首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

2.
Resonance flexural vibration(Fast Fourier Transform, FFT), ultrasonic wave(Pundit) and stress wave(Metriguard) techniques were examined as means of evaluating the static modulus of elasticity (MOE) and predicting the modulus of rupture (MOR) of finger-jointed lumber specimens made with four kinds of Eucalyptus (Eucalyptus. citriodora, E. exserta, E. grandis x E. urophylla and E. grandis). Dynamic MOE was calculated from frequency and time obtained from forced vibrations and sounds induced in the four species of finger-jointed specimens. It was found that correlation coefficients between density and static MOE and dynamic MOE were statistically significant at the 0.01 level. And it was also found that the three nondestructive techniques can provide rapid and accurate means to determine the MOE, and the dynamic MOE was more accurate to predict static MOE than density. But the correlation coefficient between dynamic MOE, static MOE and MOR were lower than results reported by other researchers for solid wood, and were not statistically significant. It can be concluded that the three nondestructive techniques are useful for evaluating the MOE, but not suitable for predicting the MOR of finger-jointed.  相似文献   

3.
The effects of different thinning and pruning methods on the bending strength and dynamic modulus of elasticity (DMOE) of young Taiwania (Taiwania cryptomerioides Hay) were investigated. The average DMOE, modulus of elasticity (MOE), and modulus of rupture (MOR) in the thinning treatments showed the following trend: no thinning > medium thinning > heavy thinning. This indicates that thinning reduces average bending properties. The average DMOE, MOE, and MOR in the pruning treatments showed the following trend: medium pruning > no pruning > heavy pruning. According to this tendency, better average qualities of lumber and specimens were from wood subjected to no-thinning and medium-pruning treatments according to an ultrasonic wave technique and static bending tests. However, most results showed no statistically significant differences among thinning, pruning, and thinning and pruning treatments. The average values of DMOE, MOE, and MOR of visually graded construction-grade lumber were significantly greater than those of below-grade lumber. Moreover, there were very significant positive relationships between density, ultrasonic velocity, DMOE, MOE, and MOR, although the determination coefficients were small.  相似文献   

4.
Genetic- and environmental variation and correlation patterns were characterized for modulus of elasticity (MOE), modulus of rupture (MOR) and related wood traits: latewood proportion, wood density, spiral grain, microfibril angle and lignin content in five full-sib families of Norway spruce. The families were evaluated on the basis of clearwood specimens from the juvenile -mature wood transition zone of 93 sampled trees at age 30 year from seed. Family-means varied significantly (p < 0.05) for all wood traits studied except lignin content. MOE varied between 7.9–14.1 GPa among trees and 9.4–11.0 GPa among families. MOR varied between 47–87 MPa among trees and 61–71 MPa among families. Families remained significantly different in an analysis of specific MOE (MOE/density) and MOR (MOR/density). Hence, solely relying on wood density as a wood quality trait in tree breeding would not fully yield the potential genetic gain for MOE and MOR. Correlations between wood structural traits and specific MOE and MOR are presented and discussed.  相似文献   

5.
杉木热处理材结晶度及力学性能的研究   总被引:1,自引:0,他引:1  
热处理对木材力学性能的影响是多样的,这与热处理条件下木材的物理化学变化密切相关。本次研究将杉木板材在160℃、180℃和220℃常压蒸汽条件下进行热处理,考察处理材的结晶度、抗弯弹性模量、抗弯强度及相互可能的关联。结果表明,热处理使试材结晶度增加,有助于提高木材的刚性,使热处理材的抗弯弹性模量高于常规对照材;结晶度的提高对抗弯强度没有改善作用,热处理后试材的抗弯强度明显下降。  相似文献   

6.
Reductions in Pinus radiata D. Don. (radiata pine) clearfell age have increased the juvenile wood proportion in sawlogs, increasing the need to segregate low modulus of elasticity (MOE) material early in the supply chain to avoid the costly processing of low-value, non-structural boards. In Australian radiata pine plantations, variability in MOE is greater between trees than between stands, requiring tests of individual trees to identify those with low MOE. Time of flight of a sound wave in a tree or log is known to be well-correlated to its MOE. The trial examined the ability of a newly developed acoustic assessment tool, the Hitman PH330 (PH330) supplied by Fibre-gen Limited, fitted to a harvester head, to identify and segregate low MOE sawlogs during a cut-to-length harvesting operation in a radiata pine plantation. The impact of using the tool on the harvester’s productivity was also examined. There was a reduction in the mean productivity of the harvester when using the PH330 compared with normal operations not using the PH330 but it was not significant. Mechanical MOE testing showed that boards cut from sawlogs which the PH330 identified as structural, had significantly greater mean MOE than boards from non-structural sawlogs, demonstrating the PH330 was able to separate high and low MOE sawlogs.  相似文献   

7.
Cement-bonded particleboards of 6 mm in thickness were manufactured using maize stalk (Zea mays) particles of uniform sizes at three levels of board density and additive concentrations respectively. The bending strength and dimensional properties were assessed. Increase in board density and additive concentration caused increase in Modulus of rupture (MOR), Modulus of elasticity (MOE), and decrease in Thickness swelling (TS) and Water absorption (WA). The MOR, MOE and TS of the boards were significantly affected by board density except for WA, but additive concentration affected all the boards’ properties examined at p ≥ 0.05. Strong and dimensional stable cement-bonded boards could be manufactured from maize stalk particles with Portland cement as the binder after hot water treatment. Although the dimensional stability and mechanical strength properties of the boards were affected by the board density and additive concentration, the study revealed that cement-bonded particleboards could be manufactured from maize stalk (Zea mays) particles. However, the increase in board density and additive concentration could cause the increase in MOR and MOE, and cause the decrease in TS and WA of boards.  相似文献   

8.
采用慈竹为原料制造竹帘胶合板,以三种不同的方式进行组坯,研究组坯方式对慈竹竹帘胶合板纵横方向静曲强度、弹性模量、压缩强度与水平剪切强度的影响。结果表明:组坯方式对胶合板的弹性模量与静曲强度影响较为显著。Ⅲ型板纵向各项力学性能最优,Ⅲ型板横向各项力学性能最弱。Ⅰ型板和Ⅱ型板的静曲强度和弹性模量均达到了汽车车厢用竹篾胶合板的A类标准。三种方式组坯板件的主要力学性能均达到了结构用竹木复合板国家A级标准与混凝土模板用胶合板主要物理力学性能指标。  相似文献   

9.
Abstract Binderless boards were prepared from kenaf core under various manufacturing conditions and their water resistance properties were evaluated. The board properties evaluated were retention ratios of modulus of rupture (MOR) and modulus of elasticity (MOE), internal bonding strength after water treatment (IB), thickness swelling (TS), water absorption (WA), and linear expansion (LE). These values were then compared with those of boards bonded with urea-formaldehyde (UF), urea melamine formaldehyde (UMF), and phenol-formaldehyde (PF) resins, and their water resistance properties were assessed. We found that pressing temperature was one of the most important conditions for the improvement of water resistance properties. The retention ratios of MOR, MOE, and IB of kenaf core chip binderless boards (pressing temperature 200°C, target density 0.8g/cm3, and the three-step pressing of 6MPa for 10min, then 4MPa for 3min, and 2MPa for 3min) were 37.1%, 49.9%, and 55.7%, respectively, compared with values for UMF-bonded boards of 22.5%, 27.1%, and 40.7%, and values for PF-bonded boards of 42.8%, 41.8%, and 54.1%, respectively. The results showed that the water resistance properties of binderless boards were higher than those of UMF-bonded boards and almost as high as those of PF-bonded boards. Part of this article was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

10.
Preparation and properties of waste tea leaves particleboard   总被引:4,自引:0,他引:4  
Urea-formaldehyde (UF) adhesive is the main source of formaldehyde emission from UF-bonded boards. The components in waste tea leaves can react with formaldehyde to serve as a raw material in the production of low formaldehyde emission boards. In our study, waste tea leaves and UF adhesive were employed in the preparation of waste tea leaves particleboard (WTLB). An orthogonal experimental method was applied to investigate the effects of process parameters on formaldehyde emission and mechanical properties of WTLB. The results indicated that: 1) waste tea leaves had the ability to abate formaldehyde emission from boards; and 2) density of the WTLB was a significant factor affecting its modulus of rupture (MOR), modulus of elasticity (MOE) and internal bonding (IB).  相似文献   

11.
Two main types of fiberboards were produced using lauan (Shorea spp.) fibers with an isocyanate resin as the binder; fiberboard with a flat, homogeneous (homoprofile), and typical U-shaped (conventional) density profile along the board thickness. The processing parameters included manipulation of mat moisture content distribution, press closing speed, and hot pressing method. The results are summarized as follows: (1) A larger variation was observed in the peak density (PD) and core density (CD) of fiberboards at 0.5g/cm3 mean density (MD) level than in those at 0.7 g/cm3. Generally, PD showed a greater variation than CD, irrespective of MD level. (2) Boards produced using two-step hot pressing recorded substantially higher PD with reduced CD. (3) Multiple regression analysis showed that CD and PD could be calculated based on the other profile defining factors, and a rough estimation for peak distance and gradient factor was possible. (4) Based on static bending, conventional fiberboard had a higher modulus of rupture (MOR) than the homo-profile board but a similar modulus of elasticity (MOE). (5) At 0.5 g/cm3 the MOR and dynamic MOE of fiberboard increased by up to 67% and 62%, respectively, when the PD increased from 0.5 to 1.07 g/cm3. Similarly, an increase of PD from 0.7 to 1.1 g/cm3 resulted in corresponding increases of 55% and 34% in the MOR and dynamic MOE of 0.7 g/cm3 boards. (6) The internal bond strength and screw withdrawal resistance were almost entirely dependent on the CD and MD, respectively. (7) Homo-profile fiberboards registered higher thickness swelling and water absorption than conventional fiberboards throughout the dry/wet conditioning cycle.  相似文献   

12.
The objectives of this study were to establish the method of evaluating wood mechanical properties by acoustic nondestructive testing at standing trees and at logs of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation, and to compare three acoustic nondestructive methods for evaluating the static bending modulus of elasticity (MOE), modulus of rupture (MOR), and compressive strength parallel-to-grain (σc) of plantation wood as well. Fifteen Chinese fir plantation trees at 36 years of age were selected. Each tree was cut into four logs, for which three values of dynamic modulus of elasticity, i.e., E sw, of the north and south face based on stress waves to assume the measuring state of the standing tree, E fr, longitudinal vibration, and E us, ultrasonic wave, were measured in the green condition. After log measurements, small specimens were cut and air-dried to 12% moisture content (MC). Static bending tests were then performed to determine the bending MOE and MOR, and compressive tests parallel-to-grain were made to determine σc. The bending MOE of small clear specimens was about 7.1% and 15.4% less than E sw and E us, respectively, and 11.3% greater than E fr. The differences between the bending MOE and dynamic MOE of logs as determined by the three acoustic methods were statistically significant (P < 0.001). Good correlation (R = 0.77, 0.57, and 0.45) between E sw, E fr, and E us and static MOE, respectively, were obtained (P < 0.001). It can be concluded that longitudinal vibration may be the most precise and reliable technique to evaluate the mechanical properties of logs among these three acoustic nondestructive methods. Moreover, the results indicate that stress wave technology would be effective to evaluate wood mechanical properties both from logs and from the standing tree.  相似文献   

13.
Reduction in the rotation ages of softwood saw-log plantations in South Africa is causing increased proportions of low stiffness sawn lumber at final harvest. It has been shown for some species that the microfibril angle (MFA) of the S2 layer of tracheids is strongly related to the modulus of elasticity (MOE) of wood, even more so than wood density, especially in wood formed during juvenile growth. The objectives of this study were to describe the variation in MFA in young Pinus patula trees and to determine the relationship between MFA and the dynamic MOE of sawn P. patula lumber. Thirty 16- to 20-year-old trees from six compartments from the Mpumalanga escarpment were processed into discs and lumber. The MFA, density and ring width were measured at two height levels using Silviscan 3. The average annual ring MFA varied between 7° and 29°; the pattern of variation depended mainly on height level and the ring number from the pith. The MFA in P. patula followed the same within-tree variation trends as in New Zealand-grown Pinus radiata but the average MFA was lower in absolute terms and differences between height levels were less pronounced. The MFA and density exhibited highly significant Pearson correlations of 0.73 and 0.70, respectively, with board dynamic MOE. A multiple regression model, which included MFA, density and ring width, explained 71% of the variation in the dynamic MOE of boards. A sensitivity analysis on the model showed that MFA and density had approximately similar influences on predicting the dynamic MOE of Pinus patula boards.  相似文献   

14.

The aim of the study was to investigate the possibility of strength grading Norway spruce [Picea abies (L.) Karst.] saw logs on the basis of simulated X-ray LogScanner measurements and to evaluate the potential accuracy of X-ray LogScanner measurements of green heartwood density and percentage of heartwood. The study was based on 272 logs for strength grading and 29 logs for measurements of green heartwood density and percentage of heartwood. The logs were scanned using computed tomography (CT). After sawing, the modulus of elasticity (MOE) of the centre boards was measured using a strength-grading machine. The CT images were used for simulations of an X-ray LogScanner, resulting in simulated measurements of different variables such as diameter, taper, percentage of heartwood, density and density variations. Multivariate models for prediction of MOE were then calibrated using partial least squares (PLS) regression. The MOE of a log was defined as the mean value of the MOE of the two centre boards. The study showed that the simulated X-ray LogScanner measured the percentage of heartwood and green heartwood density with relatively high accuracy (R 2 = 0.94 and R 2 = 0.73, respectively, after removing two outliers) and that these and other variables measured by the simulated X-ray LogScanner could be used to predict the stiffness of the centre boards. These predictions were used to sort the logs according to the predicted MOE. When sorting out 50% of the logs (''high-strength'' logs), the percentage of C30 boards increased from 73% (all logs in the study) to 100% (only ''high-strength'' logs). The rest of the logs could then be divided into two groups, one of them with 100% C24 and C30 boards.  相似文献   

15.
In this report, the 575 specimens were divided into ten groups based on range of growth ring width. The modulus of elasticity (MOE) and modulus of rupture (MOR) of 45 × 90 mm specimens of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation dimension lumber were analyzed by average growth ring width and average density of each group. The results showed that the average growth ring width was in inverse proportion to density, MOE, and MOR of the dimension lumber. Furthermore, average density was in direct proportion to MOE and MOR of the dimension lumber. The coefficient of determination (R 2) for all the regression equations ranged from 0.7340 to 0.9207 at a significance level of 0.001. However, without such group classification, there was poor relationship between growth ring width, density, MOE, and MOR with a determination coefficient of 0.0901–0.1855. This finding suggested that it was feasible to predict the flexural properties of Chinese fir plantation dimension lumber by average growth ring width after specimen group classification.  相似文献   

16.
An outdoor exposure test was conducted on kenaf core binderless boards (pressing temperatures 200°, 180°, and 160°C; pressing pressure 3.0 MPa, time 10 min, target board thickness 5 mm, target board density 0.8 g/cm3) to estimate their bond durability. Modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), thickness change, weight loss, Fourier transform infrared (FTIR) spectra, and color difference (ΔE*) by the CIE L*a*b* system were measured at various outdoor exposure periods up to 19 months. These values were then compared with those of a commercial medium-density fiberboard (MDF; melamine-urea-formaldehyde resin; thickness 9.0 mm, density 0.75 g/cm3). Generally, dimensional stability and the retention ratios of MOR, MOE, and IB after the outdoor exposure test increased with increased pressing temperature of binderless boards. The MOR retention ratio of the kenaf core binderless boards with a pressing temperature of 200°C was 59.5% after 12 months of outdoor exposure, which was slightly lower than that of the MDF (75.6% after 11 months of outdoor exposure). Despite this, the bond durability of the kenaf core binderless boards should be viewed as favorable, especially when considering the fact that the retention ratio of 59.5% was achieved without binder and without obvious element loss. Part of this report was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27-30, 2005, Yokohama, Japan  相似文献   

17.
Summary Two types of particleboards bonded with an isocyanate resin, one with uniform vertical density profile (homo-profile), and the other with conventional U-shaped profile, were fabricated to various density levels using lauan (Shorea spp.) particles. The fundamental relationships between the density profile and the board properties were determined, and the results are summarized as follows: 1. In homo-profile boards, the moduli of rupture (MOR) and elasticity (MOE), internal bond (IB) strength, and screw withdrawal resistance (SWR), are highly correlated to the board mean density. 2. The bottom limit of the board density is estimated to be ca. 0.25 g/cm3, based on the correlation regressions between mechanical properties and mean density. 3. At equal mean density level, the MOR and MOE of the conventional particleboards are higher than the homo-profile boards, due to the higher density near the faces. However, the reverse is true for IB, owing to the presence of the low density core in the former. 4. The net impact of peak density on MOR and MOE is greater at higher mean density level while raising the core density results in more pronounced improvement in IB at lower density. 5. In addition to the compaction ratio, the dimensional stability of the board is also affected by the peak area and mat moisture content. Received 9 January 1997  相似文献   

18.
就不同的细料(锯屑)掺入量对快速固化水泥刨花板的性能的影响作了探讨,结果表明:锯屑的掺入对水泥刨花板的密度、静曲强度、内结合强度和厚度膨胀率均有一定的影响,当锯屑的掺入量占木质原料总量的20% ~ 30%时,既可以改善板的性能,又可以提高木质原料的利用率.  相似文献   

19.
广宁县竹香骨下脚料制备竹碎料刨花板及其复合改性研究   总被引:1,自引:0,他引:1  
采用竹香骨下脚料为原料,以脲醛树脂和三聚氰胺改性脲醛树脂胶粘剂制备竹碎料刨花板,并与木纤维复合改性,检测并分析了内结合强度、静曲强度、弹性模量和吸水性。结果表明,在热压温度为160℃时,竹碎料板和竹木复合碎料板的物理力学性能均满足国标规定在干燥状态下使用的普通用板要求。当木纤维与竹碎料复合后,复合板材的静曲强度和弹性模量有一定程度提高,但内结合强度降低。  相似文献   

20.
The bending and growth characteristics of large fresh stems from four silver fir (Abies alba Mill.) and three Norway spruce (Picea abies (L.) Karst.) trees were studied. Twenty logs taken from different stem heights were subjected to four-point bending tests. From the bending test records, we calculated stress-strain curves, which accounted for detailed log taper, shear deformation and self weight. From these curves we determined, among other parameters, the modulus of elasticity (MOE), the modulus of rupture (MOR) and the work absorbed in bending (W). No significant differences were found between species for the wood properties examined. Values of MOE, MOR and W generally decreased with stem height, with MOR in the range of 43 to 59 MPa and MOE ranging from 10.6 to 15.6 GPa. These MOE values are twice or more those reported for stems of young Sitka spruce (Picea sitchensis (Bong.) Carr.) trees. Based on the radial growth properties measured in discs from the logs, we calculated predicted values of MOE and MOR for the stem cross section. The predictions of MOE were precise, whereas those of MOR were approximate because of a complex combination of different failure mechanisms. Methods to test and calculate MOE, MOR and W for the stems of living trees are discussed with the aim of improving analyses of tree biomechanics and assessments of forest stability protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号