首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphate (PO4-P) sorption characteristics of soils and bedrock composition were determined in catchments of two mountain lakes, Ple?né Lake (PL) and ?ertovo Lake (CT), situated in the Bohemian Forest (Czech Republic). The aim was to explain higher terrestrial P export to mesotrophic PL compared to oligotrophic CT. Concentrations of Al and Fe oxides were the dominant parameters affecting soil ability to adsorb PO4-P. Depending on concentrations of Al and Fe oxides, P sorption maxima varied from 9.7 to 70.5 mmol kg?1 and from 7.4 to 121 mmol kg?1 in organic and mineral soil horizons, respectively. The catchment weighted mean PO4-P sorption capacity was 3.4 mol m?2 and 11.9 mol m?2 in the PL and CT soils, respectively. The higher PO4-P sorption capacity in the CT catchment was predominantly associated with higher pools of soil and Fe oxides. The CT bedrock (mica schist) released one order of magnitude less P than the PL bedrock (granite) within a pH range of catchment soils (pHCaCl2 of 2.5–4.5). The higher ability of PL bedrock to release P and the lower ability of PL soils to adsorb PO4-P thus contributed to the higher terrestrial P loading of this lake.  相似文献   

2.
Iron(III)(hydr)oxides can dissolve under reducing soil conditions. Simultaneously, oxide-associated inorganic phosphate is released to the soil solution. In this study, the effect of reducing soil conditions on phosphate leaching from transient waterlogging clayey soil is evaluated. We applied glucose solutions (either 100 or 1000 mg glucose-C L-1) at a steady flow rate of 0.63 mm h-1 to a saturated intact column of structured Alfisol (diam. 0.5 m, height 1.0 m). Effluent concentrations of iron(II) and reactive orthophosphate (Pi) increased slightly during 5 d of low glucose application, reaching values of 2.5 mg Fe L-1, and 0.02 mg PO4-P L-1, respectively. During 10 d of high glucose application, the iron(II) concentration increased to 14 mg Fe L-1 and fluctuations in the Pi-concentration between 0.002 and 0.1 mg PO4-P L-1 were observed. The fluctuations in Pi-concentration are ascribed to interactions between progression of the glucose front, and Pi-mobilization/resorption processes at the walls of macropores. The daily P-losses during low and high glucose applications averaged 0.3 mg PO4-P m-2 d-1, and 0.5 mg PO4-P m-2 d-1, respectively. Comparisons with a parallel topsoil study suggest that subsoil exerts a strong control on leaching – probably via resorption – of Pi mobilized in the topsoil.  相似文献   

3.
间歇性降雨对黄土坡地水土养分流失的影响   总被引:4,自引:4,他引:0  
坡面水土养分流失是研究农业非点源污染方面的核心问题,涉及土壤侵蚀、坡地水文和环境治理等方面的内容。以黄土坡地为研究对象,利用人工降雨模拟试验,分析间歇降雨时坡地产流-入渗-土壤侵蚀过程,以及通过预先在坡地喷施养分(NH_4~+-N、NO_3~--N、PO_4~(3-)-P),研究间歇降雨时坡面水土流失以及土壤溶质的迁移规律。试验采用针孔式人工模拟降雨器进行模拟降雨,对试验坡地间歇性进行3次降雨,雨强恒为100mm/h,每次降雨历时60min,降雨间隔时间60min。结果表明:(1)3次降雨的初始含水率不同,但产流规律相似,降雨径流率均为先增大后趋于平稳。(2)3次降雨产生的泥沙累积量分别为250.91,100.20,79.76g,第1次降雨的泥沙量远高于第2,3次。泥沙率先迅速增大到峰值然后缓慢减少,平均泥沙率随降雨次数的增多而递减。(3)对于非吸附性的NO_3~-、NH_4~+,3场降雨过程中溶质浓度均呈现由高降低并逐渐平稳的变化趋势;PO_4~(3-)-P浓度的变化规律却略显不同,降雨初期溶质浓度先短暂升高,然后再由高降低并逐渐平稳。(4)3次降雨的NH_4~+-N、NO_3~--N、PO_4~(3-)-P的径流总流失量分别为535.33,1 058.18,400.79mg,其中NO_3~--N流失量最多,PO_4~(3-)-P流失量最少。随着降雨次数的增加,不同降雨次数下的NH_4~+-N、NO_3~--N、PO_4~(3-)-P径流流失量均逐渐减少,流失量较前次降雨分别降低了19%,14%、3%,62%和57%,28.3%。因此,通过对间歇性降雨条件下黄土坡地水土溶质迁移特征的研究,对揭示降雨-径流-土壤相互作用过程和土壤养分迁移机理具有重要意义。  相似文献   

4.
Almost 900 fungal isolates were obtained from eight coffee plantations in Colombia and Mexico. Of these, 76 isolates showed activity to solubilize Ca3(PO4)2 (PCa) and FePO4·H2O (PFe), which had been added to agar in a plate test. Generally, PCa was better solubilized than PFe. Colombian isolates were generally somewhat less effective than Mexican isolates. The two most effective isolates from each country with apparent highest PFe, solubilization potential were selected and cultivated in liquid medium containing PFe, which is more prevalent in tropical soils. The pH value, solubilized P in the medium and P uptake in fungal biomass were determined. After 24 days, Cylindrocarpon didymum and C. obtusisporum (both from Colombia) had solubilized 9.9 and 6.4 mg PO4 3--P L?1 and took up 8.6 and 11.6 mg P in biomass. Penicillium janthinellum and Paecilomyces marquandii (both from Mexico) solubilized 7.0 and 1.9 mg PO4 3--P L?1 and took up 11.3 and 17.3 mg P in biomass. The potential practical use of the four fungal isolates for different strategies in making more P available for coffee growth is discussed.  相似文献   

5.
6.
Sorption of Cd at low concentrations onto two Danish soils (loamy sand, sandy loam) was examined in terms of kinetics and governing factors. From an environmental point of view soil sorption of Cd is a fast process: More than 95% of the sorption takes place within 10 min, equilibrium is reached in 1 hr, and exposures up to 67 wk did not reveal any long term changes in Cd sorption capacities. The soils have very high affinity for Cd at pH = 6.00 (10?3 M CaCl2) exhibiting distribution coefficients in the order of 200 to 250 (soil Cd concentration/solute Cd concentration). However, the sorption isotherms describing the distribution of Cd between soil and solute are slightly curvelinear. In the pH-interval 4 to 7.7, the sorption capacity of the soil approximately increases 3 times for a pH increase of one unit. Increasing the Ca concentration from 10?3 to 10?2 M reduces the sorption capacity of the sandy loam to one third.  相似文献   

7.
大孔隙分布对坡地产汇流及溶质运移的影响   总被引:2,自引:0,他引:2  
以室内土槽为平台,采用人工模拟降雨试验,研究了粉砂壤土中两种不同大孔隙分布情况下,土槽中土壤含水量、坡面流速、地面径流、地下径流及溶质运移的变化。结果表明,相对于面大孔隙度为19%,容积大孔隙度为0.095%的未加密型的土槽,面大孔隙度为57%,容积大孔隙度为0.285%的大孔隙加密型土槽中各层土壤含水量增加幅度、平均坡面流速及地面径流量相对偏小,地下流出现时间较早且径流量较大,地面径流中溴离子、铵根离子浓度、硝酸根离子浓度偏小。在地下水出流前期,大孔隙加密型土槽中的铵根离子浓度和浓度变化幅度都偏小,但溴离子、硝酸根离子浓度则偏大。  相似文献   

8.
为揭示不同垄沟坡度对径流中溶解态氮、磷流失的影响,采用人工模拟降雨试验,设置4个垄沟坡度处理(0°,9°,18°和27°),研究了不同垄沟坡度对径流中速效磷(PO_4~(3-)—P)、硝态氮(NO_3~-—N)和铵态氮(NH_4~+—N)浓度和流失量的影响;并利用Inorganic—N/PO_4~(3-)—P、NO_3~-—N/PO_4~(3-)—P和NH_4~+—N/PO_4~(3-)—P 3种氮磷比,评价不同处理的富营养化风险。结果表明:(1)在降雨过程中,4个垄沟坡度处理径流中PO_4~(3-)—P、NO_3~-—N和NH_4~+—N浓度随时间均呈锯齿状变化;其流失量随时间变化均呈先增加后以锯齿状变化的趋势,且波动幅度大,最大值(16.60,1 020.73,48.35 mg)分别出现在垄沟坡度为0°,0°和9°处理。(2)4个垄沟坡度处理间相比较,径流中PO_4~(3-)—P和NH_4~+—N流失量均表现为0°9°27°18°,其浓度最大值(0.50,1.08 mg/L)和最小值(0.37,0.76 mg/L)均分别出现在垄沟坡度为9°和18°处理;而径流中NO_3~-—N浓度和流失量均在垄沟坡度0°处理时为最大值(30.68 mg/L和64.16 mg/m~2),18°处理时为最小值(21.78 mg/L和42.22 mg/m~2)。(3)Inorganic—N/PO_4~(3-)—P率和NH_4~+—N/PO_4~(3-)—P率表明4个垄沟坡度处理径流中均存在一定的富营养化风险。其中,垄沟坡度为0°处理的径流富营养化风险水平最高,27°处理的径流富营养化风险水平最低。研究结果可为横坡垄作的水土流失及养分流失评价、预测以及防治提供科学依据。  相似文献   

9.
Earthworms are recognized to increase soil porosity, reorganize soil structure, and stimulate soil microflora and nutrient mineralization. The properties of earthworm casts should depend both on earthworm species or ecological group and on soil properties. Interactions between earthworm species and soil types have been suggested, but only poorly demonstrated. In order to better understand those interactions, two hypotheses led our study: (1) Soil type has a greater influence on cast properties than earthworm; (2) Earthworms from different species influence cast properties differently; (3) The intensity and direction of the impact of each earthworm species on cast properties vary with soil properties. Fifteen physical and chemical variables (N–NH4+, N–NO3, total organic C and N, C/N ratio, CaCO3, pH, P, K+, Mg2+, Mn2+, Na+, CEC, moisture, wettability) were measured in casts of three earthworm species (Lumbricus terrestris, Allolobophora chlorotica and Aporrectodea rosea) produced in three temperate soils. Univariate and multivariate analyses showed that earthworm species and soil types significantly impacted cast properties. pH, Nt, K and Mg contents were interactively altered by both factors. Multivariate analysis showed that a difference of soil type had a major impact on casts properties (62%) compared to the impact of a difference of earthworm species (10%). Cast properties were most impacted by L. terrestris, then by A. chlorotica and last by A. rosea. The response ratio (ratio of the properties of the casts to the properties of the bulk soil) was used to quantify the effect of earthworm species compared to the control soil. It showed a higher response of variables in casts in nutrient-rich soils, especially in casts of L. terrestris. The interactions between earthworm species and soil types on cast properties were discussed with regards to earthworm ecology, properties of the soil, and earthworm modifications of cast microflora.  相似文献   

10.
The sorption and desorption of phosphorus (P) from eroding soil particles in land runoff are important processes contributing to agriculturally‐driven eutrophication. We investigated the P‐exchange properties and related chemical characteristics of contrasting European agricultural soils and sediment material eroded from them under indoor (small‐scale) and outdoor (larger‐scale) rainfall simulations. Quantity‐intensity (Q/I) relationships revealed large variation in equilibrium P concentrations at zero net P sorption (EPC0) (0–10.3 mg l−1) and instantly labile P (−Q0, the amount of P to be desorbed to obtain a P equilibrium concentration of 0 mg l−1) (2–75 mg kg−1), both correlating closely with Al‐bound P and the P saturation degree of Al oxides (DPSAlox). Maximum P sorption (Qmax) (43–515 mg kg−1) also correlated most closely with Alox. The indoor and outdoor rainfall simulations produced sediments with different P sorption properties: in the indoor simulation (less kinetic energy, constant slope), the sediments had larger EPC0 values, and usually larger −Q0 values, than the sediments in the outdoor simulation (greater kinetic energy, variable slopes). Furthermore, the P exchange properties of the sediments differed from those of the bulk soil depending on the enrichment of soil P‐sorption components (Fe/Al oxides, clay). The outdoor simulation indicated that sites with gentle slopes produced sediments that were more enriched with Alox, Feox, Mnox and organic C than those with steeper slopes. In this study, when the bulk soil had an initial EPC0 greater than 1.3 mg l−1, the outdoor rainfall simulation produced sediment with smaller EPC0 and vice versa, indicating that, depending on the P status of the bulk soil, the sediment material was acting as source or sink for P during transport. However, on the basis of their EPC0 values, most eroding sediments might be expected to desorb, rather than adsorb, P when entering surface water.  相似文献   

11.
It is generally held that surface runoff in heavily forested ecosystems is minimal and therefore nutrient fluxes via runoff are unimportant. This is based in large measure on the absence of direct observation or remnant physical evidence. It is further held that protected forests with heavy understory and litter serve as a nutrient sink due to maximum uptake and interception. Our Sierran studies have detected the presence of surface runoff at several sites in the form of both overland and litter interflow with concentrations of NH4-N as high as 87.2 mg L?1, NO3-N as high as 95.4 mg L?1, and PO4-P as high as 24.4 mg L?1. Data suggest that nutrients are derived from the mature O-horizons, and that there has been little contact with the mineral soil or root zone where strong retention and/or uptake of these ions would be expected. Such contributions from overland/interflow could be particularly important in areas where ultra-oligotrophic lakes (e.g., Lake Tahoe) are now trending towards meso-oligotrophic status. We believe that fire exclusion in these systems may have exacerbated N and P inputs to Lake Tahoe and elsewhere by allowing unnatural buildups of O-horizons that are apparently a source of nutrients to surface runoff.  相似文献   

12.
Phosphorus losses by surface runoff from agricultural lands have been of public concern due to increasing P contamination to surface waters. Five representative commercial citrus groves (C1-C5) located in South Florida were studied to evaluate the relationships between P fractions in soils, surface runoff P, and soil phosphatase activity. A modified Hedley P sequential fractionation procedure was employed to fractionate soil P. Soil P consisted of mainly organically- and Ca/Mg-bound P fractions. The organically-bound P (biological P, sum of organic P in the water, NaHCO3 and NaOH extracts) was dominant in the acidic sandy soils from the C2 and C3 sites (18% and 24% of total soil P), whereas the Ca/Mg-bound P (HCl-extractable P) accounted for 45-60% of soil total P in the neutral and alkaline soils (C1, C4 and C5 soils). Plant-available P (sum of water and NaHCO3 extractable P fractions) ranged from 27 to 61 mg P kg−1 and decreased in the order of C3>C4>C1>C2>C5. The mean total P concentrations (TP) in surface runoff water samples ranged from 0.51 to 2.64 mg L−1. Total P, total dissolved P (TDP), and PO43−-P in surface runoff were significantly correlated with soil biological P and plant-available P forms (p<0.01), suggesting that surface runoff P was directly derived from soil available P pools, including H2O- and NaHCO3- extractable inorganic P, water-soluble organic P, and NaHCO3- and NaOH-extractable organic P fractions, which are readily mineralized by soil microorganisms and/or enzyme mediated processes. Soil neutral (55-190 mg phenol kg−1 3 h−1) and natural (measured at soil pH) phosphatase activities (77-295 mg phenol kg−1 3 h−1) were related to TP, TDP, and PO43−-P in surface runoff, and plant-available P and biological P forms in soils. These results indicate that there is a potential relationship between soil P availability and phosphatase activities, relating to P loss by surface runoff. Therefore, the neutral and natural phosphatase activities, especially the natural phosphatase activity, may serve as an index of surface runoff P loss potential and soil P availability.  相似文献   

13.
在黄土旱塬区长期试验(1985-1997年)中,选取对照(不施肥,CK)、磷肥(P2O5.60.kg/hm2,P)、氮肥(N.120kg/hm2,N)、氮磷(N,120.kg/hm2,P2O5,60.kg/hm2,NP)、氮磷有机肥(N.120.kg/hm2,P2O560.kg/hm2,有机肥75.t/hm2,NPM),种植方式为冬小麦连作的5种有代表性的施肥处理,研究了石灰性土壤磷素吸附特性的演变及其与土壤磷素形态、土壤有机碳(SOC)含量的关系。结果表明,P素的最大吸附量(Qm),1997年对照(CK)、N处理比1985年分别提高了18%和14%;而P、NP和NPM处理分别降低了26%、13%和24%。吸附能常数(k值)随时间延长,对照和N处理相对稳定,P和NP处理呈升高趋势,而NPM处理有降低趋势。土壤磷素吸附饱和度(DPS)和零净吸附磷浓度(EPC0)对照和N处理随时间延长呈降低趋势,P、NP和NPM处理呈升高趋势。Qm与Ca8-P、Al-P存在极显著相关关系(P0.001),与Ca2-P、Pe-P存在显著相关关系(P0.05)。Ca2-P、有机磷含量变化与土壤DPS的相关性达到显著水平(P0.05)。EPC0只与有机磷间存在显著的相关关系(P0.05)。Qm、DPS和EPC0变化与SOC存在显著或极显著的线性相关关系(P0.001)。  相似文献   

14.
Knowledge of phosphorus(P) sorption dynamics across different soil types could direct agronomic and environmental management of P. The objective of this study was to predict P isotherm parameters for a national soil population using data of routine laboratory tests. Langmuir and Freundlich sorption parameters were calculated from two different ranges(0–25 and 0–50 mg P L~(-1)) using an archive of representative agricultural soil types from Ireland.Multiple linear regression(MLR) identified labile forms of aluminium(Al) and iron(Fe), organic matter(OM), cation exchange capacity(CEC), and clay as significant drivers. Langmuir and Freundlich sorption capacities, Freundlich affinity constant, and Langmuir buffer capacity were predicted reliably, with R~2 of independent validation 0.9. Sorption isotherm parameters were predicted from P sorbed at a single concentration of 50 mg P L~(-1)(S_(50)). An MLR prediction of P sorption maximum in the 0–50 mg P L~(-1) range was achieved, to an accurate standard, using S_(50), OM, and Mehlich-3 Fe(R~2 of independent calibration and validation being 0.91 and 0.95, respectively). Using Giles' four shapes of isotherms(C, L, H, and S), L non-strict-and C-shaped isotherm curves accounted for 64% and 27% of the soils, respectively. Hierarchical clustering identified a separation of isotherm curves influenced by two ranges of Mehlich-3 Al. Soils with a low range of Mehlich-3 Al(2.5–698 mg kg~(-1)) had no incidence of rapid sorption(C shape). Single point indices, Al, or available soil data make the regression approach a feasible way of predicting Langmuir parameters that could be included with standard agronomic soil P testing.  相似文献   

15.
External and internal phosphorus (P) requirements of hybrid maize (FHY-396) and indigenous variety (EV-7004) were compared on a Typic Calciargid soil. A sorption isotherm was constructed by equilibrating 2.5 g soil with 25 mL of a 0.01 M calcium chloride (CaCl2) solution containing 2, 3, 6, 12, 25, 50, and 100 mg P L–1. Sorption data were fitted to a modified Freundlich equation [x/m = Kf(EPC)1/n] to compute P rates (0, 30, 60, and 120 mg kg–1 soil) against solution levels (0, 0.09, 0.26, and 0.76 mg P L–1) for a pot study. Applied P significantly increased shoot dry matter, P concentration, and P uptake in both the genotypes. For optimum shoot growth, internal P requirement of hybrid (2.51 mg g–1) was 5% more than variety (2.39 mg g–1). However, external P requirement of hybrid (0.50 mg L–1) was remarkably more than variety (0.19 mg L–1). This strongly advocated greater P rates for the high-yielding hybrid than for the variety.  相似文献   

16.
Abstract

Phosphate sorption isotherms were determined for 16 representative major soils developed from different parent materials on Okinawa. Phosphate sorption characteristics were satisfactorily described by the Langmuir equation, which was used to determine phosphorus (P) sorption maxima of the soils. Phosphate sorption maxima ranged from 630 to 2208 mg P kg‐1 soil (mean 1,362 mg P kg‐1). The standard P requirement (i.e., the amount of P required to attain 0.2 mg P L‐1 equilibrium solution) followed the same trend as sorption maximum (r =0.94***), with values ranging from 132 to 1,020 mg P kg‐1 soil (mean 615 mg P kg‐1). This mean value corresponds to fertilizer addition of 923 kg P ha‐1 indicating that the soils have high P fertilizer requirements. Results of simple linear regression analysis indicated that sorption maximum was significantly correlated with clay content, organic matter, oxalate iron (Fe), pyrophosphate Fe, DCB aluminum (Al), oxalate Al, and pyrophosphate Al, but not with DCB Fe, pH, or available P content. The best regression model for predicting sorption maximum was the combination of clay, organic matter, pyrophosphate Fe, and DCB Al which altogether explained 79% of the variance in sorption maximum. The equation obtained could offer a rapid estimation of P sorption in Okinawan soils.  相似文献   

17.
Doušová  B.  Machovič  V.  Koloušek  D.  Kovanda  F.  Dorničák  V. 《Water, air, and soil pollution》2003,149(1-4):251-267
Arsenic is of increasing environmental concern due to risk to plants, animal and human health. In aqueous systems arsenic is dominated by the AsV oxyanions H2AsO4 - and HAsO4 2- under oxidizing conditions. The possibility to remove arsenic from aqueous solutions, using sorption processes, was studied with both inorganic and organic-based sorbents. Both of tested inorganic sorbents, calcined synthetic hydrotalcite and calcined natural boehmite, were acceptable for removal of AsV compounds from aqueous systems at laboratory temperature (20 °C) and neutral pH due to their crystal structure changes. They were able to remove more than 70% of AsV compounds from aqueous solution at low sorbent-solution ratios (1 g L-1 and 2.6 g L-1, respectively) and relatively high concentration of AsO4 3- ions in the initial solution (about 2.10-3 mol L-1). Humic acid-type sorbents (i.e. pure humic acid and oxihumolite) efficiences remined low even at increased sorbent-solutionratios (about 20 g L-1) and significantly lower concentrations of As in the initial solution. At higher pH values (about 9), the sorption process slightly improved due to solubility of humic substances in alkaline solutions. The sorption increment did not exceed 50% of the initial As content. These results were confirmed by infrared spectroscopy. Both the original calcined and the sorbed inorganic sorbent samples show significant As-O vibrations, while in spectra of original and sorbed oxihumolite no significant As-O vibrations were observed, due to negligible content of sorbed As compounts.  相似文献   

18.
Preferential transport of phosphate through macropores increases the significance of phosphate sorption to macropore wall materials compared with bulk soil materials. Therefore we studied the kinetics of phosphate sorption to soil bulk materials from the Ap and Btg horizons, from the iron oxide-poor (Albic) centres and from iron oxide-rich (Red) exteriors of the fractures in a clayey pseudogley in batch at initial phosphate concentrations (P0) up to a maximum of 650 μm and at sampling times up to 7 days. Uptake of phosphate was least in the phosphate-rich Ap, and the Albic material also adsorbed little. By contrast the Red material sorbed phosphate strongly. By plotting the logarithm of the solution phosphate concentration against log time, two or three different kinetic regions could be distinguished: a fast reaction within the first minute of reaction; a lag period at intermediate to large initial values of phosphate concentration (P0); and a steady slow reaction. The lag phase cannot be described satisfactorily by the well-known adsorption models. The Langmuir equilibrium expression produced rather good fits at any fixed time of reaction, but the estimated adsorption maximum increased steadily with time. Empirical models were fitted to the data, among them a ‘lag-linear’ model developed to include the lag phase. The relative contribution of the fast reaction to total adsorption during 7 days decreased from 50 to 80% at small P0 to less than 10% at large P0 values. The fraction of fast-adsorbed phosphate followed the order Red > Btg > Albic > Ap regardless of P0; the slow reaction is, by a log–log rate, ranked Albic ? Btg > Red > Ap for P0 < 20 μm and Red > Btg > Albic > Ap at larger initial concentrations. The Albic material does not minimize the risk of phosphate leaching through macropores, as demonstrated by its small P sorption capacity, the relatively slow adsorption rate and its small actual P content.  相似文献   

19.
Compost amendment to agricultural soils has been reported to reduce disease incidence, conserve soil moisture, control weeds, or improve soil fertility. Application rate and placement of compost largely depends on the proposed beneficial effects and the rate may vary from 25 to 250 Mg ha?1 (N content up to 4 percent). Application of high rates of compost with high N or P levels may result in excessive leaching of nitrate, ammonium, and phosphate into the groundwater. Leaching could be a serious concern on the east coast of Florida with its inherent high annual rainfall, sandy soils and shallow water table. In this study, five composts (sugarcane filtercake, biosolids, and mixtures of municipal solid wastes and biosolids) were applied on the surface of an Oldsmar sand soil (in 7.5 cm diameter leaching columns) at 100 Mg ha?1 rate and leached with deionized water (300 ml day?1, for five days; equivalent to 34 cm rainfall). The concentrations of NO3-N, NH4-N, and PO4-P in leachate reached as high as 246, 29, and 7 mg L?1, respectively. The amount of N and P leached accounted for 3.3-15.8 percent of total N and 0.2-2.8 percent of total P in the compost. The leaching peaks of NO3-N occurred following the application of only 300-400 ml water (equivalent to 6.8-9.1 cm rainfall).  相似文献   

20.
Plant growth experiments were conducted to reveal the mechanism by which organic matter (OM) and soil flooding enhance phosphorus (P) bioavailability for rice. It was postulated that reductive dissolution of iron‐(III) [Fe(III)] oxyhydroxides in soil releases occluded phosphate ions (PO4), i.e., PO4 that is not isotopically exchangeable in the original soil prior to flooding. Rice was grown in P‐deficient soil treated with factorial combinations of addition of mineral P (0, 50 mg P kg?1), OM (0, ≈ 20.5 g OM kg?1 as cattle manure +/– rice straw) and water treatments (flooded vs. non‐flooded). The OM was either freshly added just before flooding or incubated moist in soil for 6 months prior to flooding; nitrogen and potassium were added in all treatments. The soil exchangeable P was labeled with 33PO4 prior to flooding. The plant accessible P in soil, the so‐called L‐value, was determined from the 33P/31P ratio in the plants. The L‐values were inconsistently affected by flooding in contrast with the starting hypothesis. The OM and P addition to soil clearly increased the L‐value and, surprisingly, the increase due to OM application was larger than the total P addition to soil. An additional isotope exchange study in a soil extract (E‐value) at the end of the experiment showed that the E‐value increased less than the total P addition with OM. This suggests that plants preferentially take up unlabeled P from the OM in the rhizosphere compared to labeled labile inorganic P. The effects of soil flooding on P bioavailability is unlikely related to an increase of the quantity of bio‐accessible P in soil (L‐value) but is likely explained by differences in P mobility in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号