首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为减轻花叶病对大豆产量的影响,实现对大豆花叶病害初期的快速检测,本文提出了一种基于卷积神经网络(convolutional neural network, CNN)模型的大豆花叶病害的诊断识别方法。首先对分别接种SC3、SC7病毒7 d后发病初期及正常的‘南农1138-2’大豆样本各80片(共计240片)进行高光谱图像采集,根据其图像信息提取并计算感兴趣区域的平均光谱值,建立基于高光谱图像的CNN模型。最终模型训练集识别率达到94.79%,预测集识别率达到92.08%,其中对接种SC3病毒的花叶病叶片识别率为88.75%,对接种SC7病毒的花叶病叶片识别率为93.13%,对正常叶片识别率为94.38%。对比最小二乘支持向量机和极限学习机模型,CNN模型能够更充分提取光谱的深层特征信息,识别效果显著提高。研究表明,基于高光谱图像的CNN模型能够更精确地实现对大豆花叶病初期检测,将CNN与高光谱结合的方法也为病害检测提供了一种新思路。  相似文献   

2.
黑斑病是‘库尔勒’香梨贮藏期的易染病害之一,在潜育期外观无明显变化,很难直接通过肉眼进行准确识别。本研究结合高光谱成像和卷积神经网络(CNN),实现了‘库尔勒’香梨黑斑病潜育期的识别。获取健康和不同病害程度香梨样品的高光谱图像,提取感兴趣区域内光谱后,利用不同预处理方法对其进行处理,分别基于常规算法(最小二乘-支持向量机、K最邻近法、随机森林)和CNN建立病害识别模型。结果表明,与常规算法建模结果相比,CNN模型的识别效果最优。当卷积层数为3,全连接层数为3,学习率为0.000 5时,CNN模型的识别效果最佳,对样品的总体识别准确率为99.70%,对潜育期样品的识别准确率为99.76%,分别较常规算法提高了12和14个百分点。该结果证实CNN模型能够显著提高对‘库尔勒’香梨黑斑病潜育期识别的准确率,为‘库尔勒’香梨黑斑病的早期诊断防治提供了1种新的方法。  相似文献   

3.
高光谱图像与卷积神经网络相结合的油桃轻微损伤检测   总被引:1,自引:0,他引:1  
[目的]油桃表面轻微损伤的快速检测对提高油桃的品质及市场竞争力具有重要作用。[方法]本研究以"中油四号"油桃为研究对象,提出了基于高光谱图像与卷积神经网络相结合的油桃分块损伤区域检测算法。针对原始图像存在的复杂背景及油桃自身颜色特征,采用基于颜色特征的图像分割算法实现油桃与复杂背景的分离。针对损伤部位占比较小的特点,采用分块算法将原始图像分成64×64的块,并为每个分块制作标签(正常、损伤、背景区域),分块数据与其对应标签共同构成试验数据集。构建卷积神经网络模型,将数据输入该模型进行识别。[结果]油桃损伤区域识别率为88.2%。[结论]基于高光谱图像与卷积神经网络相结合的方法可以较准确地实现油桃表面轻微损伤的检测。  相似文献   

4.
为实现土壤氮含量的快速检测,提出一种基于卷积神经网络(CNN)与可见近红外光谱的土壤氮含量检测方法.采用批量正则化及dropout技术提升模型性能,降低过拟合.实验中,对模型的训练次数及dropout丢弃比例进行了对比选择,并将结果与传统的PLSR及BP神经网络进行对比.结果表明,CNN模型的预测精度与泛化能力明显优于...  相似文献   

5.
提出了一种结合小波变换、阈值分割和掩模处理的鲜枣裂纹检测方法,结合小波变换能聚焦到图像任意细节的优良特性、阈值算法能突出图像中感兴趣的部分、图像掩模对感兴趣区域内的图像值保持不变而区域外的图像值均为0等优点,能够将不同大小、任意形状和任意位置的鲜枣裂纹检测出来。仿真试验结果表明,鲜枣裂纹的提取效果比较清晰,很好地实现了鲜枣裂纹检测。  相似文献   

6.
为快速、高效地利用高光谱成像技术诊断小麦赤霉病病症,分析了卷积层结构与光谱病症特征的关联性,并重点研究了高光谱的像元分类建模方法。首先,基于深度卷积神经网络的2种典型结构,构建了不同深度的卷积神经网络,比较了小麦赤霉病高光谱数据点集的训练和测试结果。结果显示:Visual Geometry Group(VGG)结构随着网络深度的增加,模型损失值不断下降;残差神经网络(ResNet)结构随着深度增加,损失值没有明显降低,说明ResNet网络的深度与模型性能无关。从测试集评测模型泛化性可知,具有4个基础单元模块的22层VGG网络在所有深度卷积模型中最优,其建模和验证准确率远高于传统的支持向量机(SVM),分别为0.846和0.843,测试集准确率为0.742。以VGG为基础单元构建的深度神经网络,能有效提取小麦赤霉病病症的高光谱特征。研究结果可为大尺度小麦赤霉病的智能成像诊断提供理论基础。  相似文献   

7.
番茄目标检测有利于提升番茄采摘的智能化程度。本文针对番茄目标检测问题,提出了一种基于Yolo3的目标检测方法。通过对数据集手工标注,并利用kmeans聚类算法更新先验框参数,实现了数据模型的训练测试与模型评估。实验结果表明,所采用方法的目标检测mAP为96.34%,能够有效地实现番茄目标检测。  相似文献   

8.
儿茶素和咖啡碱是茶叶品质的重要评价指标,为了探索深度卷积神经网络(CNN)结合可见近红外光谱(Vis/NIR)用于茶叶儿茶素和咖啡碱无损快速检测的可行性,本研究通过高效液相色谱来测定茶叶中的儿茶素和咖啡碱含量,并与样本的光谱信息建立对应关系;采用回归分析和CNN建模构建了光谱与茶叶内含物的定量关系;采用竞争自适应重加权采样(CARS)和连续投影算法(SPA)选择特征波长,用于开发基于这些特征波长的简单模型。结果表明:4种儿茶素和咖啡碱含量从第1叶位到第6叶位呈现出逐渐降低的趋势;提取特征波长不仅减少了光谱变量数,还获得了比全谱更优或接近的模型性能;CNN在回归分析和特征提取中均表现出良好的性能,预测儿茶素和咖啡碱最优模型的决定系数(R2)和残余预测偏差(RPD)分别达到了0.93和3.28以上。因此,卷积神经网络结合可见近红外光谱可以对儿茶素和咖啡碱的含量进行快速无损检测。  相似文献   

9.
《农家致富》2006,(4):15-15
一般枣树都是在9月份左右成熟.1年只有1茬.而且上市期比较集中,很难卖出好价钱.而1年2熟的反季枣就很好地解决了这个问题。2004年,陕西省高陵县泾渭枣树研究所,在圈内首先成功研制出1年熟的“泾渭”鲜枣品种。  相似文献   

10.
以壶瓶枣为对象探讨用机器视觉和近红外光谱技术检测壶瓶枣内外品质。通过图像处理技术获取壶瓶枣投影面的边缘提取图像,然后使用最小外接矩形法求得图像的像素点个数,以此求得壶瓶枣投影面的面积。采用MSC对壶瓶枣近红外光谱进行预处理,然后分别采用偏最小二乘法(PLS)、主成分回归(PCR)和偏最小二成支持向量机(LS-SVM)3种建模方式对壶瓶枣可溶性固形物的含量进行预测。结果表明,使用LS-SVM模型获得了最优的预测结果,其预测集的相关系数和均方根误差分别为0.9901和0.328。研究表明,机器视觉结合近红外光谱技术能对壶瓶枣内外品质进行综合检测。  相似文献   

11.
【目的】为解决传统天麻表面破损主要依靠人工检测的问题,提出将残差神经网络模型(Faster R-CNN ResNet101)检测方法应用到天麻表面破损识别中,以期取得较好的识别效果。【方法】以腐烂、霉变、机械损伤和完好等4类天麻为研究对象,在卷积神经网络和区域候选网络的基础上构建模型,然后在tensorflow框架上实现模型检测,最后对比分析结果。【结果】天麻表面破损检测模型利用Faster R-CNN ResNet101网络中的输入卷积层以及4个卷积组进行特征提取,区域候选网络生成天麻表面破损的初步位置候选框,实现候选框的分类和定位,其识别率达95.14%,且查准率为0.94,召回率为0.92。与SSD (Single Shot multibox Detector)、Faster_rcnn_inception和Rfcn_resnet101等3种神经网络识别方法对比,识别率分别提高了13.02%、10.69%和12.02%。【结论】该模型具有泛化能力强、准确率较高和鲁棒性较好等特点,为农产品的识别研究提供了参考和借鉴。  相似文献   

12.
纹枯病是水稻的三大病害之一,尤其在中国北方稻区,纹枯病发生逐渐加重、严重威胁到中国的粮食安全,而纹枯病的有效检测是水稻病害预防与控制的首要任务。在实际生产中,农民和从事相关的研究人员通过人工目测来识别水稻纹枯病,但由于光线、杂草、枯叶等外在自然因素和人眼视觉误差等人为因素,导致对水稻的病害等级误判,从而影响对水稻纹枯病的防治,造成环境污染和经济损失,而计算机视觉技术给水稻纹枯病的自动识别检测带来了可能。基于2019年沈阳农业大学北方粳型超级稻成果转化基地的水稻纹枯病图像数据,综合借鉴YOLOv1、YOLOv2和Faster R-CNN算法,设计了一种基于深度卷积神经网络的水稻纹枯病识别模型:YRSNET。该模型具有回归思想的特点,将图像划分为相同大小互不重合的网格,然后通过特征图来预测每个网格区域上的边界框和含有纹枯病病斑的置信度,最终通过非极大值抑制法获得含有纹枯病病斑的最佳边界框位置。试验结果表明:YRSNET对纹枯病病斑识别的平均精度mAP为84.97%、查准率达到为90.21%,对大小为450×800pixel的图像识别所需时间为32.26ms(31帧·s-1  相似文献   

13.
基于卷积神经网络的葡萄叶片病害检测方法   总被引:5,自引:0,他引:5  
文章采用多角度建议区域Faster-RCNN准确定位图像中葡萄叶片,提出一种基于卷积神经网络的病害检测方法,检测图像叶片病害。相比直接检测图像病害,可去除背景因素对病害区域干扰,降低错误率。结果表明,该算法对自然条件下葡萄病害成像适应性良好。文章统计6种不同条件下拍摄图像,对一般叶片检测算法平均mAP为75.52%,显著高于传统算法。在病害检测时,采用两种策略:从一幅图像中检测到每个单个叶片,或将整幅图像对叶片取掩模后,作为下一级病害检测器输入图像。结果表明,第一种方法,6种常见葡萄病害平均mAP为66.47%,其中褐斑病与白粉病mAP超过70%;第二种方法,病害检测平均mAP为51.44%,但平均检测时间节约75%。两种方法性能均优于在原始图像上直接病害检测方法。  相似文献   

14.
 作者对云南枣叶黑斑进行了研究,其病原菌为枣假尾孢[Pseudocercospora jujudae(Chowdhury) A Z M N A Khan & S Shamsi]。文中对该菌进行了形态描述及绘图,并对学名的鉴定进行了讨论。研究的标本保存在中国科学科学院微生物研究所真菌标本室(HMAS)。  相似文献   

15.
基于BP和Adaboost-BP神经网络的 羊肉新鲜度高光谱定性分析   总被引:1,自引:0,他引:1  
【目的】 实现对羊肉新鲜度的快速准确鉴别。【方法】 研究通过对460~1 000 nm的羊肉高光谱图像纯肌肉部分提取光谱数据,以挥发性盐基氮(TVB-N)值对新鲜度等级进行划分,对预处理后的光谱数据分别采用连续投影算法(SPA)、主成分分析(PCA)两种压缩降维方法和反向传播(BP)神经网络、自适应提升BP(Adaboost-BP)神经网络两种建模方法开展羊肉新鲜度的分类比较。【结果】 其中采用SPA、PCA建立的BP模型校正集与预测集准确率均为100%、83.33%,建立的Adaboost-BP模型校正集与预测集准确率均为100%、94.44%,两种压缩降维方法下Adaboost-BP模型效果均优于BP模型。【结论】 利用高光谱图像技术结合Adaboost-BP方法对羊肉新鲜度等级进行分类判别是可行的。  相似文献   

16.
以常见的大豆病害图片为样本,研究分析了大豆的叶斑病、花叶病、霜霉病和灰斑病,并利用卷积神经网络技术设计了针对大豆的病害检测系统。通过对病害图片的二值化和轮廓分割等预处理来获得神经网络模型的训练集,并在此基础上对模型进行了多方面的优化,利用Caffe框架对优化后的网络模型进行了识别率等方面的实验验证。此外,为提高模型使用的便捷性,本实验使用了Qt软件为该系统设计了人机交互界面,从而进一步实现了数据可视化。  相似文献   

17.
[目的]通过将原始光谱数据经过不同的数据变换方式,分析其与枣冠层LAI的相关关系,建立基于高光谱的阿克苏市枣冠层LAI的估测模型,为快速、精确、无损伤、大范围的适时、动态监测植被LAI提供有效途径.[方法]基于原始光谱数据的不同数据变换方式,采用相关性分析和逐步回归分析方法.[结果]不同数据变换后的冠层光谱反射率与枣LAI具有较好的相关性,微分变换后的相关性较原始相关性有所提升.所建模型经过精度评价发现,原始光谱数据经倒数一阶微分变换后估测模型拟合度和预测精度都最高,一阶微分、对数一阶微分、归一化一阶微分次之.[结论]不同数据变换方式后的光谱数据与塔里木盆地枣LAI有显著的相关性,可以用微分、对数微分、归一化微分、倒数微分变换后的数据建立较理想的塔里木盆地枣LAI的估测模型.  相似文献   

18.
以壶瓶枣为研究对象,利用Field Spec 3型近红外光谱仪采集光谱,分析不同扫描方式对壶瓶枣近红外光谱和硬度模型精度的影响。对样品的3个位置分别扫描1,3,6次,采用PLS方法对90个壶瓶枣样品建立硬度模型,其决定系数(R2)均达到0.8以上,校正均方根误差都在0.65以下;应用模型对30个壶瓶枣的硬度进行预测,预测值方差分析结果表明,不同位置进行1,3次扫描所建的硬度模型间无显著差异,确定为较佳扫描方式,而进行6次扫描的硬度模型间有显著差异。在采集光谱建立模型时,应考虑选择合适的扫描次数。  相似文献   

19.
当前,我国鲜枣生产已步入快捷调整轨道,品种多元化、产品优质化、无公害理念化、优质优价,已成为市场的主流。但是,有些地区的枣农仍在盲目发展老品种。当然,不可否认这些品种前几年确实为早引种的果农带来了一定的经济回报,但是近几年市场价格一路下跌,严重地挫伤了枣农的积极  相似文献   

20.
叶绿素是绿色植被进行光合作用的主要色素,是影响作物产量的重要因素之一,也是评价作物健康状况的重要生化指标。快速、准确、无损地监测作物叶片叶绿素含量,是实现作物长势和健康程度精准监测的关键。为提高作物叶绿素含量反演的精度,以冬小麦试验小区为基础,测量关中地区冬小麦叶片反射率及其对应的叶绿素含量。运用分数阶微分法计算0~2阶步长为0.1的分数阶光谱,通过灰色关联分析法提取出与叶绿素含量关联度大的特征,作为模型的输入参数。最终提取出0.6阶751、760 nm, 0.7阶744、751 nm, 0.8阶738、747 nm, 0.9阶738、750 nm, 1.0阶731、750 nm共10个与叶绿素含量关联度高的波段作为模型的特征波段。为解决BP神经网络(back propagation network)收敛速度慢、易陷入局部极小值的问题,使用遗传算法(genetic algorithm, GA)优化BP神经网络的权值和阈值,利用优化后的模型进行叶绿素含量的预测。结果表明,运用遗传算法优化BP神经网络模型反演精度较高,r2为0.952,均方根误差(RMSE)为3.64...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号