首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
ObjectiveTo describe the anesthetic and adverse effects of an injectable anesthetic protocol in dogs as part of a high-volume sterilization program under field conditions in Belize.Study designProspective, observational, field study.AnimalsA total of 23 female and eight male dogs (14.2 ± 7.7 kg; age ≥ 8 weeks).MethodsUsing a volume per kg-based dose chart, dogs were administered ketamine (4.5 mg kg−1), medetomidine (0.04 mg kg−1) and hydromorphone (0.09 mg kg−1) intramuscularly. After induction of anesthesia, an endotracheal tube was inserted and dogs were allowed spontaneous breathing in room air. Monitoring included peripheral oxygen saturation (SpO2), mean arterial pressure (MAP), heart rate (HR), respiratory rate, rectal temperature and end-tidal carbon dioxide (Pe′CO2). Meloxicam (0.2 mg kg−1) was administered subcutaneously after surgery. Data were analyzed with linear models and chi-square tests (p < 0.05).ResultsOnset of lateral recumbency (3.4 ± 2 minutes) was rapid. Desaturation (SpO2 < 90%) was observed at least once in 64.5% of dogs and was more frequent in large dogs (p = 0.019). Hypercapnia (Pe′CO2 ≥ 50 mmHg; 6.7 kPa) was observed in 48.4% of dogs. MAP was 111 ± 19 mmHg, mean ± standard deviation. Hypertension (MAP ≥ 120 mmHg), bradycardia (HR ≤ 60 beats minute−1) and tachycardia (HR ≥ 140 beats minute−1) were observed in 45.2%, 16.1% and 3.3% of dogs, respectively. Hypotension and hypothermia were not observed. Sex was not significantly associated with any complication. Return of swallowing reflex and time to standing were 71 ± 23 and 152 ± 50 minutes after injection, respectively. Return of swallowing was significantly longer in large dogs.Conclusions and clinical relevanceAt the doses used, ketamine–medetomidine–hydromorphone was effective in dogs for high-volume sterilization. In this field setting, adverse effects included hypoventilation, hypoxemia and prolonged recovery.  相似文献   

2.
ObjectiveTo evaluate the effects of intravenous lidocaine (L) and ketamine (K) alone and their combination (LK) on the minimum alveolar concentration (MAC) of sevoflurane (SEVO) in dogs.Study designProspective randomized, Latin-square experimental study.AnimalsSix, healthy, adult Beagles, 2 males, 4 females, weighing 7.8 – 12.8 kg.MethodsAnesthesia was induced with SEVO in oxygen delivered by face mask. The tracheas were intubated and the lungs ventilated to maintain normocapnia. Baseline minimum alveolar concentration of SEVO (MACB) was determined in duplicate for each dog using an electrical stimulus and then the treatment was initiated. Each dog received each of the following treatments, intravenously as a loading dose (LD) followed by a constant rate infusion (CRI): lidocaine (LD 2 mg kg−1, CRI 50 μg kg−1minute−1), lidocaine (LD 2 mg kg−1, CRI 100 μgkg−1 minute−1), lidocaine (LD 2 mg kg−1, CRI 200 μg kg−1 minute−1), ketamine (LD 3 mg kg−1, CRI 50 μg kg−1 minute−1), ketamine (LD 3 mgkg−1, CRI 100 μg kg−1 minute−1), or lidocaine (LD 2 mg kg−1, CRI 100 μg kg−1 minute−1) + ketamine (LD 3 mg kg−1, CRI 100 μg kg−1 minute−1) in combination. Post-treatment MAC (MACT) determination started 30 minutes after initiation of treatment.ResultsLeast squares mean ± SEM MACB of all groups was 1.9 ± 0.2%. Lidocaine infusions of 50, 100, and 200 μg kg−1 minute−1 significantly reduced MACB by 22.6%, 29.0%, and 39.6%, respectively. Ketamine infusions of 50 and 100 μg kg−1 minute−1 significantly reduced MACB by 40.0% and 44.7%, respectively. The combination of K and L significantly reduced MACB by 62.8%.Conclusions and clinical relevanceLidocaine and K, alone and in combination, decrease SEVO MAC in dogs. Their use, at the doses studied, provides a clinically important reduction in the concentration of SEVO during anesthesia in dogs.  相似文献   

3.
ObjectiveTo evaluate the fresh gas flow (FGF) rate requirements for the Humphrey ADE semi-closed breathing system in the Mapleson A mode; to determine the FGF at which rebreathing occurs, and compare the efficiency of this system to the Bain (Mapleson D) system in spontaneously breathing cats and small dogs.Study DesignProspective clinical study.AnimalsTwenty-five healthy (ASA score I or II) client-owned cats and dogs (mean ± SD age 4.7 ± 5.0 years, and body weight 5.64 ± 3.26 kg) undergoing elective surgery or minor procedures.MethodsAnaesthesia was maintained with isoflurane delivered via the Humphrey ADE system in the A mode using an oxygen FGF of 100 mL kg−1 minute−1. The FGF was then reduced incrementally by 5–10 mL kg−1minute−1 at approximately five-minute intervals, until rebreathing (inspired CO2 >5 mmHg (0.7 kPa)) was observed, after which flow rates were increased. In six animals, once the minimum FGF at which rebreathing occurred was found, the breathing system was changed to the Bain, and the effects of this FGF delivery examined, before FGF was increased.ResultsRebreathing did not occur at the FGF recommended by the manufacturer for the ADE. The mean ± SD FGF that resulted in rebreathing was 60 ± 20 mL kg−1minute−1. The mean minimum FGF at which rebreathing did not occur with the ADE was 87 ± 39 mL kg−1minute−1. This FGF resulted in significant rebreathing (inspired CO2 8.8 ± 2.6 mmHg (1.2 ± 0.3 kPa)) on the Bain system.ConclusionsThe FGF rates recommended for the Humphrey ADE are adequate to prevent rebreathing in spontaneously breathing cats and dogs <15 kg.Clinical relevanceThe Humphrey ADE system used in the A mode is a more efficient alternative to the Bain system, for maintenance of gaseous anaesthesia in spontaneously breathing cats and small dogs.  相似文献   

4.
ObjectiveTo compare the effects of continuous rate infusions (CRIs) of intravenous (IV) morphine and morphine-tramadol on the minimum alveolar concentration (MAC) of sevoflurane, and on electroencephalographic entropy indices in dogs.DesignProspective study.AnimalsEight young, healthy German shepherds, weighing 26.3 ± 3.1 kg (mean ± SD).MethodsAnaesthesia was induced and maintained with sevoflurane. A standard tail-clamp technique was used for MAC determination. Within one anaesthetic period, MAC was first determined during sevoflurane anaesthesia alone (MACB); then during morphine infusion (MACM), (loading dose 0.5 mg kg−1IM; CRI, 0.2 mg kg−1hour−1) then finally during morphine-tramadol infusion (tramadol loading dose 1.5 mg kg−1IV; CRI, 2.6 mg kg−1 hour−1) (MACMT). At each change, periods of 45 minutes were allowed for equilibration. Stated entropy (SE), response entropy (RE), and RE-SE differences were measured five minutes prior to and during tail clamping.ResultsThe MACB was 2.1 ± 0.3vol%. The morphine and morphine-tramadol infusions reduced MAC to 1.6 ± 0.3vol% and 1.3 ± 0.3vol%, respectively. MAC was decreased below baseline more during morphine-tramadol than during morphine alone (39 ± 9% versus 25 ± 6%, respectively; p = 0.003). All SE and RE and most RE-SE differences were increased significantly (p < 0.05) over pre-stimulation in all groups when the dogs responded purposefully to noxious stimulation. When no response to noxious stimulation occurred, the entropy indices did not change.Conclusion and clinical relevanceIn dogs, combined morphine-tramadol CRI decreased sevoflurane MAC more than morphine CRI alone. Entropy indices changed during nociceptive responses in anaesthetized animals, suggesting that entropy measurements may be useful in determining anaesthetic depth in dogs.  相似文献   

5.
ObjectiveTo quantify the effects of medetomidine on the onset and duration of vecuronium-induced neuromuscular blockade in dogs.Study designRandomized, prospective clinical study.AnimalsTwenty-four, healthy, client-owned dogs of different breeds, aged between 6 months and 10 years and weighing between 5.0 and 40.0 kg undergoing elective surgery.MethodsDogs were randomly allocated to two groups. Pre-anaesthetic medication in group M+ was intramuscular acepromazine (ACP) 25 μg kg−1, morphine 0.5 mg kg−1 and medetomidine 5 μg kg−1. Group M− received ACP and morphine only, at the same dose rate. After induction with thiopental, anaesthesia was maintained with halothane in oxygen and nitrous oxide. End-tidal halothane concentration was maintained at 1.1%. Neuromuscular blockade was produced with intravenous vecuronium (50 μg kg−1) and monitored using a train of four stimulus applied at the ulnar nerve. The times taken for loss and reappearance of the four evoked responses (twitches [T]) were recorded. Normal and nonparametric data were analysed with an independent t-test and Mann-Whitney's U-test, respectively.ResultsThe fourth twitch (T4) disappeared at similar times in each group: 107 ± 19; [72–132] (mean ± SD; [range]) seconds in M+ and 98 ± 17 [72–120] seconds in M− dogs. The first twitch (T1) was lost at 116 ± 15; [96–132] seconds in group M+ and 109 ± 19; [72–132] seconds in M−. The fourth twitch returned significantly earlier in M+ dogs: 20.8 ± 3.8 [14–28] minutes compared with 23.8 ± 2.7 [20–27] minutes (p = 0.032). The duration of drug effect (T4 absent) was significantly shorter (p = 0.027) in M+ (18.9 ± 3.7 minutes) compared with M− dogs (22.2 ± 2.9 minutes). The recovery rate (interval between reappearance of T1 and T4) was significantly more rapid (p = 0.0003) in medetomidine recipients (3.0 ± 1.2 versus 5.2 ± 1.3 minutes).Conclusion and clinical relevance Medetomidine 5 μg kg−1 as pre-anaesthetic medication shortened the duration of effect of vecuronium in halothane-anaesthetized dogs and accelerated recovery, but did not affect the onset time. These changes are of limited clinical significance.  相似文献   

6.
ObjectiveTo evaluate the influence of fentanyl on intra-abdominal pressures in spontaneously breathing dogs during capnoperitoneum.Study designProspective clinical study.AnimalsEleven healthy client-owned and five healthy experimental dogs undergoing laparoscopy.MethodsDogs were premedicated with acepromazine (0.03 mg kg?1 IV) and carprofen (4 mg kg?1 IV). Anaesthesia was induced with propofol and maintained with isoflurane in oxygen. The abdomen was insufflated with CO2 (11–16 cm H2O). Intra-abdominal pressures were measured with a transducer. Respiratory variables were measured with a spirometry sensor and side-stream capnography. Following preparation, fentanyl (1 μg kg?1) was injected over 30 seconds IV. Data were recorded 5 minutes before, during and 5 minutes after treatment. The following time points were selected for statistical analysis (anova, p < 0.05): ?160, ?140, ?120, ?100, ?80, ?60, ?40, ?20, 0, 30, 50, 70, 90, 110, 130 and 150 seconds after the start of fentanyl injection.ResultsIntra-abdominal pressure increased during inspiration in 15 dogs but decreased in one dog. Fentanyl treatment did not alter these patterns. Peak inspiratory and end-expiratory intra-abdominal pressures continuously decreased over time during the whole experiment and fentanyl exaggerated the decrease in inspiratory pressures but did not affect the rate of decrease in expiratory pressures. Differences between intra-abdominal pressures were stable before, but decreased after fentanyl administration from 4.1 ± 1.4 to 3.3 ± 1.2 cm H2O (at 0 and 150 seconds time points). End-tidal CO2 partial pressures increased from 6.0 ± 0.8 to 6.6 ± 0.9 kPa, respiratory rate decreased from 10.8 ± 2.6 to 7.8 ± 2.2 breaths per minute and tidal volume decreased from 13.7 ± 4.4 to 12.4 ± 2.9 mL kg?1 after fentanyl but these variables did not change before fentanyl treatment. Airway pressures did not change.Conclusions and clinical relevanceFentanyl did not increase intra-abdominal pressures in dogs.  相似文献   

7.
ObjectiveTo determine the potency ratio between S-ketamine and racemic ketamine as inductive agents for achieving tracheal intubation in dogs.Study designProspective, randomized, ‘blinded’, clinical trial conducted in two consecutive phases.Animals112 client-owned dogs (ASA I or II).MethodsAll animals were premedicated with intramuscular acepromazine (0.02 mg kg−1) and methadone (0.2 mg kg−1). In phase 1, midazolam (0.2 mg kg−1) with either 3 mg kg−1 of racemic ketamine (group K) or 1.5 mg kg−1 of S-ketamine (group S) was administered IV, for induction of anaesthesia and intubation. Up to two additional doses of racemic (1.5 mg kg−1) or S-ketamine (0.75 mg kg−1) were administered if required. In phase 2, midazolam (0.2 mg kg−1) with 1 mg kg−1 of either racemic ketamine (group K) or S-ketamine (group S) was injected and followed by a continuous infusion (1 mg kg minute−1) of each respective drug. Differences between groups were statistically analyzed via t-test, Fisher exact test and ANOVA for repeated measures.ResultsDemographics and quality and duration of premedication, induction and intubation were comparable among groups. During phase 1 it was possible to achieve tracheal intubation after a single dose in more dogs in group K (n = 25) than in group S (n = 16) (p = 0.046). A dose of 3 mg kg−1 S-ketamine allowed tracheal intubation in the same number of dogs as 4.5 mg kg−1 of racemic ketamine. The estimated potency ratio was 1.5:1. During phase 2, the total dose (mean ± SD) of S-ketamine (4.02 ±1.56 mg kg−1) and racemic ketamine (4.01 ± 1.42) required for tracheal intubation was similar.Conclusion and clinical relevanceRacemic and S-ketamine provide a similar quality of anaesthetic induction and intubation. S-ketamine is not twice as potent as racemic ketamine and, if infused, the potency ratio is 1:1.  相似文献   

8.
ObjectiveTo quantify the peripheral selectivity of vatinoxan (L-659,066, MK-467) in dogs by comparing the concentrations of vatinoxan, dexmedetomidine and levomedetomidine in plasma and central nervous system (CNS) tissue after intravenous (IV) coadministration of vatinoxan and medetomidine.Study designExperimental, observational study.AnimalsA group of six healthy, purpose-bred Beagle dogs (four females and two males) aged 6.5 ± 0.1 years (mean ± standard deviation).MethodsAll dogs were administered a combination of medetomidine (40 μg kg−1) and vatinoxan (800 μg kg−1) as IV bolus. After 20 minutes, the dogs were euthanized with an IV overdose of pentobarbital (140 mg kg−1) and both venous plasma and CNS tissues (brain, cervical and lumbar spinal cord) were harvested. Concentrations of dexmedetomidine, levomedetomidine and vatinoxan in all samples were quantified by liquid chromatography–tandem mass spectrometry and data were analyzed with nonparametric tests with post hoc corrections where appropriate.ResultsAll dogs became deeply sedated after the treatment. The CNS-to-plasma ratio of vatinoxan concentration was approximately 1:50, whereas the concentrations of dexmedetomidine and levomedetomidine in the CNS were three- to seven-fold of those in plasma.Conclusions and clinical relevanceWith the doses studied, these results confirm the peripheral selectivity of vatinoxan in dogs, when coadministered IV with medetomidine. Thus, it is likely that vatinoxan preferentially antagonizes α2-adrenoceptors outside the CNS.  相似文献   

9.
ObjectiveTo assess the pharmacokinetics of hydromorphone administered intravenously (IV) or subcutaneously (SC) to dogs.Study designRandomized experimental trial.AnimalsSeven healthy male neutered Beagles aged 12.13 ± 1.2 months and weighing 11.72 ± 1.10 kg.MethodsThe study was a randomized Latin square block design. Dogs were randomly assigned to receive hydromorphone hydrochloride 0.1 mg kg−1 or 0.5 mg kg−1 IV (n = 4 dogs) or 0.1 mg kg−1 (n = 6) or 0.5 mg kg−1 (n = 5) SC on separate occasions with a minimum 14-day washout between experiments. Blood was sampled via a vascular access port at serial intervals after drug administration. Serum was analyzed by mass spectrometry. Pharmacokinetic parameters were determined with computer software.ResultsSerum concentrations of hydromorphone decreased quickly after both routes of administration of either dose. The serum half-life, clearance, and volume of distribution after IV hydromorphone at 0.1 mg kg−1 were 0.57 hours (geometric mean), 106.28 mL minute−1 kg−1, and 5.35 L kg−1, and at 0.5 mg kg−1 were 1.00 hour, 60.30 mL minute−1 kg−1, and 5.23 L kg−1, respectively. The serum half-life after SC hydromorphone at 0.1 mg kg−1 and 0.5 mg kg−1 was 0.66 hours and 1.11 hours, respectively.Conclusions and clinical relevanceHydromorphone has a short half-life, suggesting that frequent dosing intervals are needed. Based on pharmacokinetic parameters calculated in this study, 0.1 mg kg−1 IV or SC q 2 hours or a constant rate infusion of hydromorphone at 0.03 mg kg−1 hour−1 are suggested for future studies to assess the analgesic effect of hydromorphone.  相似文献   

10.
ObjectiveTo compare the effects of propofol and alfaxalone on respiration in cats.Study designRandomized, ‘blinded’, prospective clinical trial.AnimalsTwenty cats undergoing ovariohysterectomy.MethodsAfter premedication with medetomidine 0.01 mg kg−1 intramuscularly and meloxicam 0.3 mg kg−1 subcutaneously, the cats were assigned randomly into two groups: group A (n = 10) were administered alfaxalone 5 mg kg−1 minute−1 followed by 10 mg kg−1 hour−1 intravenously (IV) and group P (n = 10) were administered propofol 6 mg kg−1 minute−1 followed by 12 mg kg−1hour−1 IV for induction and maintenance of anaesthesia, respectively. After endotracheal intubation, the tube was connected to a non-rebreathing system delivering 100% oxygen. The anaesthetic maintenance drug rate was adjusted (± 0.5 mg kg−1 hour−1) every 5 minutes according to a scoring sheet based on physiologic variables and clinical signs. If apnoea > 30 seconds, end-tidal carbon dioxide (Pe′CO2) > 7.3 kPa (55 mmHg) or arterial haemoglobin oxygen saturation (SpO2) < 90% occurred, manual ventilation was provided. Methadone was administered postoperatively. Data were analyzed using independent-samples t-tests, Fisher's exact test, linear mixed-effects models and binomial test.ResultsManual ventilation was required in two and eight of the cats in group A and P, respectively (p = 0.02). Two cats in both groups showed apnoea. Pe′CO2 > 7.3 kPa was recorded in zero versus four and SpO2 < 90% in zero versus six cats in groups A and P respectively. Induction and maintenance dose rates (mean ± SD) were 11.6 ± 0.3 mg kg−1 and 10.7 ± 0.8 mg kg−1 hour−1 for alfaxalone and 11.7 ± 2.7 mg kg−1 and 12.4 ± 0.5 mg kg−1 hour−1 for propofol.Conclusion and clinical relevanceAlfaxalone had less adverse influence on respiration than propofol in cats premedicated with medetomidine. Alfaxalone might be better than propofol for induction and maintenance of anaesthesia when artificial ventilation cannot be provided.  相似文献   

11.
A central eyeball position is often required during sedation or anaesthesia to facilitate examination of the eye. However, use of neuromuscular blockade to produce a central eye position may result in depressed ventilation. This study evaluated the eyeball position, muscle relaxation and changes in ventilation during general anaesthesia after the IV administration of 0.1 mg kg?1 rocuronium. With client consent, 12 dogs of different breeds, body mass 27.2 ± 11.8 kg, aged 5.6 ± 2.8 years (mean ± SD) were anaesthetized for ocular examination. Pre‐anaesthetic medication was 0.01 mg kg?1 medetomidine and 0.2 mg kg?1 butorphanol IV. Anaesthesia was induced with propofol to effect and maintained with 10 mg kg?1 hour?1 propofol by infusion. The dogs were placed in left lateral recumbency, their trachea intubated and connected to a circle breathing system (Fi O2 = 1.0). All dogs breathed spontaneously. The superficial peroneal nerve of the right hind leg was stimulated every 15 seconds with a train‐of‐four (TOF) stimulation pattern and neuromuscular function was assessed with an acceleromyograph (TOF‐Guard). Adequacy of ventilation was measured with the Ventrak 1550. After 10 minutes of anaesthesia to allow stabilisation of baseline values, 0.1 mg kg?1 rocuronium was administered IV. Minute volume (Vm ), tidal volume (Vt ), respiratory rate (RR), Pe ′CO2 and maximal depression of T1 and TOF ratio were measured. Data were analysed using a paired t‐test. The changes in the eyeball position were recorded. A total of 100 ± 33 seconds after the injection of rocuronium, T1 was maximally depressed to 62 ± 21% and the TOF ratio to 42 ± 18% of baseline values. Both variables returned to baseline after 366 ± 132 seconds (T1) and 478 ± 111 seconds (TOF). There was no significant reduction in Vm (2.32 ± 1.1 L minute?1), Vt (124.1 ± 69.3 mL) and RR (10 ± 3.8 breaths minute?1) and no increase in Pe ′CO2 (6.5 ± 2.1 kPa (48.8 ± 16.1 mm Hg)) throughout the procedure. The eyeball rotated to a central position 35 ± 7 seconds after rocuronium IV and remained there for a minimum of 20 ± 7 minutes in all dogs. We conclude that rocuronium at a dose of 0.1 mg kg?1 can be administered to dogs IV with minimal changes in ventilatory variables. The eyeball is fixed in a central position for at least 20 minutes, which greatly facilitates clinical examination.  相似文献   

12.
ObjectiveTo determine the behavioral effects and pharmacokinetics of methadone in healthy Greyhounds.Study designProspective experimental study.AnimalsThree male and three female healthy Greyhounds.MethodsMethadone hydrochloride, 0.5 mg kg−1 IV (equivalent to 0.45 mg kg−1 methadone base), was administered as an IV bolus. Trained observers subjectively assessed the behavioral effects of methadone. Blood samples were obtained at predetermined time points and plasma methadone concentrations were measured by liquid chromatography with tandem mass spectrometry. Pharmacokinetic variables were estimated with computer software.ResultsMethadone was well tolerated by the dogs with panting and defecation observed as adverse effects. Mild sedation was present, but no vomiting, excitement, or dysphoria was observed. The elimination half-life, volume of distribution, and plasma clearance were 1.53 ± 0.18 hours, 7.79 ± 1.87 L kg−1, and 56.04 ± 9.36 mL minute−1 kg−1, respectively.Conclusions and clinical relevanceMethadone was well tolerated by Greyhounds. The volume of distribution was larger than expected, with resultant lower plasma concentrations than expected. Higher doses may need to be administered to Greyhounds in comparison with non-Greyhound dogs in order to achieve similar plasma drug concentrations. A dosage of 1–1.5 mg kg−1 every 3–4 hours is suggested for future studies of analgesic efficacy of methadone in Greyhounds.  相似文献   

13.
ObjectiveTo compare cardiopulmonary function, recovery quality, and total dosages required for induction and 60 minutes of total intravenous anesthesia (TIVA) with propofol (P) or a 1:1 mg mL−1 combination of propofol and ketamine (KP).Study designRandomized crossover study.AnimalsTen female Beagles weighing 9.4 ± 1.8 kg.MethodsDogs were randomized for administration of P or KP in a 1:1 mg mL−1 ratio for induction and maintenance of TIVA. Baseline temperature, pulse, respiratory rate (fR), noninvasive mean blood pressure (MAP), and hemoglobin oxygen saturation (SpO2) were recorded. Dogs were intubated and spontaneously breathed room air. Heart rate (HR), fR, MAP, SpO2, end tidal carbon dioxide tension (Pe’CO2), temperature, and salivation score were recorded every 5 minutes. Arterial blood gas analysis was performed at 10, 30, and 60 minutes, and after recovery. At 60 minutes the infusion was discontinued and total drug administered, time to extubation, and recovery score were recorded. The other treatment was performed 1 week later.ResultsKP required significantly less propofol for induction (4.0 ± 1.0 mg kg−1 KP versus 5.3 ±1.1 mg kg−1 P, p = 0.0285) and maintenance (0.3 ± 0.1 mg kg−1 minute−1 KP versus 0.6 ±0.1 mg kg−1 minute−1 P, p = 0.0018). Significantly higher HR occurred with KP. Both P and KP caused significantly lower MAP compared to baseline. MAP was significantly higher with KP at several time points. P had minimal effects on respiratory variables, while KP resulted in significant respiratory depression. There were no significant differences in salivation scores, time to extubation, or recovery scores.Conclusions and clinical relevanceTotal intravenous anesthesia in healthy dogs with ketamine and propofol in a 1:1 mg mL−1 combination resulted in significant propofol dose reduction, higher HR, improved MAP, no difference in recovery quality, but more significant respiratory depression compared to propofol alone.  相似文献   

14.
ObjectiveTo compare the cardiovascular effects of four epidural treatments in isoflurane anaesthetised dogs.Study designProspective, randomized. experimental study.AnimalsSix female, neutered Beagle dogs (13.3 ± 1.0 kg), aged 3.6 ± 0.1 years.MethodsAnaesthesia was induced with propofol (8.3 ± 1.1 mg kg?1) and maintained with isoflurane in a mixture of oxygen and air [inspiratory fraction of oxygen (FiO2) = 40%], using intermittent positive pressure ventilation. Using a cross-over model, NaCl 0.9% (P); methadone 1% 0.1 mg kg?1 (M); ropivacaine 0.75% 1.65 mg kg?1 (R) or methadone 1% 0.1 mg kg?1 + ropivacaine 0.75% 1.65 mg kg?1 (RM) in equal volumes (0.23 mL kg?1) using NaCl 0.9%, was administered epidurally at the level of the lumbosacral space. Treatment P was administered to five dogs only. Cardiovascular and respiratory variables, blood gases, and oesophageal temperature were recorded at T-15 and for 60 minutes after epidural injection (T0).ResultsMean overall heart rate (HR in beats minute?1) was significantly lower after treatment M (119 ± 16) (p = 0.0019), R (110 ± 18) (p < 0.0001) and RM (109 ± 13) (p < 0.0001), compared to treatment P (135 ± 21). Additionally, a significant difference in HR between treatments RM and M was found (p = 0.04). After both ropivacaine treatments, systemic arterial pressures (sAP) were significantly lower compared to other treatments. No significant overall differences between treatments were present for central venous pressure, cardiac output, stroke volume, systemic vascular resistance, oxygen delivery and arterial oxygen content (CaO2). Heart rate and sAP significantly increased after treatment P and M compared to baseline (T-15). With all treatments significant reductions from baseline were observed in oesophageal temperature, packed cell volume and CaO2. A transient unilateral Horner’s syndrome occurred in one dog after treatment R.Conclusions and clinical relevanceClinically important low sAPs were observed after the ropivacaine epidural treatments in isoflurane anaesthetised dogs. Systemic arterial pressures were clinically acceptable when using epidural methadone.  相似文献   

15.
ObjectiveTo evaluate the effects of methadone, administered alone or in combination with acepromazine or xylazine, on sedation and on physiologic values in dogs.Study designRandomized cross-over design.AnimalsSix adult healthy mixed-breed dogs weighing 13.5 ± 4.9 kg.MethodsDogs were injected intramuscularly with physiologic saline (Control), or methadone (0.5mg kg−1) or acepromazine (0.1 mg kg−1) or xylazine (1.0 mg kg−1), or acepromazine (0.05 mg kg−1) plus methadone (0.5 mg kg−1) or xylazine (0.5 mg kg−1) plus methadone (0.5 mg kg−1) in a randomized cross-over design, with at least 1-week intervals. Sedation, pulse rate, indirect systolic arterial pressure, respiratory rate (RR), body temperature and pedal withdrawal reflex were evaluated before and at 15-minute intervals for 90 minutes after treatment.ResultsSedation was greater in dogs receiving xylazine alone, xylazine plus methadone and acepromazine plus methadone. Peak sedative effect occurred within 30 minutes of treatment administration. Pulse rate was lower in dogs that received xylazine either alone or with methadone during most of the study. Systolic arterial pressure decreased only in dogs receiving acepromazine alone. When methadone was administered alone, RR was higher than in other treatments during most of the study and a high prevalence of panting was observed. In all treatments body temperature decreased, this effect being more pronounced in dogs receiving methadone alone or in combination with acepromazine. Pedal withdrawal reflex was absent in four dogs receiving methadone plus xylazine but not in any dog in the remaining treatments.Conclusions and clinical relevanceMethadone alone produces mild sedation and a high prevalence of panting. Greater sedation was achieved when methadone was used in combination with acepromazine or xylazine. The combination xylazine–methadone appears to result in better analgesia than xylazine administered alone. Both combinations of methadone/sedative were considered effective for premedication in dogs.  相似文献   

16.
17.
ObjectiveTo evaluate the pharmacokinetics of amitriptyline and its active metabolite nortriptyline after intravenous (IV) and oral amitriptyline administration in healthy dogs.Study designProspective randomized experiment.AnimalsFive healthy Greyhound dogs (three males and two females) aged 2–4 years and weighing 32.5–39.7 kg.MethodsAfter jugular vein catheterization, dogs were administered a single oral or IV dose of amitriptyline (4 mg kg−1). Blood samples were collected at predetermined time points from baseline (0 hours) to 32 hours after administration and plasma concentrations of amitriptyline and nortriptyline were measured by liquid chromatography triple quadrupole mass spectrometry. Non-compartmental pharmacokinetic analyses were performed.ResultsOrally administered amitriptyline was well tolerated, but adverse effects were noted after IV administration. The mean maximum plasma concentration (CMAX) of amitriptyline was 27.4 ng mL−1 at 1 hour and its mean terminal half-life was 4.33 hours following oral amitriptyline. Bioavailability of oral amitriptyline was 6%. The mean CMAX of nortriptyline was 14.4 ng mL−1 at 2.05 hours and its mean terminal half-life was 6.20 hours following oral amitriptyline.Conclusions and clinical relevanceAmitriptyline at 4 mg kg−1 administered orally produced low amitriptyline and nortriptyline plasma concentrations. This brings into question whether the currently recommended oral dose of amitriptyline (1–4 mg kg−1) is appropriate in dogs.  相似文献   

18.
ObjectiveClinical experience suggests that dachshunds are prone to bradycardia during general anaesthesia (GA). The study investigated mean heart rates in anaesthetized dachshunds and other breeds of dog.Study DesignRetrospective clinical study.AnimalsSixty one dachshunds and 62 dogs of other breeds met inclusion criteria.MethodsClinical records of small breed dogs undergoing GA for spinal Magnetic Resonance Imaging between September 2008 and March 2010 were identified and examined. Data collected included drugs administered, baseline heart (HR) and respiratory (fR) rates and rectal temperature. The following information was noted from anaesthetic records: HR, fR, mean non-invasive arterial pressure and end-tidal carbon dioxide (Pe′CO2) and anaesthetic agent (Fe′agent) during the first 60 minutes of anaesthesia; rectal temperature at a time closest to the cessation of anaesthesia, ventilatory mode (spontaneous/mechanical) and fluid infusion rate. Univariate analysis with Student t-test and Fisher's test identified parameters significant in predicting a lowered HR. A multivariate analysis investigated their effect on the mean HR during GA.ResultsNo differences were found between groups regarding: age, baseline HR, baseline temperature, incidence of hypotension, Fe′agent, mean Pe′CO2 and fluid infusion rate. Body mass was smaller for dachshunds (6.7 ± 1.5 kg) compared to other breeds (7.8 ± 1.8 kg) (p = 0.0005). The lowest HR recorded was lower in dachshunds (64 ± 19 beats minute?1) compared to other breeds (72 ± 21 beats minute?1) (p = 0.03). Mean HR was lower in dachshunds (75 ± 21 beats minute?1) compared to other breeds (84 ± 21 beats minute?1) (p = 0.02). Post-procedural temperature (°C) was lower in dachshunds (35.5 ± 1.1) compared to other breeds (36.1 ± 1.2) (p = 0.007) and anticholinergics were also administered more frequently (p = 0.026). Multivariate analysis identified that breed and mean Pe′CO2 affected mean HR during anaesthesia.ConclusionThis study supported our hypothesis that dachshunds have a lower mean HR under GA than other small breed dogs.  相似文献   

19.
ObjectiveTo evaluate the anti-nociceptive and sedative effects of slow intravenous (IV) injection of tramadol, romifidine, or a combination of both drugs in ponies.Study designWithin-subject blinded.AnimalsTwenty ponies (seven male, 13 female, weighing mean ± SD 268.0 ± 128 kg).MethodsOn separate occasions, each pony received one of the following three treatments IV; romifidine 50 μg kg (R) tramadol 3 mg kg−1 given over 15 minutes (T) or tramadol 3 mg kg−1followed by romifidine 50 μg kg−1 (RT). Physiologic parameters and caecal borborygmi (CB) were measured and sedation and response to electrical stimulation of the coronary band assessed before and up to 120 minutes following drugs administration. Results were analyzed using the Friedman’s test and 2 way anova as relevant.ResultsWhen compared to baseline, heart (HR, beats minute−1) and respiratory rates (fR, breaths minute−1) increased with treatment T (highest mean ± SD, HR 43 ± 1; fR 33 ± 2) and decreased with R (lowest HR 29 ± 1 and fR 10 ± 4) and RT (lowest HR 32 ± 1 and fR 9 ± 3). There were no changes in other measured physiological variables. The height of head from the ground was lower following treatments R and TR than T. There was slight ataxia with all three treatments. No excitatory behavioural effects were observed. The response to electrical stimulation was reduced for a prolonged period relative to baseline following all three treatments, the effect being significantly greatest with treatment RT.ConclusionTramadol combined with romifidine at the stated doses proved an effective sedative and anti-nociceptive combination in ponies, with no unacceptable behavioural or physiologic side effects.Clinical relevanceSlow controlled administration of tramadol should reduce the occurrence of adverse behavioural side effects.  相似文献   

20.
ObjectiveTo examine the relationship between body mass and thoracic dimensions on arterial oxygen tensions (PaO2) in anaesthetized horses and ponies positioned in dorsal recumbency.Study designProspective clinical study.AnimalsThirty six client-owned horses and ponies, mean [±SD (range)] age 8.1 ± 4.8 (1.5–20) years and mean body mass 467 ± 115 (203–656) kg.MethodsBefore general anaesthesia, food and water were withheld for 12 and 1 hours respectively. Body mass (kg), height at the withers (H), thoracic circumference (C), thoracic depth (length between dorsal spinous process and sternum; D), thoracic width (between point of shoulders; W), and thoracic diagonal length (point of shoulder to last rib; L) were measured. Pre-anaesthetic medication was with intravenous (IV) romifidine (0.1 mg kg−1). Anaesthesia was induced with an IV ketamine (2.2 mg kg−1) and diazepam (0.05 mg kg−1) combination and maintained with halothane in 1:1 oxygen:nitrous oxide (N2O) mixture. Animals were positioned in dorsal recumbency and allowed to breathe spontaneously. Nitrous oxide was discontinued after 10 minutes, and arterial blood samples obtained and analysed for gas tensions at 15, 30 and 60 minutes after connection to the anaesthetic breathing circuit. Data were analysed using anova and Pearson's correlation co-efficient.ResultsThe height per unit body mass (H kg−1) and thoracic circumference per unit body mass (C kg−1) correlated strongly (r = 0.85, p < 0.001 and r = 0.82, p < 0.001 respectively) with arterial oxygen tensions (PaO2) at 15 minutes.ConclusionsThere is a strong positive correlation between H kg−1 and C kg−1 and PaO2 after 15 minutes of anaesthesia in halothane-anaesthetized horses positioned in dorsal recumbency.Clinical relevanceReadily obtained linear measurements (height and thoracic circumference) and body mass may be used to predict the ability of horses to oxygenate during anaesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号