均可提高木粉与塑料混合物之间的界面相容性,但与添加SEBS-g-MAH相比,原位接枝MAH能更好的改善PP、HDPE、PS与木粉之间的界面结合。原位接枝MAH可被看作是一种改善木粉与塑料混合物间界面相容性的有效途径。此外,采用动态力学分析(DMA)进一步表征了复合材料的储能模量和阻尼因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号