首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this research was to investigate the dissipation of the herbicide dimethenamid under anaerobic redox conditions that may develop in the soil environment. Soil-water biometers were prepared with a saturated soil and made anaerobic by either glucose pretreatment (according to the Environmental Protection Agency registration study for anaerobic fate) or N2 sparging. Treatments included glucose pretreatment, NO3- + SO42- amendment, unamended, and autoclaved. Volatile, aqueous, extractable, and bound (unextractable) 14C-residues were quantified and characterized. The redox potential decreased over time, and evidence of denitrifying, iron-reducing, sulfate-reducing, and methanogenic conditions was observed, depending on the amendments. Anaerobic degradation of 14C-dimethenamid occurred in all treatments, and the time observed for 50% disappearance (DT50) was 13-14 days for nonautoclaved treatments. 14C-metabolites accumulated to up to 20% of applied 14C. At least two major metabolites were observed in nonautoclaved treatments, whereas only one was observed in autoclaved microcosms. More than 50% of the applied 14C was eventually incorporated into soil-bound residue.  相似文献   

2.
A series of experiments analyzed the kinetics and mechanisms of [(14)C]niclosamide degradation. The aerobic aquatic metabolism of [(14)C]niclosamide was studied in nonsterile river water/sediment mixtures. Test systems, maintained under aerobic conditions, were treated with niclosamide and incubated in the dark at 25.0 +/- 1.0 degrees C for 30 days. Half-lives of 4.9 and 5.4 days were calculated for the chlorosalicylic acid- and chloronitroaniline-labeled test systems, respectively. From 0 to 21 days after treatment (DAT), the only metabolism product observed in either test system was aminoniclosamide. At the final sampling interval, five peaks were resolved from the chlorosalicylic acid label, and three peaks were resolved from the chloronitroaniline label test substance. By 30 DAT, sediment-bound residues represented approximately 70% of the observed radioactivity. For the anaerobic aquatic metabolism of [(14)C]niclosamide, test systems were incubated under anaerobic conditions for 365 days. Half-lives of 0.65 day for the chlorosalicylic acid label and 2.79 days for the chloronitroaniline label were calculated. From 0 to 3 DAT, niclosamide was first transformed into aminoniclosamide. Aminoniclosamide is readily formed, as it was observed in the chlorosalicylic acid label 0 DAT sampling. Several minor metabolites were observed in the water and sediment extracts. None of these metabolites were formed to a significant amount until the parent niclosamide dissipated below the detection limit. Two of the byproducts from these metabolism studies are polar unknowns eluting at 3 and 5 min by HPLC, similar to the unknowns observed in aqueous photolysis studies.  相似文献   

3.
The metabolism and fate of ethametsulfuron-methyl ?methyl 2-[[[[[4-ethoxy-6-(methylamino)-1,3, 5-triazin-2-yl]amino]carbonyl]amino]sulfonyl]benzoate? in rutabaga were investigated. After 72 h, absorption and translocation of [(14)C]ethametsulfuron-methyl in rutabaga did not change for the duration of the study (50 days). Less than 4% of recovered radioactivity was present in the rutabaga root. Ethametsulfuron-methyl was metabolized through a proposed unstable alpha-hydroxy ethoxy intermediate that dissipated 3 days after treatment to two major metabolites, O-desethylethametsulfuron-methyl and N-desmethyl-O-desethylethametsulfuron-methyl, as determined by liquid chromatography-mass spectrometry. It was estimated that at a spray dose of 30 g of active ingredient ha(-)(1) and a harvest weight of 0.5 kg, the edible portion of the rutabaga root would contain no ethametsulfuron-methyl and approximately 1.3 ppb total of both identified metabolites. Residue analysis and toxicological assessment show that ethametsulfuron-methyl and its metabolites should pose little or no risk to consumers of rutabagas.  相似文献   

4.
The microbial population of a Brown Chernozemic soil was labelled in situ by adding 14C-glucose and 15NH415NO3 to the plow layer. The loss of 14C, nitrogen immobilization-mineralization reactions, bacterial numbers (plate count, direct count) and fungal hyphal lengths were determined periodically throughout the growing period in amended and unamended microplots and in the surrounding field soil. After 5 days, 90 per cent of the labelled N occurred in the organic form with little subsequent mineralization. Of the labelled C added, 63, 56 and 39 per cent, remained in the soil after 3, 14 and 104 days, respectively.The ratio of fungal C to bacterial C increased as soil moisture decreased. Viable (plate count) and total numbers of bacteria in samples from unamended plots and field soil were significantly correlated with each other and with soil moisture. Fungal hyphal lengths from amended soil were also significantly related to moisture but the rate of loss of 14C and mineralization of 15N were not. The synthesized microbial material (tissue and metabolites) exhibited a high degree of stability throughout the study. The half-life of labelled C remaining in the soil after 30 days was calculated to be 6 months compared to only 4 days for the added glucose C. The amount of energy used for maintenance by the soil population under field conditions was calculated from measurements of biomass C, respired labelled C and respired soil C.  相似文献   

5.
Phosphorus (P) adsorbed by iron (Fe) oxyhydroxides in soil can be released when the Fe(III) minerals are reductively dissolved after soil flooding. However, this release is limited in tropical soils with large Fe contents and previous studies have suggested that P sorbs or precipitates with newly formed Fe(II) minerals. This hypothesis is tested here by scavenging Fe2+ in flooded soils by increasing the cation exchange capacity (CEC) of soil through resin application (30 cmolc kg?1; Na‐form). Three soils from rice paddies with contrasting properties were incubated in aerobic and anaerobic conditions with or without resin and with or without addition of organic matter (OM) to stimulate redox reactions. Dissolved Fe was 0.1–1.1 mm in unamended anaerobic soils and decreased to less than 0.07 mm with resin addition. Anaerobic soils without resin and aerobic soils with or without resin had marginal available P concentrations (<2 mg P kg?1; anion‐exchange membrane P). In contrast, available P increased 3‐ to 14‐fold in anaerobic soils treated with resins, reaching 16 mg P kg?1 in combination with extra OM. Application of Ca‐forms of resin did not stimulate P availability and dissolved Ca concentrations were larger than in unamended soils. Resin addition can increase P availability, probably by a combination of reducing solution Fe2+ (thereby limiting the formation of Fe(II) minerals) and increasing the OM solubility and availability through reducing dissolved Ca2+. The soil CEC is a factor controlling the net P release in submerged soils.  相似文献   

6.
The effect of soil aeration status on carbon partitioning of a labelled organic substrate (14C-[U]-glucose) into CO2, microbial biomass, and extra-cellular metabolites is described. The soil was incubated in a continuous flow incubation apparatus under four different aeration conditions: (1) permanently aerobic, (2) permanently anaerobic, (3) shifted from anaerobic to aerobic, and (4) shifted from aerobic to anaerobic. The soil was pre-incubated for 10 days either under aerobic or under anaerobic conditions. Afterwards, glucose was added (315 g C g–1) and the soils were incubated for 72 h according to four treatments: aerobic or anaerobic conditions maintained, aerobic conditions shifted to anaerobic conditions and anaerobic conditions shifted to aerobic conditions. Carbon partitioning was measured 0, 8, 16, 24, 48 and 72 h after the glucose addition. In permanently aerobic conditions, the largest part of the consumed glucose was built into microbial biomass (72%), much less was mineralised to CO2 (27%), and only a negligible portion was transformed to soluble extra-cellular metabolites. Microbial metabolism was strongly inhibited when aeration conditions were changed from aerobic to anaerobic, with only about 35% of the added glucose consumed during the incubation. The consumed glucose was transformed proportionally to microbial biomass and CO2. In permanently anaerobic conditions, 42% of the consumed glucose was transformed into microbial biomass, 30% to CO2, and 28% to extra-cellular metabolites. After a shift of anaerobic to aerobic conditions, microbial metabolism was not suppressed and the consumed glucose was transformed mainly to microbial biomass (75%) and CO2 (23%). Concomitant mineralisation of soil organic carbon was always lower in anaerobic than in aerobic conditions.  相似文献   

7.
We conducted a 10-month anaerobic microcosm test and a 15-month field test to investigate the effects of carbon source addition on the in-situ 1,1,1-trichloroethane (TCA) degradation in a polluted aquifer at an industrial site near Antwerp, Belgium. In the microcosms TCA decreased from 15000 μ g/L to 1500 μ g/L. 1,1-Dichloroethane (DCA) end-concentrations were about the same as the concentrations at the start of the tests (1500 μ g/L). 1,1-Dichloroethene (DCE) decreased from 1200 μ g/L to 800 μ g/L. Carbon source unamended and amended microcosms showed equal concentration trends. Neither chloroethane (CA) nor vinyl chloride (VC) were produced in the microcosms. In the field test TCA dropped from 15000 μ g/L to below 2000 μ g/L. Upstream, TCA levels remained elevated proving that the C-source injection had stimulated degradation. Sulphate reducing bacteria were stimulated; FeS was produced in the microcosms and aquifer. Dehalococcoides species were stimulated in some microcosms and in the HRC-amended aquifer. Neither sulphate reducers nor Dehalococcoidesspecies are however believed to be responsible for the observed TCA degradation. The carbon source injection however did yield environmental conditions that increased TCA degradation.  相似文献   

8.
In view of the ubiquitous co-existence of methamidophos, acetochlor and copper (Cu) in agricultural soils, ecological detoxification of methamidophos in phaiozem by earthworms was examined using the detoxic incubation experiments with illumination. It was validated that the earthworm Eisenia fetida is a useful soil animal in the process of methamidophos detoxification as the assistance of soil microbes and enzymes. Due to the action of earthworms, the half life of methamidophos with concentration of 15 mg/kg in phaiozem could decrease from 5.61 days to 5.08 days. Dynamics of methamidophos detoxification by earthworms could conform to the logistic model. Under the condition of multiple pollution combined with acetochlor (20 mg/kg) and Cu (300 mg/kg), ecological detoxification of methamidophos by earthworms became complicated. Acetochlor played a promoting role in the biodegradation of methamidophos to some extent, while it was basically inhibited by Cu.  相似文献   

9.
乙草胺是农业生产中用量较大的除草剂之一,长期频繁大量使用在农田土壤和水体中形成积累,影响到土壤肥力和环境生态安全。筛选到乙草胺降解菌36株,实验室纯培养条件下,72 h对初始浓度50 mg/L乙草胺的降解达到0.43%~37.98%。16S rDNA基因分析比对结果显示,筛选到的34株降解菌在系统发育地位上分别属于假单胞菌(Pseudomonas)、无色杆菌(Achromobacter)、芽孢杆菌(Bacillus)、微杆菌(Microbacterium)、Parapusillimonas、短杆菌(Brevibacterium)、寡养单胞菌(Stenotrophomonas)、苯基杆菌(Phenylobacterium)8个属。菌株203-08和204-05与已知菌株16S rDNA最大相似性低于97%,系统发育地位尚不确定。  相似文献   

10.
The effect of various organisms on the decompositon of chitin in a gnotobiotic soil system was investigated. Chitin decomposers were isolated from the short grass prairie in Colorado and selected by their ability to use chitin as a source of both C and N. Three bacteria, a fungus, and an actinomycete were grown for 45 days in sterile chitin amended (3 mg g?1 chitin-C) and unamended soil microcosms. Net mineralization of ammonium was greatest in the chitin-ainended microcosms. The greatest increases in N mineralization occurred in chitin-amended microcosms containing the fungus and the actinomycete. A second series of sterile soil microcosms amended with chitin (3 mg g?1 chitin-C) were inoculated with decomposers, a fungus and a bacterium, and a nematode and an amoeba (bacteriophagic grazers) in various combinations. Bacterial and grazer populations, NH4+ CO2 evolution, and residual chitin were measured periodically for 80 days. Bacterial grazing reduced bacterial populations, increased N mineralization, but had no effect on the decomposition of chitin.  相似文献   

11.
从长期经乙草胺污染的污泥中分离到一株能以乙草胺为唯一碳源和能源生长的菌株Y-4,通过生理生化实验和16S rDNA同源性序列分析,鉴定为申氏杆菌属(Shinella sp.)。采用室内培养方法,研究了Y-4对乙草胺的降解特性。结果表明,Y-4能有效地降解浓度为5~200 mg.L-1的乙草胺,在48 h内对50 mg.L-1乙草胺的降解率达到83.3%。菌株Y-4降解乙草胺的最适pH值为8.0,最适温度为30℃,其对丙草胺和丁草胺等农药也有良好的降解效果。  相似文献   

12.
The degradation kinetics and formation of metabolites for fungicides of different chemical classes (iprovalicarb, metalaxyl, penconazole, and pyrimethanil) and determination of bound residues for metalaxyl and penconazole were studied in both an unamended vineyard soil and in the same soil amended with two spent mushroom substrates (composted (C-SMS1) and fresh (F-SMS2)). The degradation kinetics was fitted to single first-order or first-order multicompartment patterns. Degradation rates decreased in C-SMS1-amended soils for all fungicides as compared to unamended soil, but in F-SMS2-amended soils, they decreased only for iprovalicarb and penconazole. The DT(50) values were higher by up to 1.8 (metalaxyl), 3.8 (pyrimethanil), 4.1 (iprovalicarb), and >1000 (penconazole) times in the soil plus C-SMS1 compared to those for soil plus F-SMS2 or unamended soil. The dissipation mechanism recorded the highest mineralization in the unamended soil for (14)C-metalaxyl and (14)C-penconazole, with the highest formation of nonextractable residues in the F-SMS2-amended soil for (14)C-metalaxyl. The results are consistent with (1) the chemical characteristics of each SMS (total and soluble organic carbon) controlling sorption and the bioavailability of fungicides and (2) the microbial activity of SMS-amended soils, which affects fungicide biodegradation. The findings of this work highlight the potential of SMS amendments with different characteristics to decrease or increase the degradation rate of a fungicide in a vineyard soil.  相似文献   

13.
This study aimed to evaluate new methodology for designing ecologically acceptable formulations of acetochlor. Modification of montmorillonite with phenyltrimethylammonium chloride (PTMA) or benzyltrimethylammonium chloride (BTMA) and organoclay formulations of acetochlor were prepared in the presence of high concentrations of sodium chloride (150 g/L). Acetochlor concentration in the equilibrium solutions was determined by HPLC. Release of acetochlor in a water system was performed by a funnel experiment. Leaching of acetochlor in soil was determined by a bioassay using a column technique and Setaria viridis as a test plant. The adsorbed amounts of acetochlor on montmorillonite exchanged by PTMA or BTMA were increased as NaCl concentration increased in the equilibrium solution. Leaching of acetochlor from organoclay formulations was significantly inhibited to the top soil layer (0-5 cm) when the formulations were prepared at extreme NaCl concentration (100-150 g/L). These results are in accord with a funnel experiment that showed a reduction in acetochlor release from the montmorillonite-based formulations. The application of this method for herbicide formulation would produce ecologically acceptable herbicide formulations that can significantly minimize the risk to groundwater pollution.  相似文献   

14.
Rats were orally dosed with a 1:1 diastereomixture of N-[(R)-1-(2,4-dichlorophenyl)ethyl]-2-cyano-3,3-dimethylbutanamide (Delaus, S-2900) and N-[(S)-1-(2,4-dichlorophenyl)ethyl]-2-cyano-3,3-dimethylbutanamide (S-2900S), both labeled with 14C, at 200 mg/kg/day for 5 consecutive days, and 16 metabolites in urine and feces were purified by a combination of several chromatographic techniques. The chemical structures of all isolated metabolites were identified by spectroanalyses (NMR and MS). Several of them were unique decyanated and/or cyclic compounds (lactone, imide, cyclic amide, cyclic imino ether forms). Major biotransformation reactions of the mixture of S-2900 and S-2900S in rats are proposed on the basis of the metabolites identified in this study.  相似文献   

15.
Dissimilatory iron-reducing bacteria play a fundamental role in catalysing the redox transformations that ultimately control the mobility of As in anoxic environments, a process also controlled by the presence of competing anions. In this study, we investigated the decoupling of As from loaded Al and Fe (hydr)oxides by competing anions in the presence of iron-reducing bacteria. Hematite, goethite, ferrihydrite, gibbsite and three aluminium-substituted goethites (AlGts) were synthesised and loaded with arsenate, followed by anaerobic incubation with different phosphate or carbonate-containing media in the presence of catalytic iron-reducing bacteria. Soluble Al, As, Fe and P contents were measured in aliquots by inductively coupled plasma optical emission spectrometry following periodical sampling. Shewanella putrefaciens cells were able to utilise both non-crystalline and crystalline Fe (hydr)oxides as electron acceptors, releasing Fe and As into solution. Phosphate and carbonate affected the Fe bioreduction, probably due to the precipitation of metastable mineral phases and also to phosphate-induced stabilisation on the hydroxide surfaces. Phosphate precipitation acted as a sink for As, thus limiting its mobilisation. The highest fraction of desorbed As by phosphate was observed for gibbsite, followed by AlGts. Similarly, gibbsite showed significant amounts of arsenate displaced by carbonate. In spite of its low crystallinity, ferrihydrite was the most efficient compound in retaining arsenate, possibly due to As co-precipitation. This study provides new insight into the management of As-contaminated soils and sediments containing Al-goethites and gibbsite, where the Fe activity may be too low to co-precipitate As-bearing vivianite. Thus, the dynamics of As(V) in flooded soils are significant in agriculture and environmental management.  相似文献   

16.
采用定点试验的方法,在哈尔滨市呼兰区选择典型农田生态系统进行试验,研究施用不同浓度乙草胺对农田中小型土壤动物群落组成、多样性及垂直分布的影响。本调查共获中小型土壤动物4 648只,隶属于2门4纲10目15个类群,其中甲螨亚目和中气门亚目为优势类群。研究结果表明,施用不同浓度的乙草胺对农田中小型土壤动物群落组成、多样性及垂直分布均产生一定影响。Sorenson相似性系数和Morisita-Hron相似性系数均表现为高浓度与中浓度差异高浓度与低浓度差异高浓度与对照差异,表明随乙草胺浓度的增加土壤动物的群落结构差异逐渐显著;除优势度指数外,其余多样性指数均表现为中浓度和低浓度样地与对照样地存在显著差异(P0.05),高浓度样地与对照样地间存在极显著差异(P0.001)。5月、7月和9月土壤动物的密度在0~5 cm土层中均表现为对照样地低浓度样地中浓度样地高浓度样地,而在其下部的各土层中土壤动物密度变化与乙草胺浓度变化无明显相关性。中小型土壤动物可以作为揭示施用乙草胺过程中土壤质量变化的生物学指标。其群落组成、多样性和垂直分布的变化表明,中小型土壤群落对乙草胺的不同施用浓度产生了响应,过高浓度乙草胺会对土壤生态系统产生干扰,对土壤环境造成威胁。  相似文献   

17.
Aerobic soil metabolism of a new herbicide,LGC-42153   总被引:1,自引:0,他引:1  
To elucidate the fate of a new sulfonylurea herbicide, LGC-42153 [N-((4,6-dimethoxypyrimidin-2-yl)aminocarbonyl)-2-(1-methoxyacetoxy-2-fluoropropyl)-3-pyridinesulfonamide], in soil, an aerobic soil metabolism study was carried out for 120 days with [(14)C]LGC-42153 applied to a loamy soil. The material balance ranged from 90.7 to 101.5% of applied herbicide. The half-life of [(14)C]LGC-42153 was calculated to be approximately 9.0 days. The degradation products resulted from the cleavage of the sulfonylurea bridge. The metabolites identified during the study were N-((4,6-dimethoxypyrimidin-2-yl)aminocarbonyl)-2-(1-hydroxy-2-fluoropropyl)-3-pyridinesulfonamide, 2-(1-hydroxy-2-fluoropropyl)-3-pyridinesulfonamide, and 4,6-dimethoxy-2-aminopyrimidine. No significant volatile products or [(14)C]carbon dioxide was observed during the study. Nonextractable (14)C-residue reached 14.4-30.5% of applied material at 120 days after treatment, and radioactivity was distributed mostly in the humin and fulvic acid fractions.  相似文献   

18.
为探明土壤-植物系统中,田间施用量的乙草胺对玉米根际和非根际微生物数量的影响,采用田间试验及室内测试方法,在玉米苗期不同阶段测定了土壤中微生物量碳的变化,并进一步用平板稀释培养法研究了玉米根际和非根际土壤中细菌和真菌数量的变化。结果表明,乙草胺施用对玉米根际和非根际的土壤微生物群落均具有一定影响。可培养的根际细菌和真菌均呈现先抑制后刺激的变化,但与真菌不同,细菌受到的抑制作用时间较短,刺激作用时间较长;而本体土壤中可培养细菌和真菌则主要受到抑制作用,但是抑制作用的强度和持续时间差别很大。乙草胺对根际土壤微生物量碳可产生一定刺激作用,但影响并不显著;由于乙草胺施用对非根际土壤细菌和真菌的影响不同步并存在群落结构的补偿作用,从而维持了非根际土壤总体微生物生物量碳的基本稳定。  相似文献   

19.
[Phenyl(U)-(14)C] and [triazole(3)-(14)C]flusilazole ([(bis 4-fluorophenyl)]methyl(1H-1,2,4-triazole-1-ylmethyl)silane; I) were extensively metabolized when fed to lactating goats (Capra hircus). The primary metabolites identified in goat tissues and milk were bis(4-fluorophenyl)(methyl)silanol (II) and 1H-1,2,4-triazole (III). Concentrations of total radiolabeled residues in the milk ranged from 0.09 to 0.74 microg/mL. Concentrations of radiolabeled residues found in tissues when the [(14)C] label was in the phenyl or triazole position, respectively, were 13.5 and 3.54 microg/g (liver), 8.74 and 0.75 microg/g (kidney), 0.41 and 0.52 microg/g (leg muscle), and 4.07 and 0.94 microg/g (back fat). Urine contained an additional major metabolite identified as [bis(4-fluorophenyl)](methyl)silylmethanol (IV) and its glucuronic acid conjugate (V). With either labeled form of flusilazole, the majority of the recovered radiolabel was excreted in urine or feces.  相似文献   

20.
N,N'-Dibutylurea (DBU) is a breakdown product of benomyl [methyl 1-(butylcarbamoyl)-2-benzimidazole carbamate], the active ingredient in Benlate fungicides, and has been proposed as one cause for crop damage that growers claim to have occurred from the use of Benlate 50 DF fungicide. This study assessed DBU formation upon (1). application of n-butyl-1-[(14)C]butylisocyanate (BIC), the immediate precursor to DBU formation, in four soils at two water potentials (0.03 and 0.1 MPa) and (2). application of benomyl butyl-1-(14)C-benomyl enriched Benlate DF and SP fungicides to two soils at various combinations of negative water potential (0.03 or 0.1 MPa) and temperature (23 or 33 degrees C). Parent compounds, metabolites, and (14)CO(2) were tracked using chromatographic analysis with radioassay and UV detection, liquid scintillation counting, and postextraction oxidation of the soil. At 0.03 MPa in all four BIC-treated soils, DBU formation was never detected. At 0.1 MPa, DBU was detected in two soils, but at concentrations <3.6 microg kg(-)(1) (0.3 wt % of applied BIC). In both soils treated with benomyl formulations, DBU formation was observed with only Benlate 50 DF application at 0.03 MPa and 23 degrees C, which was followed by rapid dissipation of DBU. The maximum concentration observed was 0.41 microg g(-)(1) (0.65 wt % of applied benomyl at 62.8 microg g(-)(1)), which is well below levels currently reported to cause adverse effects to plants. Combined benomyl and carbendazim half-lives in soils across treatments were 2-3 months. This study demonstrated that further production and accumulation of DBU in soils after Benlate application or from residual benomyl remaining in the soil are highly unlikely and that persistence of any DBU in soils is likely to be short-lived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号