首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factors influencing the infection of bean and soybean by ascospores of Sderotinia sclerotiorum were studied. In the absence of an exogenous nutrient source, ascospores on intact host tissues produced a short and usually sub-polar germ-tube but only young host tissues were penetrated by the infection hypha arising from the germinated spore. There was a hypersensitive response by cells to penetration and generally the fungus remained restricted to these cells, though it continued to grow within them. Water-soaked lesions characteristic of successful infections only developed when many individual infection sites coalesced following inoculation with high concentrations of ascospores. Flowers or parts of flowers provided a suitable nutrient base for initial colonization from ascospore inoculum. Mycelium extending from this base initiated infection of intact host surfaces. Pollen stimulated growth from germinating ascospores in vitro and in vivo but did not stimulate infection of bean.  相似文献   

2.
Y. Elad  H. Yunis 《Phytoparasitica》1993,21(3):257-268
Infection of young parthenocarpic cucumber fruits byBotrytis cinerea begins in the petals. Removing petals or washing nutrients from the flower significantly reduced infection. Germination of conidia occurred at relative humidity (r.h.) above 92%, but when water deposition on artificial surfaces was prevented, germination did not occur even at 98% r.h. Germination of conidia on petals is promoted by deposition of an aqueous film not visible on the petal surface by the bare eye (but demonstrable by CoCl2). Provided there is a film of water on the surface of the host, germination and the infection process occur at a wide range of temperatures up to 25 °C. Pre-exposure of cucumber plants at temperatures as high as 30 °C or as low as 8 °C, prior to their infection and incubation under conditions conducive to gray mold, resulted in greater severity of the disease on young fruits or leaves as compared with plants previously incubated at 10-25 °C. The relevance of these results to cultural control of gray mold is discussed.  相似文献   

3.
Resistance of sunflowers to terminal bud attack bySclerotinia sclerotiorum was studied by microscopical observations of infection processes and by genetical analyses of trials showing natural infections. Electron microscope studies showed that there were no differences in leaf morphology between susceptible and resistant genotypes, and that both were contaminated by ascospores. Only on the susceptible genotype was considerable ascospore germination observed, followed by mycelial development and leaf penetration. On the resistant genotype, there was little ascosopore germination and no further development. The genetical studies of percentage natural attack observed on eight inbred lines representing a range of reactions, and the hybrids from a factorial cross of these lines, indicated that inheritance is mainly additive, with few interactions.  相似文献   

4.
ABSTRACT Mills' infection period table describes the number of hours of continuous leaf wetness required at temperatures from 6 to 25 degrees C for infection of apple leaves by ascospores of Venturia inaequalis and reports that conidia require approximately two-thirds the duration of leaf wetness required by ascospores at any given temperature. Mills' table also provides a general guideline that more than 2 days of wetting is required for leaf infection by ascospores below 6 degrees C. Although the table is widely used, infection times shorter than those in the table have been reported in lab and field studies. In 1989 a published revision of the table eliminated a potential source of error, the delay of ascospore release until dawn when rain begins at night, and shortened the times reported by Mills for ascospore infection by 3 h at all temperatures. Data to support the infection times below 6 degrees C were lacking, however. Our objective was to quantify the effects of low temperatures on ascospore discharge, ascospore infection, and infection by conidia. In two of three experiments at 1 degrees C, the initial release of ascospores occurred after 131 and 153 min. In the third experiment at 1 degrees C, no ascospores were detected during the first 6 h. The mean time required to exceed a cumulative catch of 1% was 143 min at 2 degrees C, 67 min at 4 degrees C, 56 min at 6 degrees C, and 40 min at 8 degrees C. At 4, 6, and 8 degrees C, the mean times required to exceed a cumulative catch of 5% were 103, 84, and 53 min, respectively. Infection of potted apple trees by ascospores at 2, 4, 6, and 8 degrees C required 35, 28, 18, and 13 h, respectively; substantially shorter times than previously were reported. In parallel inoculations of potted apple trees, conidia required approximately the same periods of leaf wetness as ascospores at temperatures from 2 to 8 degrees C, rather than the shorter times reported by Mills or the longer times reported in the revision of the Mills table. We propose the following revisions to infection period tables: (i) shorter minimum infection times for ascospores and conidia at or below 8 degrees C, and (ii) because both ascospores and conidia are often present simultaneously during the season of ascospore production and the required minimum infection times appear to be similar for both spore types, the adoption of a uniform set of criteria for ascosporic and conidial infection based on times required for infection by ascospores to be applied during the period prior to the exhaustion of the ascospore supply. Further revisions of infection times for ascospores may be warranted in view of the delay of ascospore discharge and the reduction of airborne ascospore doses at temperatures at or below 2 degrees C.  相似文献   

5.
ABSTRACT Studies were performed to compare the germination and infection of ascospores and conidia of Didymella rabiei under different temperature and moisture conditions. Germination of ascospores and conidia on cover glasses coated with water agar began after 2 h, with maximum germination (>95%) occurring in 6 h at 20 degrees C. No germination occurred at 0 and 35 degrees C. Ascospores germinated more rapidly than conidia at all temperatures. Germination declined rapidly as the water potential varied from 0 to -4 MPa, although some germination occurred at -6 MPa at 20 and 25 degrees C. Ascospores germinated over a wider range of water potentials than conidia and their germ tubes were longer than those of conidia at most water potentials and temperatures. The optimum temperature for infection and disease development by both ascospores and conidia was around 20 degrees C. Disease severity was higher when ascospores were discharged directly onto plant surfaces from naturally infested chickpea debris compared with aqueous suspensions of ascospores and conidia sprayed onto plants Disease severity increased as the length of the wetness period increased. When dry periods of 6 to 48 h occurred immediately after inoculation, disease severity decreased, except for the shorter periods which had the opposite effect. Disease severity was higher with ascospore inoculum when no dry periods occurred after inoculation.  相似文献   

6.
Polystigma ochraceum is a major leaf pathogen of almond in Fars Province of Iran. Over a 4-year study period it was found that ascospore discharge began at flowering and continued for 4–5 weeks. The maximum discharge occurred at petal fall. The incubation period was estimated to be 4–5 weeks under experimental conditions. Although the mature ascospores could produce short germ tubes in distilled water or water agar, the fungus could not be cultured or grown on conventional media from either ascospores, pycnidiospores or stromatic tissues under laboratory conditions.
Of several systemic and non-systemic fungicides evaluated under field conditions, triforine at 100–400 μ/ml was most effective. Other fungicides which significantly reduced leaf infection were, in order of efficacy, copper oxychloride (2000 μg/ml), copper hydroxide (2000 mUg/ml), Bordeaux mixture (10 000 μg/ ml) and mancozeb (2000 μg/ml). Carbendazim and thiophanate methyl (500 μg/ml) increased the level of infection. One application of the fungicide at petal fall and then two at 14-day intervals were found to be effective in reducing the disease.  相似文献   

7.
The monocyclic phase of Stemphylium vesicarium is part of its life cycle and a possible factor for forecasting and the integrated control of purple spot on asparagus. The purpose of the study was to model the flight, germination and germ tube growth of ascospores as basis for the development of a forecasting system. During 2014–2016, the flight period was determined by spore traps. The ascospores flew between March and early July, but most were released in early May. The cumulative percentage of trapped ascospores depending on the daily summed temperature (base 5 °C) on rainy days starting from February 1st was described best by a Chapman Richards function. The germination and germ tube length of ascospores depending on leaf wetness duration and temperature were investigated in laboratory trials. Ascospores germinated rapidly in a wide temperature range. The fitted Chapman Richards function with a temperature-dependent capacity and rate described germination adequately with a calculated optimal temperature of 31.0 °C. The germ tube length was modelled by a combined generalised beta-linear function and it was optimal at 30.4 °C with a narrow temperature range of 25–35 °C for values close to the optimum length. Therefore, the infection process is restricted more severely by the germ tube length than by germination. The ascospore flight is often finished before the end of the harvest, so fungicide treatments during the monocyclic phase might be ineffective in many production sites in Germany. The situation could be different for shorter harvest periods and in non-harvested young plants.  相似文献   

8.
Brown lesions on red clover, resulting from infection by ascospores ofSclerotinia trifoliorum, were sometimes surrounded by a light grey ring. Clover rot developed rapidly from these rings under moist conditions. The beginning of rot in the field was often observed in the joints of the trifoliate leaves. Freezing plants at ?6° or ?8°C or freezing small parts of plants with carbon dioxide snow resulted in a quick spread of mycelium, with rotting, from the ascospore lesions. Weakening the plants by bruising did not promote this transition to active rotting. Very heavy infection by ascospores, however, may cause immediate rotting in the plants. The information obtained indicates that in the field clover rot originates mainly from ascospore lesions.  相似文献   

9.
ABSTRACT Relationships between environmental factors and release of ascospores of Anisogramma anomala, the causal agent of eastern filbert blight, were examined in four European hazelnut (Corylus avellana) orchards during a 2-year period. In each orchard, Burkhard volumetric spore traps and automated weather-monitoring equipment were deployed for 12-week periods beginning at budbreak, when hazelnut becomes susceptible to infection. Ascospores of A. anomala were released when stromata on the surface of hazelnut branches were wet from rain but not from dew. Release of ascospores ceased after branch surfaces dried. The duration of free moisture on branch surfaces regulated the initiation and rate of ascospore release, but no significant effects of temperature, relative humidity, wind, or light on ascospore release were apparent. Most (>90%) ascospores were captured during precipitation events that exceeded 20 h in duration, which represented about 10% of the total precipitation events each season. Quantitative relationships between the hourly capture of A. anomala ascospores and hours since the beginning of a precipitation event were developed. With the onset of precipitation, the hourly rate of ascospore capture increased until the fifth hour of rain, remained relatively constant between the fifth and twelfth hours, and then declined gradually. During the 12-week spore-trapping periods, the likelihood and rates of ascospore release associated with precipitation were highest at budbreak and then declined through April and May until early June, when the reserve of ascospores in the perithecia was depleted. Large numbers of ascospores were captured in the volumetric spore traps, indicating that ascospores may be commonly dispersed long distances on air currents as well as locally by splash dispersal within the canopy, as reported previously. The results indicate that monitoring seasonal precipitation patterns may be useful for estimating the quantity and temporal distribution of airborne inoculum during the period that the host is susceptible to infection.  相似文献   

10.
Based on existing physical theories and models, a dynamic model estimating the concentration of Venturia inaequalis ascospores in the orchard air and their deposition on apple leaves was elaborated. The model produces two main outputs: number of ascospores deposited per leaf and proportion of ascospores discharged from pseudothecia deposited onto the leaves. The model has a relatively simple structure, and computations are based on few algorithms, which are implemented on an electronic data sheet of common use. Nevertheless, it preserves the accuracy of more complex physical models reasonably well. The model includes the effect of meteorological conditions and horticultural characteristics, and thus provides information for each type of orchard. Few input variables are required: wind speed and rainfall rate can be measured in standard meteorological stations; horticultural characteristics of the orchard can be determined for each type of orchard. The model produces conservative estimates of ascospore deposition, because it assumes a complete retention of the spores deposited by rainfall and does not consider either deposition on stems and flowers or the spatial distribution of plant surfaces. After further validation under orchard conditions, the model will be used to obtain better estimates of scab infection risk in current scab control strategies.  相似文献   

11.
ABSTRACT Greasy spot, caused by Mycosphaerella citri, produces a leaf spot disease affecting all citrus species in Florida and the Caribbean Basin. M. citri produces pseudothecia and ascospores, which are considered the principal source of inoculum, in decomposing leaves on the grove floor. In studies using a computer-controlled environmental chamber, a single rain event triggered release of most mature ascospores beginning 30 to 60 min after the rain event. Additional rain events did not bring about further release. High relative humidity without rain triggered release of low numbers of ascospores, but vibration and red/infrared irradiation had little or no effect on ascospore release. After three to four cycles of wetting and drying of leaves, all pseudothecia had matured and released their ascospores. In the field, ascospores were detectable starting about 2 h after the beginning of a rain or irrigation and most ascospores were released within 16 h. Ascospore release was greatest following rain events and somewhat less following irrigations, and low numbers of ascospores were detectable on days without precipitation. Ascospore numbers declined linearly with horizontal distance from the source and as a function of the logarithm of ascospore numbers with vertical distance. Low numbers of ascospores were detected 7.5 m above the ground and 90 m downwind from the grove. Ascospore release can be advanced by irrigating frequently during dry, nonconducive conditions to stimulate ascospore release when environmental conditions are unfavorable for infection, but the eventual effects on disease severity are uncertain.  相似文献   

12.
The epidemiology of circular leaf spot of persimmon, caused by Mycosphaerella nawae, was studied in a semi-arid area in Spain for two consecutive years. No conidia were observed on diseased leaves and all infections were thought to be caused by ascospores formed in the leaf litter. Ascospores were released mainly in April and May, but relatively low numbers in June were able to induce severe symptoms on trap plants. Temperature was not significantly correlated with ascospore catches or disease incidence on trap plants, indicating that it was not a limiting factor for disease development during the period of study. Rainfall was above normal, but still considerably lower than in endemic areas of Korea. Most infections coincided with rains, but the disease was observed also on trap plants exposed to less than 1?mm of precipitation and even in the absence of rain. Orchards were flood irrigated once inoculum deposits in the leaf litter had already been depleted, so it was not possible to determine its effects on ascospore release and disease development. The use of a wind tunnel to determine inoculum production allowed detection of physiologically mature ascospores of M. nawae in the leaf litter 1?C2?weeks before they were released to air in the orchard. Disease progress was fitted to the monomolecular growth curve, associated with monocyclic pathogens and diseases with a variable incubation period as a function of the host phenology.  相似文献   

13.
Microbe-Mediated Germination of Ascospores of Monosporascus cannonballus   总被引:1,自引:0,他引:1  
ABSTRACT Ascospores of Monosporascus cannonballus germinated readily in the rhizosphere of cantaloupe plants growing in field soil. However, little or no germination occurred in the rhizosphere of melon plants growing in field soil that was autoclaved prior to infestation with ascospores. The latter data suggested that root exudates alone do not stimulate ascospore germination and that the soil microflora may be involved in the induction of ascospore germination. Amending field soil with streptomycin (which inhibits gram-negative microorganisms) did not suppress ascospore germination in the rhizosphere of cantaloupe plants. However, amending the soil with penicillin (which inhibits gram-positive microorganisms) did suppress ascospore germination. Pentachloronitrobenzene (PCNB), which inhibits the gram-positive actinomycetes but does not inhibit gram-positive or gram-negative bacteria, also suppressed ascospore germination. These results suggest that actinomycetes, either directly or indirectly, are involved in the induction of ascospore germination in field soil in the presence of exudates from cantaloupe roots. Optimum germination occurred at temperatures ranging from 25 to 35 degrees C, and data indicate that a high percentage (>/=72%) of the ascospore population within 500 mum of a root are capable of germination and subsequent penetration of cantaloupe roots.  相似文献   

14.
Sclerotinia stem rot (SSR) is the most important disease of oilseed Brassica crops in Norway. Fungicide applications should be aligned with the actual need for control, but the SSR prediction models used lack accuracy. We have studied the importance of precipitation, and the role of petal and leaf infection for SSR incidence by using data from Norwegian field and trap plant trials over several years. In the trials, SSR incidence ranged from 0 to 65%. Given an infection threshold of 25% SSR, regression and Receiver Operating Characteristics (ROC) analysis were used to evaluate different precipitation thresholds. The sum of precipitation two weeks before and during flowering appeared to be a poor predictor for SSR infection in our field and trap plant trials (P?=?0.24, P?=?0.11, respectively). Leaves from three levels (leaf one, three, five), and petals were collected at three to four different times during flowering from nine field sites over two years and tested for SSR infection with real-time PCR. Percentage total leaf and petal infection explained 57 and 45% of variation in SSR incidence, respectively. Examining the different leaves and petals separately, infection of leaf three sampled at full flowering showed the highest explanation of variation in later SSR incidence (R2?=?65%, P?<?0.001). ROC analysis showed that given an infection threshold of 45%, both petal and leaf infection recommended spraying when spraying was actually needed. Combining information on petal and leaf infection during flowering with relevant microclimate factors in the canopy, instead of the sum of precipitation might improve prediction accuracy for SSR.  相似文献   

15.
Ascospores, discharged naturally from apothecia growing on rachis debris, were used as inoculum to examine the invasion of ash tissues by Hymenoscyphus fraxineus in order to understand the critical, but poorly understood, early interactions between host and pathogen. Methods were developed to collect ascospores for controlled infection assays on detached leaves, petioles and stem internode tissues. Light microscopy, using plasmolytic techniques, allowed the invasion of living plant cells to be observed. Ascospores were readily available from late May to September. On the plant surface, most spores differentiated directly to form appressoria without germ‐tube growth. Direct penetration was followed by a significant period of biotrophic fungal growth before lesions developed. Following the formation of a vesicle‐like structure after penetration, bulbous and elongated intracellular hyphae were produced in living plant cells. The use of ascospore inoculum, rather than mycelia, will allow natural and rapid screening of ash genotypes for resistance to the devastating dieback disease. The identification of the biotrophic phase of infection suggests that host range is controlled by effector‐triggered immunity.  相似文献   

16.
大豆茎溃疡病是为害大豆的重要病害,世界上十大大豆生产国中已有7个国家发现大豆茎溃疡病菌的分布,对当地农业造成严重威胁[1]。该病是我国进境植物检疫性有害生物[2],目前没有发生为害的报道。大豆茎溃疡病菌以菌丝和子囊壳在大豆植株及其残体上越冬,子囊壳在干燥35 d  相似文献   

17.
Infection by ascospores of Sclerotinia selerotiorum caused hypersensitivity in epidermal cells in leaves and etiolated hypocotyls of bean and soybean. In bean, phaseollin and phaseollidin accumulated in leaves but kievitone alone in hypocotyls. In soybean, no phytoalexins were detected in leaves but glyceollin accumulated in hypocotyls.
Mycelial infection caused water-soaked spreading lesions in leaves and etiolated hypocotyls of both hosts. In bean, no phytoalexins were detected in leaves but kievitone alone accumulated in hypocotyls. In soybean, glyceollin accumulated in leaves but was not sought in hypocotyls.
Transfer of bean hypocotyls infected with mycelium from 18 to 28°C caused lesion limitation and marked accumulation of phaseollin and kievitone.
Phaseollin, kievitone and glyceollin inhibited ascospore germination and growth of hyphae from preformed germ-tubes and established mycelia, phaseollin being most active and glyceollin least active. Hyphal growth from mycelia was least affected by the phytoalexins.  相似文献   

18.
A new dynamic model for Erysiphe necator ascosporic infections on grapevine was developed. Between budbreak of vines and the time when the pool of ascospores is depleted, the model uses weather data for calculating, at daily intervals: curve of ascospore maturation; ascospore discharge events and relative proportion of the discharged ascospores; infection periods and their relative infection severity; and progress of latency period and time when secondary infections should begin. The model was validated over a 4‐year period (2005–2008) in 26 vineyards in Italy by comparing model predictions with actual observations of the first seasonal symptoms of powdery mildew. The model showed high sensitivity, specificity and accuracy. Proportions of true and false positive predictions were TPP = 0·94 and FPP = 0·26, respectively. Because a proportion of predicted infection periods did not result in actual disease onset, confidence was higher for prediction of non‐infections than for prediction of infections. Most of the false positive predictions occurred in the earlier growth stages of the host, when the surface area of susceptible tissue may be very small so that the probability that ejected ascospores land on susceptible tissue is low. An equation was then developed to describe the probability that a predicted infection period results in disease onset as a function of the growth stage of vines at the time of prediction. The new model should improve early season powdery mildew management by helping vineyard managers schedule fungicide sprays or schedule the scouting of the vineyard for detection of first disease signs.  相似文献   

19.
A dynamic model simulating infection of apple leaves by Venturia inaequalis   总被引:2,自引:0,他引:2  
A new dynamic model of the infection of apple leaves by Venturia inaequalis is described. The model begins with the release of spores by rain and incorporates the effect of light on the discharge of ascospores from pseudothecia. The model then simulates infection through the sub-processes of germination, appressorium formation and penetration, separately for ascospores and conidia landed concurrently on wet leaves. The rate of the infection process is determined using different equations for ascospores and conidia. Spore mortality when leaves dry is determined by the stage of infection and RH in the dry period. The infection process is driven by surface wetness, temperature and RH. The progress of each infection period is measured as infection efficiency (IE), namely the percentage of landed spores which have penetrated and thereby infected leaves. The final IE quantifies the favourability of weather in each infection period. In orchard tests in each of three years, the new model detected crucial infection periods in spring and early summer which accounted for outbreaks of leaf scab. These periods were not detected by a static model based on Mills'criteria. The models performed similarly in detecting infection periods later in summer.  相似文献   

20.
Experiments were conducted under controlled environmental conditions to study the effects of temperature, duration of wetness, relative humidity (RH) and light on the discharge and germination of ascospores of Venturia nashicola , the causal agent of pear scab in China. Discharge of ascospores from pseudothecia required free water or 100% RH. A period of soaking in water as short as 10 s was sufficient to initiate the discharge of ascospores. Temperatures from 10 to 30°C did not significantly affect the temporal trend of ascospore discharge. A greater proportion of ascospores was discharged under light than in the dark. However, a period of light as short as 10 min, either during the initial wetting of pseudothecia or interrupting the darkness, was sufficient to reduce the inhibitory effect of darkness on ascospore discharge. Ascospores were discharged within 10 min after pseudothecia were wetted and most ascospores ( c. 80%) were discharged within the first hour. The temporal pattern of ascospore discharge could be well described by a logistic model, which estimated that 50% of ascospores were discharged within half an hour of wetting. Ascospores germinated over a wide range of temperatures from 5 to 30°C, with an optimum at c . 20°C. Temporal dynamics of ascospore germination at six temperatures (5, 10, 15, 20, 25 and 30°C) were satisfactorily described by logistic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号