首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this work was to determine whether the lipoxygenase (LOX) activity is a limiting factor for the biosynthesis of virgin olive oil (VOO) volatile compounds during the oil extraction process. For this purpose, LOX activity load was modified during this process using exogenous LOX activity and specific LOX inhibitors on olive cultivars producing oils with different volatile profiles (Arbequina and Picual). Experimental data suggest that LOX activity is a limiting factor for the synthesis of the oil volatile fraction, this limitation being significantly higher in Picual cultivar than in Arbequina, in line with the lowest content of volatile compounds in the oils obtained from the former. Moreover, there is evidence that this limitation of LOX activity takes place mostly during the milling step in the process of olive oil extraction.  相似文献   

2.
SPME was employed to characterize the volatile profile of virgin olive oils produced in two geographical areas of northern Italy: the region of the Gulf of Trieste and the area near Lake Garda. There are as yet no data on the headspace composition of virgin olive oils from these regions, characterized by particular conditions of growth for Olea europaea. Using the SPME technique coupled to GC-MS and GC-FID, the volatile components of 42 industrially produced virgin olive oil samples were identified and the principal compounds quantitatively analyzed. Significant differences in the proportion of volatile constituents from oils of different varieties and geographical origins were detected. The results suggest that besides the genetic factor, environmental conditions influence the volatile formation.  相似文献   

3.
Olive tree varieties that were cultivated only in the Mediterranean basin a few decades ago are now planted in the Southern Hemisphere as well. The chemical composition of the oils produced in countries as far distant as Spain and Chile are affected by differences in latitude and climate. In this work, seven monovarietal virgin olive oils from Chile (Arbequina, Barnea, Frantoio, Koroneiki, Leccino, Manzanilla and Picual) have been characterized by the chemical compounds responsible for taste (phenols) and aroma (volatiles). The oils were produced in five regions of Chile, and the concentration values of some chemical compounds were related to the geographical location of the olive tree orchards. Virgin olive oils from the major cultivars, Arbequina and Picual, were characterized in comparison with the same monovarietal oils produced in Spain. The concentration values of fourteen volatile compounds showed significant differences (p < 0.05) between the oils produced in Spain and Chile. Concerning the phenol composition, main differences were found on the secoiridoids derivatives of oleuropein and ligstroside, apigenin and luteolin.  相似文献   

4.
An SPME-GC/ion trap method was exploited to determine the chromatogram of volatile compounds of organic olive oils of southern Italian regions. The method is based on the assay of the terminal species of the "lipoxygenase pathway", which are present in the volatile fraction of the sampled compounds. Ethyl isobutanoate was used as internal standard in either the EI or CI ionization mode. The absolute concentration values of each analyte were evaluated through good-to-excellent calibration curves. Case studies on oils obtained from different cultivars or harvesting times are presented. The quantitative data for each compound were subjected to principal component analysis to characterize the different cultivars of this work.  相似文献   

5.
The activity of olive microbiota during the oil extraction process could be a critical point for virgin olive oil quality. With the aim to evaluate the role of microbiological activity during the virgin olive oil extraction process, just before oil extraction freshly collected healthy olive fruits were immersed in contaminated water from an olive mill washing tank. The oils extracted were then compared with control samples from the same batch of hand-picked olives. The presence of lactic and enteric bacteria, fungi and Pseudomonas on the surface of olives was proved to be much higher in washed than in control olives, with increments in cfu/g between 2 and 3 orders of magnitude. The biogenesis of volatile compounds and the extraction of olive polyphenols and pigments were significantly influenced by the microbiological profile of olives even without any previous storage. In most cases the effect of olive microbiota on oil characteristics was greater than the effect exerted by malaxation time and temperature. Oils from microbiologically contaminated olives showed lower amounts of C5 volatiles and higher levels of C6 volatiles from the lipoxygenase pathway and some fermentation products. On the other hand, a decrease of chlorophylls, pheophytins, xanthophylls and the ratio chlorophyll/pheophytin was observed in these oils. Likewise, the microbiological activity during oil extraction led to significantly lower amounts of polyphenols, in particular of oleuropein derivatives. These differences in olive oil chemical composition were reflected in oil sensory characteristics by the decrease of the green and bitter attributes and by the modification of the oil color chromatic ordinates.  相似文献   

6.
Detection of rancid defect in virgin olive oil by the electronic nose   总被引:1,自引:0,他引:1  
A sensor array of 32 conducting polymer sensors has been used to detect the rancid defect in virgin olive oils. A training set, composed of admixtures of a Portuguese virgin olive oil with different percentages (0-100%) of a rancid standard oil, was used for the selection of the best sensors classifying correctly the samples. Information on volatile compounds responsible for rancidity and the sensory evaluation of samples by assessors were used for explaining the mathematical selection of sensors. A tentative calibration, using unsupervised procedures (PCA and MDS) and a nonlinear regression, was carried out, with the training set, and later confirmed with a test set with which rancid commercial samples of different varieties were used to spike a Greek extra virgin olive oil at low levels of rancidity (0.5-6%).  相似文献   

7.
Thermal stabilities of main enzymes involved in the biosynthesis of virgin olive oil (VOO) aroma through the lipoxygenase (LOX) pathway were studied in crude enzymatic preparations. Kinetic parameters of thermal inactivation for LOX were determined graphically and were shown to be compatible with the presence of two LOX isoenzymes (LOXlab and LOXres) having different thermal stabilities and displaying relative activities of 88 and 12% each. Data on hydroperoxide lyase (HPL) suggest the existence of just one HPL isoform. Thermal stabilities of LOX and HPL enzymatic activities in crude preparations seem to explain the observed decrease of volatile contents in VOO aroma as a consequence of heat treatments of olive fruit. Moreover, differences in thermal stability of LOXlab and LOXres would justify the distinct pattern of reduction of C6 and C5 compound contents observed in the aroma of these oils.  相似文献   

8.
Headspace solid-phase microextraction (HS-SPME) -gas chromatography using flame ionization detection and multivariate analysis were applied to the study of the specificity of protected designation of origin (PDO) virgin olive oils produced in a southern French region (Alpes-Maritimes) based on their volatile compounds. A total of 35 PDO olive oils from Nice, 6 commercial oils, and 12 other French PDO olive oils were analyzed. Recorded data were subjected to principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). The method developed here was able to perfectly distinguish different qualities of olive oils. Representative samples from each class obtained by chemometric treatment were analyzed by HS-SPME and GC-MS. PCA and SIMCA of chromatographic data were related to sensory analysis and led to a better understanding of the chemical features and observed sensory effects of olive oils.  相似文献   

9.
A total of 33 virgin olive oil samples of the two main Tunisian cultivars, Chemlali and Chétoui, were characterized by their volatile compounds. The olive oil samples were obtained from olives harvested at four stages of ripeness in costal and inland farms of different geographical places. Major volatiles, mostly C6 and C5 compounds produced from linolenic and linoleic acids through the lipoxygenase cascade, were quantified by solid-phase microextraction-gas chromatography. Mathematical procedures allowed for the determination of the volatiles that not only are able to discriminate the olive oils by their olive cultivar (hexanal, E-2-hexenal, and total ketones) and ripeness (pentanal and 1-penten-3-one) but also contribute to their distinctive aroma. Finally, an electronic nose based on metal oxide sensors was checked for a rapid and at-line implementation of Tunisian olive oil varietal traceability. The classification of the samples by the sensors was explained by their sensitivity to volatiles E-2-hexanal, hexanal, 1-penten-3-one, ethanol, and Z-3-hexenol. Multivariate procedures of discriminant analysis and principal component analysis were used in the study.  相似文献   

10.
High-field 31P NMR (202.2 MHz) spectroscopy was applied to the analysis of 59 samples from three grades of olive oils, 34 extra virgin olive oils from various regions of Greece, and from different olive varieties, namely, 13 samples of refined olive oils and 12 samples of lampante olive oils. Classification of the three grades of olive oils was achieved by two multivariate statistical methods applied to five variables, the latter being determined upon analysis of the respective 31P NMR spectra and selected on the basis of one-way ANOVA. The hierarchical clustering statistical procedure was able to classify in a satisfactory manner the three olive oil groups. Subsequent application of discriminant analysis to the five selected variables of oils allowed the grouping of 59 samples according to their quality with no error. Different artificial mixtures of extra virgin olive oil-refined olive oil and extra virgin olive oil-lampante olive oil were prepared and analyzed by 31P NMR spectroscopy. Subsequent discriminant analysis of the data allowed detection of extra virgin olive oil adulteration as low as 5% w/w for refined and lampante olive oils. Further application of the classification/prediction model allowed the estimation of the percent concentration of refined olive oil in six commercial blended olive oils composed of refined and virgin olive oils purchased from supermarkets.  相似文献   

11.
Some important edible oils (extra virgin olive oil, canola oil, and sunflower oil) were added to aqueous glucose-lysine or xylose-lysine model systems to investigate their effect on the formation of volatiles from the Maillard reaction (MR). The volatile compounds were extracted by a Likens-Nickerson apparatus and quantified. Pyrazines, Maillard reaction products with an important impact on food flavor, appeared to be particularly sensitive to the presence of the oils in both the xylose-lysine and glucose-lysine model systems. The unsubstituted pyrazine was formed more with olive oil, less with canola oil, and even less with sunflower oil, whereas 2-methylpyrazine, 2,5-methylpyrazine, and 2,3-dimethylpyrazine were formed less with olive oil, more with canola oil, and even more with sunflower. The oxidative states of the oils and their fatty acid fingerprints were determined: the results indicated that the relative amounts of the pyrazines are sensitive to the degree of unsaturation of the oil. The autoxidation of the volatile compounds generated from the MR, investigated by the addition of free radical modulators (antioxidants alpha-tocopherol, 2,6-di-tert-butyl-4-methylphenol, and rosemary extract; or pro-oxidant alpha,alpha'-azobis-isobutyronitrile, a free radical initiator), was limited in respect to aqueous model systems.  相似文献   

12.
The effect of hot-water treatments of olive fruits before processing on the biosynthesis of virgin olive oil aroma was investigated by quantifying the variation within the major classes of volatile compounds. Data showed that hot-water treatments gave rise to changes in the volatile aroma profile of virgin olive oil from the three olive cultivars under study, Manzanilla, Picual, and Verdial. Different effects by thermal treatments were observed according to cultivar. In general, these changes are mainly due to a decrease in the contents of C(6) aldehydes and C(5) compounds. Contents of C(6) alcohols and esters remained constant or decreased slightly when the temperature of the treatment was increased. Thus, heat treatments seemed to promote a partial deactivation of the lipoxygenase/hydroperoxide lyase enzyme system, whereas other enzymatic activities, within the lipoxygenase pathway, such as alcohol dehydrogenase and alcohol acyltransferase, remained apparently unaffected as a consequence of heat treatments.  相似文献   

13.
Static headspace (SHS), headspace solid phase microextraction (HS-SPME), headspace sorptive extraction (HSSE), and direct thermal desorption (DTD) were applied to the analysis of four French virgin olive oils from Corsica. More than 60 compounds were isolated and characterized by GC-RI and GC-MS. SHS was not suited to the characterization of olive oil volatile compounds because of low sensitivity. The SPME and HSSE techniques were successfully applied to olive oil headspace analysis. Both methods allow the characterization of volatile compounds (mainly C(6) aldehydes and alcohols), which contribute significantly to the "green" flavor note of virgin olive oils. The PDMS stir bar showed a higher concentration capacity than a DVB/CAR/PDMS SPME fiber due to the higher volume of polymeric coating. DTD was a very good tool for extracting volatile and especially semivolatile compounds, such as sesquiterpenes, but requires a significant investment like that for HSSE. Finally, SPME may be a more appropriate technique for routine quality control due to its operational simplicity, repeatability, and low cost.  相似文献   

14.
Olive stoning during the virgin olive oil (VOO) mechanical extraction process was studied to show the effect on the phenolic and volatile composition of the oil. To study the impact of the constitutive parts of the fruit in the composition of olive pastes during processing, the phenolic compounds and several enzymatic activities such as polyphenoloxidase (PPO), peroxidase (POD), and lipoxygenase (LPO) of the olive pulp, stone, and seed were also studied. The olive pulp showed large amounts of oleuropein, demethyloleuropein, and lignans, while the contribution of the stone and the seed in the overall phenolic composition of the fruit was very low. The occurrence of crushed stone in the pastes, during malaxation, increased the peroxidase activity in the pastes, reducing the phenolic concentration in VOO and, at the same time, modifying the composition of volatile compounds produced by the lipoxygenase pathway. The oil obtained from stoned olive pastes contained higher amounts of secoiridoid derivatives such as the dialdehydic forms of elenolic acid linked to (3,4-dihydroxyphenyl)ethanol and (p-hydroxyphenyl)ethanol (3,4-DHPEA-EDA and p-HPEA-EDA, respectively) and the isomer of the oleuropein aglycon (3,4-DHPEA-EA) and, at the same time, did not show significant variations of lignans. The stoning process modified the volatile profile of VOO by increasing the C6 unsaturated aldehydes that are strictly related to the cut-grass sensory notes of the oil.  相似文献   

15.
The emergence of primary and secondary oxidation products in New Zealand extra virgin olive oil during accelerated thermal oxidation was measured and correlated with the concentrations of 13 headspace volatile compounds measured by selected ion flow tube mass spectrometry (SIFT-MS). SIFT-MS is a mass spectrometric technique that permits qualitative and absolute quantitative measurements to be made from whole air, headspace, or breath samples in real-time down to several parts per billion (ppb). It is well-suited to high-throughput analysis of headspace samples. Propanal, hexanal, and acetone were found at high concentrations in a rancid standard oil, while propanal, acetone, and acetic acid showed marked increases with oxidation time for the oils used in this study. A partial least-squares (PLS) regression model was constructed, which allowed the prediction of peroxide values (PV) for three separate oxidized oils. Sensory rancidity was also measured, although the correlations of headspace volatile compounds with sensory rancidity score were less satisfactory, and too few results were available for the construction of a PLS regression model. A fast (approximately 1 min), reliable method for prediction of olive oil PVs by SIFT-MS was developed.  相似文献   

16.
Fatty acid alkyl esters (FAAEs) are a family of natural neutral lipids present in olive oils and formed by esterification of free fatty acids (FFAs) with low molecular alcohols. Inappropriate practices during the olive oil extraction process and bad quality of the olive fruits promote their formation. Quantification can be done by isolation with a silica gel solid phase extraction cartridge followed by analysis on a gas chromatograph equipped with a programmed temperature vaporizer injector using a polar capillary column. The application of the method to more than 100 Spanish olive oils from different categories, varieties, and geographical origin allowed for establishing the average content of FAAEs and distinguishing the Spanish protected denomination of origin (PDO) and extra virgin olive oils from other categories of olive oils. Those other categories of oils can be subjected to a mild refining process, which leads to blending with extra virgin olive oils. Studies on low quality oils subjected to mild refining showed that FAAEs remain after that process. Thereby, blends of extra virgin olive and mildly refined low quality olive oils can be detected by their alkyl ester concentrations.  相似文献   

17.
The purpose of the work was to investigate the effect of the maturation process of the olive fruit on the phenolic fraction of drupes and oils from Arbequina, Farga, and Morrut cultivars. The level in the phenolic content of olive drupes declines rapidly during the black maturation phase. A general decreasing trend was observed too in the phenolic content of olive oils during the ripening process in the three varieties studied. Important differences in the high-performance liquid chromatography profile between varieties were observed. These included the presence of very low amounts of lignans in olive oils proceeding from the Morrut cultivar, and the presence of three peaks after elution of 3,4-DHPEA-EDA in the Farga and Morrut cultivars, which could be used as differentiating parameters. Sensory profile differences were observed between olive cultivars and due to the ripening process.  相似文献   

18.
This study investigated the effect of both the degree of ripening of the olive fruit and irrigation management-rain-fed, two different regulated deficit irrigations (RDI), the method proposed by the Food and Agriculture Organization of the United Nations (known as FAO), and 125 FAO (125% FAO)-on the phenolic and volatile composition of Cornicabra virgin olive oils obtained during two crop seasons. Secoiridoid phenolic derivatives greatly decreased upon increase of both irrigation and ripening, for example, the 3,4-DHPEA-EDA content decreased from 770 to 450 mg/kg through fruit ripening under rain-fed conditions and from 676 to 388 mg/kg from rain-fed conditions to FAO irrigation treatment (at a ripeness index of approximately 4). Moreover, secoiridoid derivatives of hydroxytyrosol decreased more than those of tyrosol. The levels of major volatile components decreased in the course of ripening but were higher in irrigated olive oils: for example, the E-2-hexenal content ranged between 4.2 and 2.6 mg/kg (expressed as 4-methyl-2-pentanol) over fruit maturation under rain-fed conditions and between 8.0 and 3.5 mg/kg under FAO scheduling. It is important to note that where water was applied only from the beginning of August (RDI-2), when oil begins to accumulate in the fruit, the resulting virgin olive oil presented a phenol and volatile profile similar to those of the FAO and 125 FAO methods, but with a considerable reduction in the amount of water supplied to the olive orchard.  相似文献   

19.
Samples of Spanish virgin olive oils (VOOs) from different categories, origins, varieties, and commercial brands were analyzed by HPLC with a programmable fluorescence detector to determine the content of nine heavy polycyclic aromatic hydrocarbons (PAHs): benzo(a)anthracene, chrysene, benzo(e)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perilene, and indeno(1,2,3-c,d)pyrene. Samples of olive pomace and crude olive pomace oils were also investigated. Benzo(a)pyrene concentrations were below the allowed limit in the European Union (2 microg/kg) in 97% of the VOO samples. Only those samples coming from contaminated olive fruits or obtained in oil mills with highly polluted environments exceeded this value. High correlation coefficients (<0.99) were obtained between the contents of benzo(a)pyrene and the sum of the nine PAHs for all of the analyzed categories, suggesting that benzo(a)pyrene could be used as a marker of the content of these nine PAHs in olive oils.  相似文献   

20.
The aim of the present work was to establish the limiting factors affecting the biosynthesis of volatile esters present in virgin olive oil (VOO). Oil volatile fractions of the main Spanish olive cultivars, Arbequina and Picual, were analyzed. It was observed that acetate esters were the most abundant class of volatile esters in the oils, in concordance with the high content of acetyl-CoA found in olive fruit, and that the content of C6 alcohols is limited for the synthesis of volatile esters during the production of VOO. Thus, the increase of C6 alcohol availability during VOO production produced a significant increase of the corresponding ester in the oils in both cultivars at two different maturity stages. However, the increase of acetyl-CoA availability had no effect on the VOO volatile fraction. The low synthesis of these C6 alcohols seems not to be due to a shortage of precursors or cofactors for alcohol dehydrogenase (ADH) activity because their increase during VOO production had no effect on the C6 alcohol levels. The experimental findings are compatible with a deactivation of ADH activity during olive oil production in the cultivars under study. In this sense, a strong inhibition of olive ADH activity by compounds present in the different tissues of olive fruit has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号