首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
水稻子实对不同形态重金属的累积差异及其影响因素分析   总被引:3,自引:0,他引:3  
在分析成都平原核心区土壤重金属(Cd、Cr、Pb、Cu、Zn)全量、各形态含量及相应点位种植的水稻子实重金属含量的基础上,通过统计分析、空间插值及线性回归方程的模拟,研究了土壤Cd、Cr、Pb、Cu、Zn全量的空间分布状况、各形态重金属含量统计特征,以及水稻子实对重金属各形态的累积差异及其影响因素。结果表明,成都平原水稻土重金属污染较轻,除Cd外,均低于国家土壤环境质量二级标准。土壤中重金属的可交换态含量均较低,Cd主要以铁锰氧化态存在,Cr、Cu、Zn、Pb主要以残渣态存在。水稻子实对5种重金属的累积效应顺序为:Cd>Zn>Cu>Pb>Cr。与水稻重金属累积关系密切的重金属活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)主要有:Cd的碳酸盐结合态、Cr的可交换态、Pb的有机物结合态和Cu的碳酸盐结合态含量;Zn各活性形态对水稻子实含量的影响不明显。土壤理化性质对不同活性形态重金属元素的影响效应各不相同。活性态Cd主要受有机质、pH和容重的影响;活性态Cr与pH、有机质、CEC和容重密切相关;活性态Pb与有机质、容重、中细粉粒、砂粒等均有密切的关系;Cu的活性主要受粘粒、有机质含量的影响;Zn的有效性主要受pH、有机质、砂粒、容重的影响。总的看来,对土壤Cd、Cr、Pb、Cu、Zn各活性形态含量影响效应较强的是有机质、pH、容重,而与土壤吸附性能密切相关的颗粒组成、CEC的影响不甚明显。  相似文献   

2.
In a small‐plot trial different doses of sewage sludge (equivalent 82‐330 tons of dry matter per hectare) were incorporated in 0—25 cm depth (1982—1985). The aim of the investigations was to study the fate of the heavy metals Zn, Cd, Cu, Ni, Pb, and Cr, to determine their concentration in different soil fractions using a sequential extraction method and to ascertain their uptake by Zea mays L. plants. Eleven years after the last application the metals supplied with the sludge had moved as far as 50 cm in depth. The concentrations of Zn, Cd, Cu, Ni, and Cr in the saturation extract of the sampled soil layers were closely correlated with the concentrations of dissolved organic carbon (DOC). This result suggests that the heavy metal displacement was partly connected with the DOC movement in the soil. Considerable amounts of Zn and Cd coming from sewage sludge were found in the mobile fractions of the soil. Cu, Ni, and Pb were located especially in organic particles, and Cr was obviously bound by Fe‐oxides. Nine years after the last application the binding species of heavy metals were still different compared with those in the untreated soil. The whole withdrawal of heavy metals by plants yielded <1 % of the applied amounts. In the case of Zn the uptake from the sludge amended soil decreased during the experimental period. No similar tendency was observed for the other elements. In any case their annual variations of uptake exceeded the effect of sludge application.  相似文献   

3.
Rainfall runoff from urban roadways oftencontains elevated amounts of heavy metals in both particulate anddissolved forms (Sansalone and Buchberger, 1997). Because metalsdo not degrade naturally, high concentrations of them in runoffcan result in accumulation in the roadside soil at levels thatare toxic to organisms in surrounding environments. This studyinvestigated the accumulation of metals in roadside soils at asite for which extensive runoff data were also available.For this study, 58 soil samples, collected from I-75 nearCincinnati, Ohio, were examined using X-ray fluorescence, C-Sanalyzer, inductively coupled plasma spectroscopy, atomicabsorption spectrometry and X-ray diffraction. The resultsdemonstrated that heavy metal contamination in the top 15 cm ofthe soil samples is very high compared to local backgroundlevels. The maximum measured amount for Pb is 1980 ppm (at 10–15 cm depth) and for Zn is 1430 ppm (at 0–1 cm depth). Metal content in the soil falls off rapidly with depth, and metalcontent decreases as organic C decreases. The correlation toorganic C is stronger than the correlation to depth. The resultsof sequential soil extraction, however, showed lower amounts ofPb and Zn associated with organic matter than was expected basedon the correlation of metals to % organic C in the whole soil.Measurement of organic C in the residues of the sequentialextraction steps revealed that much of the carbon was not removedand hence is of a more refractory nature than is usual inuncontaminated soils. Cluster analysis of the heavy metal datashowed that Pb, Zn and Cu are closely associated to one another,but that Ni and Cr do not show an association with each other orwith either organic C or depth. ICP spectroscopy of exchanged cations showed that only 4.5%of Pb, 8.3% of Zn, 6.9% of Cu and 3.7% of Cr in the soil isexchangeable. Combined with the small amounts of metals bound tosoluble organic matter, this result shows that it is unlikelythat these contaminants can be remobilized into water. At thissite, clays are not an important agent in holding the metals inplace because of low amounts of swelling clays. Instead, insoluble organic matter is more important. Mass balancecalculations for Pb in soil showed that most of the Pb came fromexhausts of vehicles when leaded gasoline was in use, and thatabout 40% of this Pb is retained in the soil.This study shows that, highway environments being a relativelyconstant source of anthropogenic organic matter as well as heavymetals, heavy metals will continue to remain bound to organicmatter in-situ unless they are re-mobilized mechanically. Removalof these heavy metals as wind-blown dust is the most likelymechanism. Another possibility is surface run-off carrying themetals into surface drainages, bypassing the soil. This studyalso shows that for those countries still using leaded gasoline,important reductions in Pb contamination of soils can be achievedby restricting the use of Pb additives.  相似文献   

4.
Street sediment collected in Sault Ste. Marie, Ontario was examined for trace element composition (As, Cd, Cr, Cu, Fe, Pb, Hg, Ni and Zn) and the metal partitioning to various sediment properties was determined by sequential extraction. Total Ni, Cu, Zn and Pb concentrations exceeded the lowest effect levels specified in the Ontario Provincial Sediment Quality Guidelines for Metals (Environment Ontario, 1992) and derived from bioassay studies. According to these Guidelines, the disposal of such sediment has to be guided by environmental considerations. A significant fraction of these metals was extractable in 0.5 N HCl over a 12-hour period and considered as potentially bioavailable. The major accumulative phases of toxic metals in this sediment are exchangeable, carbonate, Fe/Mn oxides and organic matter but the relative importance of each phase varied for individual metals. Approximately 20% of the total extractable Cd is found in each of these four fractions. Pb, Zn and Mn are predominantly bound to carbonates, Fe/Mn oxides and organic matter. Cu shows a high affinity for organic matter and to a lesser extent for carbonates. Elevated levels of Cd, Pb, Cu, Zn, Mn and Cr in the exchangeable and/or soluble phase suggest that sediment associated metals, mobilised from streets in Sault Ste. Marie during runoff and snowmelt, would adversely impact water quality in the receiving waters. However, large fractions of the total metal load are associated with coarser particles which are unlikely to be transported through the drainage system into receiving waters.  相似文献   

5.
A sequential extraction procedure was used to fractionate Cu, Cd, Pb and Zn in 4 soil profiles into the designated forms of water soluble + exchangeable, organically bound, carbonate and Mn oxides bound. Soil profiles were obtained from the Rural Development District 063, State of Hidalgo, which have been irrigated with wastewater coming out of the basin of Mexico. The total heavy metal contents range as follows: Cu, 8.9 to 86.5 mg kg-1 Cd, 0.86 to 5.07 mg kg-1 Pb, 18.1 to 131.7 mg kg-1 and Zn, 101 to 235.5 mg kg-1. The highest concentrations of total heavy metals were found in the surface layers at all soil profiles. Sequential chemical fractionation indicated that the four metals were predominantly associated with the organic fraction at most soil samples. The contents in all fractions of the four metals showed a decrease with depth which has been explained by the variations in the organic matter and CaCO3 contents in the different layers of soils. These soil properties were also the most important variables in the biological availability of the metals in these soils.  相似文献   

6.
为了研究和分析北京市朝阳区(五环内)土壤重金属的分布特征及影响因素,通过居住绿地、公园绿地、街旁绿地以及附属绿地(包括公共设施用地、对外交通用地和市政设施用地)4种土壤利用类型分别进行了土壤重金属铜(Cu)、锌(Zn)、镉(Cd)、铅(Pb)以及土壤pH值、有机质的测定。结果表明:表层土壤中的重金属平均含量,除Pb外,均高于中国土壤背景值,尤其是重金属Cd,已达到0.26 mg/kg,超过了国家土壤环境质量1级标准;从土壤利用类型上来看,Cu在附属绿地土壤含量最高,达到33.576 mg/kg,Zn在居住绿地土壤含量最高,达到80.636 mg/kg,Cd在街旁绿地土壤含量最高,达到0.296 mg/kg,Pb在公园绿地土壤含量最高,达到24.706 mg/kg;在空间分布上,重金属Cu和Zn空间分布格局相类似,整体呈由西北向东南递减趋势,而Cd高值区在中部,整体北部高于南部,重金属Pb整体上呈由西南向东北递减趋势;通过相关性分析可知,土壤pH值对土壤重金属含量没有明显的影响,而土壤有机质与重金属Zn,Cd和Pb的含量有明显的相关性;4种重金属呈显著正相关(p<0.01)。  相似文献   

7.
长春市城区土壤中Pb、Cu、Zn、Cd及Cr化学形态特征   总被引:3,自引:1,他引:3  
为弄清长春市城市土壤中Pb、Cu、Zn、Cr及Cd的化学形态分布特征,系统采集了26件城市表层(0~20 cm)土壤样品,采用连续提取法对重金属各化学形态含量进行了测定。结果表明:Pb、Zn、Cu及Cr主要以残渣态存在,其次是铁锰氧化物结合态、腐殖酸结合态和强有机结合态占有次要地位,离子交换态和水溶态所占比例均较低;Cd则主要以碳酸盐结合态存在,同时,水溶态和离子交换态所占比例较高。残渣态Pb和Zn在城区表层土壤中所占比例较近郊土壤中略有下降,但幅度不大,除Cu外,其余各元素易迁移、高生物有效性的水溶态在城区表层土壤中所占比例略有上升。Pearson相关分析结果表明,各元素残渣态与全量均呈极显著正相关,其它各活性态与全量间的相关程度与重金属种类有关。土壤pH值和Fe、Mn含量对重金属的化学形态的影响也与重金属种类有关,而且,同一重金属的不同存在形态受土壤pH值和Fe、Mn含量的影响程度也不同。  相似文献   

8.
通过现场采样及室内测试方法,分析了珠江三角洲污灌区土壤中9种重金属Cd、Cu、Zn、Pb、Mn、Ni、As、Cr、Se的含量分布特征。结果表明,污灌区土壤9种重金属的全量平均含量均已超出广东省土壤背景值,其中Cd的污染程度最重,Se的污染程度最轻;污灌区土壤以Cd元素的有效系数最高,Ni元素的有效系数最低。Zn、Pb、Cu以及Cd元素随采样深度的增加其全量逐渐减少,Cr、Ni、As以及Se元素随采样深度的增加其全量呈上下波动状态或几乎不变,而Mn元素则是随采样深度的增加其全量先略有减少而后骤升。Cu、Cd、Zn等3种元素全量与有效态含量以及这3种元素全量间均呈显著或极显著的正相关关系。  相似文献   

9.
The objective of this study was to test the suitability of a simple approach to identify the direction from where airborne heavy metals reach the study area as indication of their sources. We examined the distribution of heavy metals in soil profiles and along differently exposed transects. Samples were taken from 10 soils derived from the same parent material along N-, S-, and SE-exposed transects at 0—10, 10—20, and 20—40 cm depth and analyzed for total Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations. The heavy metal concentrations at 0—10 cm were larger than background concentrations in German arable soils except for Cr (Cd: 0.6—1.8 mg kg—1; Cr: 39—67; Cu: 40—77; Ni: 87—156; Pb: 48—94; Zn: 71—129; Fe: 26—34 g kg—1; Mn: 1.1—2.4). Decreasing Cd, Cu, Mn, and Pb concentrations with increasing soil depth pointed at atmospheric inputs. Aluminum and Ni concentrations increased with soil depth. Those of Fe, Cr, and Zn did not change with depth indicating that inputs at most equalled leaching losses. The Pb accumulation in the surface layer (i.e. the ratio between the Pb concentrations at 0—10 to those at 20—40 cm depth) was most pronounced at N-exposed sites; Pb obviously reached Mount Križna mainly by long-range transport from N where several industrial agglomerations are located. Substantial Cd, Cu, and Mn accumulations at the S- and SE-exposed sites indicated local sources such as mining near to the study area which probably are also the reason for slight Cr and Zn accumulations in the SE-exposed soils. Based on a principal component analysis of the total concentrations in the topsoils four metal groups may be distinguished: 1. Cr, Ni, Zn; 2. Mn, Cd; 3. Pb (positive loading), Cu (negative loading); 4. Al, Fe, indicating common sources and distribution patterns. The results demonstrate that the spatial distribution of soil heavy metal concentrations can be used as indication of the location of pollution sources.  相似文献   

10.
大宝山矿区农田土壤重金属污染及其植物累积特征   总被引:7,自引:0,他引:7  
张晗  靳青文  黄仁龙  林宁  贾珍珍  舒月红 《土壤》2017,49(1):141-149
对金属矿山选冶活动影响的农田土壤,不同灌溉水源会影响重金属的分布累积特征。根据实际情况将大宝山矿区农田土壤分为污水灌溉区、清水灌溉区、自然修复区和对照区,并进行土壤和植物样品采集,调查研究了土壤的基本理化性质,Cd、Pb、Cu、Zn、Mn 5种重金属的含量和化学形态分布,以及不同区域植物中重金属的含量。结果表明:污灌区Cd、Pb、Cu、Zn的含量最高,是自然修复区和清水灌溉区的1.75倍~10.51倍,对照区最低;Mn在各采样点的含量无显著差别。土壤Cd、Cu、Zn、Pb含量两两之间显著正相关,Mn与Cu、Zn、Cd、Pb呈负相关关系;土壤pH与重金属环境有效态关系密切。残渣态是5种重金属的主要存在形态,有机态含量也较高;Cd的环境有效态含量占总量的比例是其他4种重金属的2倍左右。稻米中5种重金属在清水灌溉区的含量均比污水灌溉区低,其中Cu和Zn的含量在两区域均未超标(NY861-2004),而Pb和Cd的含量严重超标。重金属在自然修复区和清水灌溉区呈现较低的土壤污染和人体健康风险,该研究数据可为金属矿区土壤污染控制提供科学的依据。  相似文献   

11.
12.
陇海铁路郑州—圃田段铁路旁土壤重金属污染   总被引:4,自引:0,他引:4  
The pollution status and horizontal distribution of heavy metals (Ni, Pb, Cr, Zn, Cu, and Cd) in the soil on railroad side along the Zhengzhou-Putian section of Longxi-Haizhou Railroad were studied by collecting soil samples along a sampling section perpendicular to the railroad at the distances of 0, 10, 20, 30, 50, 100, 200, 300, and 500 m from the railroad edge. The concentrations of heavy metals in the sampling soils were higher than those of the control site. The concentrations of Pb, Zn, and Cd were found to be the highest in the soils at the railroad edge, and then decreased with increasing distance from the railroad. The highest concentrations of Ni, Cr, and Cu in soils were located at about 10-30 m from the railroad. Compared with the single factor pollution index (SFPI) of heavy metals calculated for the control site, the average SFPI from the sampling sites decreased in the order of Cr > Cd > Pb > Zn > Ni > Cu. There were notable negative correlations between the integral pollution index (IPI) of soil heavy metals at all sampling sites and the distances from the railroad. According to three IPIs calculated from the background values of heavy metals in och-aquic Cambisols, the heavy metal concentrations in the control soil, and the 2nd levels for soil heavy metals in GB15618-1995, the study area could be divided, based on the distances from the railroad, into four pollution zones: heavy pollution zone (0-10 m), medium pollution zone (10-50 m), slight pollution zone (50-100 m), and warning zone (100-500 m), respectively.  相似文献   

13.
施污土壤与污泥中Cu、Pb、Cd、Zn的形态分布   总被引:2,自引:0,他引:2  
污泥中的重金属元素是限制其大规模农田利用的重要因素。施污土壤和污泥中重金属的形态研究可以用来评价土壤中重金属的生物有效性以及它们在土壤中的移动性。用修正BCR三步连续提取法进行分步提取研究了污水污泥和施污后的西红柿地土壤中Cu、Pb、Cd、Zn的形态分布状况。施用污泥堆肥10t hm-2后的土壤中Cu、Pb、Cd、Zn的全量与各种形态含量无明显增加,Cu、Pb、Zn含量远低于国家土壤环境质量标准。土壤中Cu的各种形态分布关系是:残渣态>可还原态=可氧化态>可交换态和弱酸溶解态,Cu在土壤中的存在是以最稳定的残渣态为主。堆肥污泥与干化污泥相比,残渣态Cu的比例明显增加。土壤中Pb的各种形态分布关系是以残渣态和可还原态为主,但可氧化态的分布比例最小。土壤中Cd的可交换态、可还原态和残渣态各占据相等的含量,但可氧化态Cd的含量几乎为零。Zn在土壤中的各种形态分布关系是:可交换态和弱酸溶解态>可氧化态>可还原态>残渣态,Zn在土壤中的存在是以最易迁移的可交换态和弱酸溶解态为主。这些金属元素在土壤中的相对稳定性顺序为:Cu>Pb>Cd>Zn。Zn在土壤中的移动性要远高于Cu。  相似文献   

14.
青海湖典型湿地土壤重金属空间分布特征   总被引:2,自引:0,他引:2  
以青海湖黑马河湿地为研究对象,对湿地土壤重金属铜、锌、铅、铬(Cu,Zn,Pb,Cr)4种元素的空间分布特征进行了研究。结果表明:湿地表层土壤(0—10cm)中,Cu,Cr,Pb和Zn的平均含量分别为16.38±4.95mg/kg,65.46±7.34mg/kg,14.26±4.28mg/kg,46.35±7.27mg/kg。垂直湖岸的水平方向上,Cu,Cr,Pb和Zn的含量高值出现在湿地高水位带以及陆相带,低值出现在湿地水陆过渡带。在土壤剖面方向上,各重金属元素表现出不同的分布特征:Cu呈现出表面聚集现象;Zn随深度变化有明显的淋溶和积聚趋势;Pb含量沿土层剖面纵深分布的特征是先增加后减少;Cr呈显著的表面聚集现象。湿地表层土壤的对比结果显示研究区内土壤环境质量良好。湿地土壤中Cu,Zn,Pb,Cr四种元素之间呈显著正相关,表明本区域重金属具有同源性。  相似文献   

15.
广东大宝山矿区土壤重金属污染   总被引:28,自引:0,他引:28  
Soil contamination in the vicinity of the Dabaoshan Mine, Guangdong Province, China, was studied through determi- nation of total concentrations and chemical speciation of the toxic metals, Cu, Zn, Cd, and Pb, using inductively coupled plasma mass spectrometry. The results showed that over the past decades, the environmental pollution was caused by a combination of Cu, Zn, Cd, and Pb, with tailings and acid mine drainage being the main pollution sources affecting soils. Significantly higher levels (P ≤ 0.05) of Cu, Zn, Cd, and Pb were found in the tailings as compared with paddy, garden, and control soils, with averages of 1486, 2516, 6.42, and 429 mg kg^-1, respectively. These metals were continuously dispersed downstream from the tallings and waste waters, and therefore their concentrations in the paddy soils were as high as 567, 1 140, 2.48, and 191 mg kg^-1, respectively, being significantly higher (P ≤ 0.05) as compared with those in the garden soils. The results of sequential extraction of the above metals from all the soil types showed that the residual fraction was the dominant form. However, the amounts of metals that were bound to Fe-Mn oxides and organic matter were relatively higher than those bound to carbonates or those that existed in exchangeable forms. As metals could be transformed from an inert state to an active state, the potential environmental risk due to these metals would increase with time.  相似文献   

16.
The discharge of acidic mine drainage waters onto a hillslope in Dalarna, central Sweden, has lead to the contamination of the podzol soils with Cu, Fe, Ni, Pb, Zn and sulfate. Samples from contaminated and reference soils have been collected for chemical and mineralogical analyses. Jarosite is identified by x-ray diffraction analysis as a precipitate in the upper horizons (A, E, B) of the contaminated soils, where the soil acidity (pHKCl~2.6) promotes jarosite stability. The sequential chemical extraction of soil samples indicates that, in the reference A horizon, Cu, Pb, Ni and Zn are bound primarily to cation exchange sites and organic matter. In the A horizon of the contaminated soils closest to the rock dump, metal partitioning is dominated by the Fe oxide fractions, despite the high organic matter content; Pb is almost completely bound to crystalline Fe oxides, possibly adsorbed to Fe oxides or occuring in a jarosite solid solution. In the reference B and C horizons, Cu, Ni and Zn are primarily adsorbed/coprecipitated in the Fe oxide fractions, while Pb remains with a large fraction bound to organic matter. In the Fe-rich B horizon of the contaminated soils, the partitioning of the metals in cation exchange sites and to organic matter has greatly increased relative to the reference soils, resulting from the mobilization of organo-metal complexes down the profile.  相似文献   

17.
章明奎 《土壤学报》2006,43(4):584-591
用分散、筛分和悬浮相结合的物理方法,研究了砂质土壤中养分和重金属在不同粒径有机、无机颗粒中的分布。研究表明,砂质土壤中Cd、Co、Cr、Cu、Ni、Pb、Zn和Mn在颗粒状有机质(POM)有明显的富集,富集程度以Cu和Zn最为明显。粒径较小(0.05~1mm)的POM组分中重金属的平均富集高于粒径较大(〉1mm)的POM组分。POM中重金属的富集因土壤重金属污染水平和重金属类型而异,并与土壤重金属的积累呈正相关。分析数据表明,土壤POM中重金属的积累不完全是植物分解残留的结果,土壤POM对重金属有强吸持能力可能是POM中重金属富集的主要原因之一。  相似文献   

18.
Purpose

Gensburg Markham Prairie (GMP), a high-quality tallgrass prairie and wetland in the Chicago area, is surrounded by high-traffic highways and residential communities. Anthropogenic inputs are a concern given observed ecosystem degradation around the periphery of the prairie. To understand soil quality and the potential for habitat degradation in GMP, we evaluated concentrations of metals and phosphorus in soil profiles, identified possible sources of contamination, and assessed the likelihood that contamination would impact the prairie ecosystem.

Materials and methods

We collected 15 intact soil cores (to a depth of 120 cm) and 22 surface soil samples (0–10-cm depth), determined the soil type, and measured pH, organic matter, and concentrations of Pb, Cu, Zn, Mg, Fe, K, Ca, and P using ICP-OES. To quantify soil pollution, we calculated the element enrichment factor (EF) and single element pollution index (SEPI) for each sample. We also used principal component analysis (PCA) to interpret relationships between site variables, elemental concentrations, and sources of metals.

Results and discussion

Heavy metals (Pb, Cu, and Zn) and P were found to accumulate in surface samples. The mean EF values for Pb, Cu, Zn, and P revealed significant enrichment of these elements in the soil profiles. However, SEPI analyses indicate that GMP soils have a low level of contamination. PCA revealed that concentrations are highest for samples with high organic matter content near the ground surface and that Pb, Cu, and Zn have common sources of pollution.

Conclusions

We observed enrichment of Pb, Cu, Zn, and P because of deposition from the urban built environment, but the enrichment levels are low enough that they are not expected to negatively impact the ecosystem of GMP. The detailed soil chemistry data constitute a spatial contamination map that can be used to assess potential long-term impacts on the ecosystem, such as reduction of plant growth and species diversity, and inform site management and biodiversity conservation efforts.

  相似文献   

19.
We studied the properties of the soluble and dispersed compounds of Cu, Mn, Co, Ni, Pb, Zn, and Cd formed by the action of aerobically decomposing plant matter on the respective metal oxides. The metals were mobilized partly in association with colloidal humified organic matter, and partly in true solution as complexes that seemed to be anionic. In the presence of a clay soil there was no net mobilization of colloidally bound Cu, but the dialysable Cu complex was not appreciably sorbed by the mineral colloids and was leached from the reaction mixture. The metals were not precipitated under alkaline conditions from the dialysable complex forms. Material with similar complexing properties was found in the dialysable fractions of a soil organic matter extract, of water squeezed from a raw peat, and of laboratory lysimeter solutions from a podzol under Calluna. Below about pH 6 the exchange of Cu on a soil clay was not affected by the presence of colloidal decomposition products of lucerne. With Co, Ni, and Zn the corresponding pH value was about 4, and the critical value for Cu in the presence of colloidal soil organic matter was also about 4. Below these values the metal and organic matter sorption curves were diametrically opposed so that under these conditions Cu is apparently not strongly bonded to colloidal organic matter.  相似文献   

20.
Electron microprobe studies on soil samples with varying heavy metal contamination. 2. Contents of heavy metals and other elements in aggregations of humic substances, litter residues and charcoal particles EMA point analysis show that the organic matter constituents of heavy metal contaminated soils are highly enriched with heavy metals. The maximal trace element accumulation were for Cu up to 13,000 mg/kg, for Zn up to 48,000 mg/kg, for Cd up to 2,100 mg/kg and for Pb up to 193,000 mg/kg. The affinity for the accumulation of the different heavy metals in aggregations of humic substances can be described by the sequence Cu > Pb ? Cd > Zn ? Ni > Co. In very strongly acidified humic top soil horizons the Pb and Cd accumulation in the organic matter constituents is in competition with the accumulation in Fe and Mn oxides. The heavy metal contents (especially of Cu) of the organic matter are often correlated with the content of organically bound calcium. The EMA results also show that high heavy metal amounts occur in combination with Ca-accumulations in the epidermis and the outer bark parenchym of decayed roots. EMA point analysis of the interior of fungus sclerotias show that sclerotias can contain high amounts of heavy metals, in particular lead (up to 49,700 mg Pb/kg). From statistical results of EMA point analysis follows that lead and other heavy metals attached to humic substances are not only bound as metal organic complexes but also as organic metal phosphate complexes. Also charcoal particles of polluted soils contain high amounts of heay metals. The accumulation affinity is quite similar to that of humic substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号