首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以黑龙江省哈尔滨市阿城区为研究区域,多时相16 m空间分辨率高分一号(GF-1)卫星宽覆盖(Wide field of view,WFV)影像为数据源,选择归一化植被指数(Normalized difference vegetation index,NDVI)、增强植被指数(Enhanced vegetation index,EVI)、归一化水指数(Normalized difference water index,NDWI)、比值植被指数(Ratio Vegetation Index,RVI)4种植被指数,构建植被指数时间序列,分析作物特征曲线,结合实地样本数据,采用支持向量机(Support vector machine,SVM)分类器对研究区内主要农作物玉米、水稻和大蒜/白菜实施分类。针对SVM分类器分类精度较低问题,引入自适应变异粒子群算法(Adaptive mutation particle swarm optimization,AMPSO)优化SVM,克服传统SVM参数选择主观性,进而提升分类器分类精度。结果表明,玉米和水稻生育期与大蒜/白菜差异较大,易区分;玉米与水稻生育期接近,光谱信息相似,区分难度较大,但光谱指数增长与回落趋势不同,借助NDVI、RVI和EVI可实现有效区分。改进后的AMPSO-SVM分类器,分类效果相比于SVM明显提升,确定核参数为0.135,惩罚因子为221.67时,分类效果最佳,总体分类精度达到94.39%,Kappa系数为0.9287,比SVM分类器,分类精度提升3.48%,Kappa系数提高0.0436。研究可为大区域农作物种植结构提取提供参考与借鉴。  相似文献   

2.
对SVM分类器进行了分析,提取了汉语动词短语的静态特征和动态特征,构造了动词短语的向量空间模型,提出了基于SVM的汉语动词短语分类算法.实验表明:与基于规则的分类方法比较,SVM方法大大减少分类器更新所需要的学习步骤和时间,是一种较好的分类算法.  相似文献   

3.
为增强图像水印的鲁棒性,改进了一种基于支持向量机的彩色图像水印算法.主要思想是由版权所有者提供的密钥随机选取嵌入位置,依据HVS视觉掩蔽特性选取嵌入因子将Hilbert曲线置乱后的水印信息,嵌入到彩色图像的红绿蓝三个通道中.其中水印信息由参考水印和标识水印组成,参考水印在水印提取过程中只用于获取SVM训练模型,进而利用训练模型进行预测提取标识水印信息.实验结果表明该算法对剪切、JPEG压缩、噪声等图像处理操作具有较好的鲁棒性.  相似文献   

4.
为了快速、准确地鉴别植物,将5个植物外部形态特征作为评价指标,首先使用正态云模型对数据库中每种植物的各个指标进行隶属度计算,然后使用层次分析法计算出各个指标的权重,最后使用灰色关联分析对各株植物的隶属度进行综合评价。结果表明,该算法能够准确识别出被测植物,可以应用于246种云南省种子植物特有属植物的鉴别,该方法有效且可行。  相似文献   

5.
基于叶片图像算法的植物种类识别方法研究   总被引:1,自引:0,他引:1  
为了提高植物种类的识别率,采用叶片图像算法。首先建立植物种类特征模型,包括植物叶片颜色特征、形状特征、纹理特征;然后确定径向基函数神经网络的输入层、输出层、隐含层之间的关系;接着对径向基函数个数、中心及宽度优化,基于梯度下降方法对权重参数计算,自适应调节学习率;最后给出了植物种类识别过程。实验仿真选择植物叶片颜色特征、形状特征、纹理特征的特征量分别为6、7、7个,其中本文算法对植物种类识别的三个组合特征平均识别率为93.5%,高于单个特征、两个组合特征的平均识别率,形状特征对识别率所起的作用最大。  相似文献   

6.
基于改进的SVM算法的耕地地力评价模型研究   总被引:1,自引:0,他引:1  
为了提高农业管理水平,将计算机智能技术与农业技术相结合,提出基于改进的SVM算法建立标准农田地力等级的评价模型,在评价模型中利用频繁闭集挖掘算法获取特征向量集合,再利用SVM算法建立耕地地力评价模型。仿真结果表明:评价结果符合当地实际情况,并且与传统的评价模型相比,该模型对非线性特征值评价评价中精确度更高。  相似文献   

7.
针对在应用数码相机采集大田作物叶片图像时出现的植物叶片图像倾斜和几何失真等问题,提出了基于双线性映射的植物叶片校正算法.测量有效性不受叶片大小、形状差异和叶片图像中叶片周边白色背景的影响.实验验证该方法校正叶片图像,精度可达99%以上,是进一步提取植物叶面特征的基础.  相似文献   

8.
基于SVM分类的预警系统   总被引:9,自引:2,他引:9  
将SVM理论与预警理论相结合,提出了一个基于SVM的宏观经济预警系统,并应用于我国棉花产量增长率的预警。与已有预警系统比较,该预警系统在预警概化能力上有着明显的优势。  相似文献   

9.
基于局部阈值的植物叶片图像分割算法研究   总被引:2,自引:0,他引:2  
提供了采用数字图像处理方法快速分割含边框植物叶片的方法,分别采用局部阈值分割和最佳阈值分割获取二值图像,得到局部阈值分割效果较好的结论,最终得到了比较清晰的边框图像和叶片二值图像,为后续图像处理打下良好基础。  相似文献   

10.
流形学习的一个目标是寻找一个映射,使得邻域内不同类数据点之间的边界最大化.观察数据点映射后在子空间内使得同类数据点更聚集,而不同类数据点更分类.基于这个目标,提出了一种判别映射分析的算法,并将其应用于叶片分类中,该算法能够得到数据较优的判别分类特征,适用于样本分类.在瑞典植物叶片数据库上进行了试验验证,结果表明该方法是有效可行的.  相似文献   

11.
以提取乌伦古湖湿地信息为目的,采用该地区2010年Landsat5/TM影像,使用支持向量机SVM的多项式函数对湿地信息进行分类。使用精度评估法(混淆矩阵)对分类结果进行精度评价并与传统的最大似然法(MLC)、非监督分类(ISODATA)法分类结果进行对比。结果表明,SVM分类法不仅能够很好地提取河流信息并且能够区分湖泊湿地与坑塘湿地,分类总精度达到94.000%,Kappa系数为0.932,明显高于MLC、ISODATA两种方法,同时各类别的用户精度和制图精度都在不同程度上高于传统分类方法。SVM是一种有效的提取湿地的方法 ,非常适用于干旱区湿地信息提取与监测。  相似文献   

12.
鉴于我国现有规模化养猪场中猪只健康鉴定主要依赖于人工观测、效率低、误判率高的现状,通过在规模化养猪场猪舍正上方悬挂网络摄像头采集猪只活动视频,应用支持向量机模型分析猪只运动参数和体态特征数据,对猪只的采食、排泄、站立、趴窝、慢走、跑动等行为进行分类。结果表明,该模型对于猪只的6种行为分类准确率达96.09%。  相似文献   

13.
目的植物叶片分割旨在从背景中分割出叶片区域,去除背景对象干扰。这对植物病害识别和物种鉴定具有重大意义。方法本文设计了基于全卷积神经网络的植物叶片分割算法。首先,目标函数用对数逻辑函数代替复杂的Softmax多类预测函数,从而将分割任务转化为适合于植物叶片分割的二分类问题;其次,把批归一化技术引入全卷积神经网络,从而改善网络整体的收敛性。最后,针对当前植物叶片分割研究中缺乏评估指标的状况,设计了新的评估协议——受试者工作特征曲线,该曲线反映了不同阈值情况下植物叶片图像分割的召回率与误报率之间的变化情况。结果本文提出的算法降低了全卷积神经网络的参数复杂度,改善了网络的收敛性。实验结果表明,该方法比Leafsnap提到的基于颜色的分割方法更完整地分割了植物叶片区域;提出的ROC曲线能够充分评估植物叶片的分割性能。结论与传统方法相比,基于深度学习的植物叶片分割方法实现了输入图像的端对端处理,无需图像转换、噪声滤波和形态运算等预处理技术,因此在植物叶片分割上具有可行性。   相似文献   

14.
基于改进蚁群算法的分类规则挖掘   总被引:1,自引:0,他引:1  
数据分类是数据挖掘中的一个重要课题,研究各种高效的分类算法是数据挖掘的重要问题之一.本文将蚁群算法与分类规则抽取问题相结合,提出了一种基于蚁群算法的具有自适应和变异杂交特征的分类规则挖掘方法,自适应地调整信息素增量,在规则构造中进行杂交变异,有效地节省了计算时间,并优化了生成的分类规则.实验结果表明:该算法可以有效克服停滞,提高搜索效率,有效地挖掘出简洁分类规则.  相似文献   

15.
李健  丁小奇  陈光  孙旸  姜楠 《南方农业学报》2019,50(6):1385-1391
[目的]使用改进的自适应高斯滤波算法对农作物叶片病虫害图像进行降噪处理,为叶片病虫害图像提供前期预处理的优化手段,从而提高诊断的准确性.[方法]通过计算图像像素矩阵区域内中心点邻域方差与二维高斯滤波函数的比值,确定高斯标准差,动态生成高斯卷积核,从而形成改进的自适应高斯滤波算法,对病斑图像进行降噪平滑处理;然后分别模拟不同噪声强度,比较算法的降噪效果;最后通过峰值信噪比(Peak signal-to-noise ratio,PSNR)定量计算改进前后高斯滤波算法的优化程度.[结果]首先,使用MATLAB 2014b对密刺黄瓜枯萎病斑RGB图像模拟出3组不同噪声强度下的干扰场景,并进行归一化处理;然后,分别利用3种算法对噪声图像进行降噪处理,得出当噪声强度较弱时,改进算法对高斯白噪声抑制效果明显;噪声强度增大时,改进算法的优化程度逐渐下降;其次,分别计算各算法改进前后的PSNR,得出当噪声强度为0.01、0.02和0.03时,即改进的自适应高斯滤波算法PSNR值分别比传统高斯滤波提升6.942、6.965和6.718 db;最后,通过计算100组采集叶片图像降噪处理后的PSNR值,得到改进的自适应高斯滤波的PSNR值平均提高13.8%.[建议]采集的农作物叶片图像试验材料需广泛化;推动优化图像预处理的进程;提升图像匹配准确性,推动叶片诊断专家系统的研究.  相似文献   

16.
针对空间域特征不能全面准确地描述叶片的问题,提出了一种基于复频域纹理特征(Complex frequency domain texture features,CFDTF)的叶片识别算法。首先,对叶片图像进行预处理。其次,对预处理后的图像进行分块,并对每一个图像块进行双树复小波变换(Dual-tree complex wavelet transform,DTCWT),分别计算复频域局部二值模式(Local binary pattern,LBP)和局部相位量化(Local phase quantization,LPQ)特征,得到图像块的特征。接着,串联所有图像块的特征得到整个图像的特征。最后,在Flavia数据库上通过KNN分类器分类识别。结果表明,与传统的颜色、形状、纹理等特征相比,该算法平均识别精度明显提高,达到95.75%。  相似文献   

17.
为解决化肥施用利用率低的问题,需要对土壤等级进行精准定位。传统的神经网络存在不适用于土壤等级精确判定的一些缺陷,构建了基于改进自适应遗传算法的SFAM模型,将其应用于测土分类中,取得了较好的效果。  相似文献   

18.
使用传统方式对苹果叶片进行图像分割进而测量叶片几何参数,虽精度尚可,但效率较低。针对该问题,提出一种基于深度学习语义分割模型和迁移学习的苹果叶片图像分割算法,完成对叶片的快速、准确分割。所提方法以LinkNet为基本网络结构,进行了4个方面的改进:采用ResNet18作为编码器主干网络,融合迁移学习的思想加速模型拟合;减小编码解码块的数量,降低网络复杂度;改进通道约减方案,减少上采样中的参数量;使用子像素卷积进行上采样,降低计算量。结合焦点损失函数,将改进的LinkNet网络应用于标准苹果叶片数据集上。试验结果表明,所提算法的分割精度为97.27%,与原LinkNet相比精度相当;推理时间仅为7.82 ms,相较于原网络缩短39.89%;模型参数量和浮点数计算量大幅减少;且改进网络的推理速度远快于FCN、U-Net、DeepLabV3+等网络。所提算法在快速分割叶片主体的同时,还能较好地保持叶片边缘锯齿等细节特征,能够真正实现高效、精准地分割苹果叶片,为快速测量叶片面积和其他几何参数提供了新的思路。  相似文献   

19.
基于纹理特征与改进SVM算法的玉米田间杂草识别   总被引:1,自引:0,他引:1  
王宏艳  吕继兴 《湖北农业科学》2014,(13):3163-3166,3169
以玉米田间杂草图像为研究对象,对采集的杂草叶片图像进行预处理,对图像的多个纹理特征进行筛选,以支持向量机进行分类。针对传统分类器的不足,以组合核函数对其性能进行优化。仿真结果表明,构建优化的组合核函数能使分类器性能得到显著提升,且当组合核函数中径向基函数所占的权重为0.2、多项式核函数(二阶)所占的权重为0.8时识别率最高,达86.00%,可以满足杂草识别的需求。  相似文献   

20.
局部线性嵌入(LLE)算法在实际应用中存在显著的缺陷,其中之一就是必须确定近邻参数k。本研究提出一种新的监督自适应LLE算法。根据Fisher投影距离构造了一个相似判断准则,用它设置阈值来帮助选择参数k。不同的样本可以根据其所处数据区域分布的密集程度自适应地选择不同的k值。将这种方法应用于植物叶片分类识别中,试验结果表明叶片平均识别率达到了92.4%,优于传统的LLE和监督的LLE方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号