首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
张玉文  张萍 《作物学报》1997,23(2):252-255
同化物源端装入过程包括源(叶等)光合产物的形成、转化、积累和输出;同化物库端卸出过程包括来自源的光合产物在库端(籽粒等)的输入、转化及积累。在小麦籽粒灌浆期,同化物源端装入快慢直接关系到同化物的库端卸出快慢,二者又与源叶光合产物在源-库之间的分配直接相关,如果同化物在库端卸出快,就有利于更多的光合产物向籽粒运转,转化为淀粉而贮存起来,故而它们与作物产量高低密切相关。我们以前的研究表明:在籽粒灌浆期,春小麦旗叶同化物的源端装入和库端卸出表现为昼夜周期变化规律,即旗叶同化物的运转周期为24h,在其同化后24h内输出70%左右,大部分在库端卸出。但上述试验为期1天,其结果能否在小麦整个灌浆期成立,还有待于进一步证实。由于小麦籽粒灌浆速度表现为“慢—快—慢”的特性,那么在小麦籽粒灌浆初期、中期和后期,旗叶同化物的源端装入和库端卸出是否都表现昼夜周期变化规律呢?为此,我们以冬小麦为试验材料进行研究。  相似文献   

2.
春小麦灌浆期功能叶^14C同化物源—库调控   总被引:3,自引:0,他引:3  
利用^14CO2示踪研究春小麦灌浆期旗叶同化物在源训间运转与分配。结果表明,上午同化产物在同化4h的输出占24h输出的70%;下午同化的只有31%。基本上是同化后10h输出。不过两者同化后24h总输出基本一致,均在67%左右。同化的产物输出有“排队现象”,即先同化先输出。叶片中^1C可溶性糖^14C同化物的始终较高,同化后10h平均为64.3%(^14C蔗糖为45.7%)和66.9%(^14C蔗糖  相似文献   

3.
干热风对灌浆期冬小麦旗叶光合蒸腾的影响   总被引:2,自引:0,他引:2  
采用人工模拟干热风方法,对灌浆期冬小麦进行重度干热风(重)、轻度干热风(轻)和无干热风(CK)平行对比试验。结果发现:重度干热风对旗叶光合速率(An)、蒸腾速率(Tr)和气孔导度(Gs)的胁迫指数(SI)为0.88,0.68,0.83,轻度干热风对An、Tr和Gs的SI为0.32,0.19,0.39;在重-轻-CK3个梯度上,Gs-An和Gs-Tr均有极显著正相关关系;轻干热风对胞间CO2浓度(Ci)无显著影响,重干热风下Ci显著升高。综合分析认为:轻、重干热风对灌浆期旗叶光合蒸腾均有显著抑制作用,重干热风抑制作用要显著强于轻干热风;干热风引起气孔部分闭合Gs减小是光合蒸腾受抑制的主要原因,重干热风下光合还明显受到非气孔限制;非气孔因素是导致同等干热风条件下光合受抑制程度大于蒸腾的原因。  相似文献   

4.
潘晓华  王永锐 《作物学报》1998,24(6):821-827
两系杂交稻N31SS/P40水培稻株不同库/源比值株剑叶光合速率在灌浆结实前期去叶处理明显高于对照,去1/2花则降低光合速率;灌浆中,后期处理间差异较小。改变库/源比后1-7去,去叶处理剑叶的RuNBP羧化酶活性,光合磷酸化和Hill反庆活性,蔗糖磷酸合成酶活性,叶片中无机磷含量,被同化碳在醇溶部分分配比例及光合同化物从剑叶输出的速率均明显高于对照,而叶片中蔗糖和淀粉含量低于对照。  相似文献   

5.
为了解深翻与小麦灌浆的关系,以冀麦585为材料,采用大田试验研究了不同的深翻深度对冬小麦灌浆期旗叶衰老和灌浆特性及产量的影响。结果表明,深翻70 cm处理可以提高冬小麦灌浆后期旗叶SPAD值,提高叶绿素含量,延缓旗叶衰老;深翻50 cm和深翻70 cm提高灌浆期冬小麦的土壤含水量,旗叶的光合特性,延长叶片功能期;深翻处理提高灌浆后期小麦的籽粒干质量、最大灌浆速率、灌浆速率最大时的生长量和理论最大粒重,延后最大灌浆速率出现的时间;深翻30 cm和深翻50 cm处理通过提高千粒质量和收获指数来提高冬小麦的产量,其中深翻50 cm的保水效果好于深翻30 cm。因此,农业生产中合理深翻是提高冬小麦灌浆后期灌浆速率,延缓叶片衰老,从而提高产量的有效措施。  相似文献   

6.
研究了灌浆期高温胁迫条件对冬小麦叶源、库器官某些生理指标的影响。结果表明 ,高温胁迫导致冬小麦叶源、库活性显著降低。高温胁迫能显著降低冬小麦子粒蔗糖酶的活性 ,降低子粒可溶性糖含量 ,胁迫发生初期子粒ATP酶的活性迅速降低 ;高温胁迫导致冬小麦的旗叶MDA含量、脯氨酸含量上升。适当的调节剂处理能显著改变高温胁迫条件下上述生理指标的变化动态 ,显著抑制高温胁迫条件下冬小麦旗叶光合性能的下降 ,延缓叶片衰老的进程 ,对保持叶源、库器官的生理活性有显著的作用 ,协调源库关系 ,降低高温胁迫对植株的伤害程度  相似文献   

7.
为了明确干旱胁迫对不同抗旱性冬小麦灌浆期下午旗叶光合荧光特性和产量的影响,2018—2019年度和2019—2020年度,在防雨棚池栽条件下,以强抗旱性冬小麦品种晋麦47(JM47)和弱抗旱性冬小麦品种偃展4110(YZ4110)为材料,采取测墒补灌的方法,设置重度干旱(W1:播前65%MFC(最大田间持水量)+拔节后45%~55%MFC)、中度干旱(W2:播前75%MFC+拔节后55%~65%MFC)、轻度干旱(W3:播前75%MFC+拔节后65%~75%MFC)、适宜供水(W4:播前75%MFC+拔节后75%~85%MFC)4个处理,测定了灌浆前期、中期和中后期14:00—16:00的旗叶净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)、瞬时水分利用效率(IWUE)、PSⅡ最大光化学效率(Fv/Fm)、PSⅡ实际光化学效率(ΦPSⅡ)以及成熟期的产量及其构成因素。结果表明,水分和品种对小麦灌浆期下午的旗叶光合、荧光特性和成熟期的产量均有显著影响。从2 a均值来看,与W4相比,干旱胁迫处理(W1、W2和W3)灌浆期下午的旗叶Pn、G...  相似文献   

8.
限量补灌对旱地冬小麦灌浆期旗叶光响应及产量的影响   总被引:1,自引:0,他引:1  
在大田条件下,以青麦6号为试验材料,研究了5个灌水处理下旱地冬小麦灌浆期旗叶的光合参数、水分利用效率和产量的变化.采用开放式气路测定了小麦旗叶的净光合速率、气孔导度、胞间二氧化碳浓度、蒸腾速率等相关指标,并通过非直角双曲线模型对小麦旗叶的净光合速率进行模拟,得出了旗叶光响应曲线的特征参数.结果表明,在补灌小于两水的情况下,旗叶的净光合速率、气孔导度、蒸腾速率都随着补灌量的增加呈上升趋势,均以拔节水60 mm+灌浆水60 mm(W3)的处理最高,而胞间CO2浓度、水分利用效率随着补灌量的增加呈下降趋势;而在补灌三水的情况下,在拔节水60 mm+孕穗水60 mm+灌浆水60 mm(W4)的处理的净光合速率、气孔导度都明显小于补灌一水和两水的处理,而胞间CO2浓度、蒸腾速率却明显大于补灌一水和两水的处理,同时水分利用效率也是所有处理中最低的,表明过量的补灌对旱地小麦灌浆期旗叶的光合作用有消极作用.产量虽然以W3处理的产量为最高,但是除去对照处理,其他4个处理之间产量差异不显著.综合考虑产量、水分利用效率等因素,以拔节水60 mm(W1)的处理为达到旱地冬小麦高产的最佳补灌模式.  相似文献   

9.
晚播冬小麦各叶位叶片14C同化物的运转分配   总被引:3,自引:0,他引:3  
王振林  尹燕枰 《作物学报》1995,21(3):263-270
采用^14CO2标记方法研究了晚播小麦各叶位叶片同化物质的运转配变化,研究表明,晚播小麦不同叶位叶片的^14C同化物向植株各部位的分配具有明显的分工,据此将晚播小麦主茎叶片分组,基部叶组即晚播小麦冬前及冬季出生的叶片(1-4叶),其同化物主要供给新生叶、根系、部分供给分蘖;中部叶组指返青至拔节期出生的叶片(5-8叶),其同化物主要供给叶片、茎秆和分蘖;拔节后出生的叶片为上部叶组(9-10叶)。上部  相似文献   

10.
不同穗型冬小麦品种子粒灌浆与同化物供应关系的研究   总被引:5,自引:0,他引:5  
大穗型品种豫麦66号与多穗型品种豫麦49号相比,在灌浆中后期旗叶光合速率具有明显优势,在花后0~30d子粒WSC含量较高,显示出子粒灌浆较强的同化物供应能力。豫麦66号旗叶WSC在灌浆中后期含量较低,淀粉含量在整个灌浆期均较低,表明大穗型品种同化物外运能力可能较强,流系统生理活性比较活跃。两品种淀粉积累速率的变化均呈单峰曲线,豫麦66号的峰值出现较晚但持续时间较长,最大积累速率高,子粒灌浆速率亦呈现同样的趋势,两者呈显著正相关。说明豫麦66号在子粒灌浆后期仍可保持较强的库活性和具有较大库容特性。  相似文献   

11.
低氮诱导小麦灌浆期旗叶衰老与膜脂的关系   总被引:2,自引:0,他引:2  
小麦产量主要来自于小麦灌浆期旗叶的光合产物, 低氮造成的灌浆期旗叶早衰对小麦产量影响极大。本试验以小麦品种“长旱58”为试验材料, 在大田环境下设置低氮(120 kg hm -2)和正常氮(180 kg hm -2)处理, 研究低氮诱导的小麦旗叶衰老与膜脂的关系。结果表明, 开花14 d后, 低氮处理小麦旗叶的光合速率、叶绿素含量、旗叶总氮含量均显著降低; 旗叶中膜脂各组分含量均显著下降, DGDG/MGDG的比值升高; 以C18:3、C18:2为代表的不饱和脂肪酸含量显著下降, 以C16:0为代表的饱和脂肪酸含量显著增加, 不饱和双键指数显著降低; 此外类囊体蛋白质堆积密度也显著降低。综合分析认为低氮处理导致小麦灌浆期旗叶早衰, 早衰过程伴随着膜脂降解和组分改变, 降低了膜的流动性和通透性, 导致叶绿素降解, 使光合功能受损。同时, 植物通过调整DGDG/MGDG比例来响应低氮胁迫, 利用DGDG的双层特性来部分弥补其它双层膜脂的降解对膜功能造成的损伤。  相似文献   

12.
为雨养地条件下延缓小麦植株衰老和提高小麦产量,在灌溉和雨养两种栽培条件下,比较研究了小麦旗叶抗氧化酶活性及膜脂过氧化水平的变化.结果表明,在两种栽培条件下,小麦旗叶抗氧化酶活性及膜脂过氧化水平的变化趋势基本一致.小麦旗叶超氧化物歧化酶(SOD)活性呈波动式变化,过氧化物酶(POD)和过氧化氢酶(CAT)活性为单峰曲线变...  相似文献   

13.
灌浆期两个不同穗型冬小麦品种:多穗型品种豫麦49和大穗型品种豫麦66旗叶光合速率、SPS活性和WSC含量的变化均呈单峰曲线,但豫麦66的峰值出现偏晚,而且灌浆中后期叶片代谢活性下降缓慢,显示出源端较强的同化物持续供应能力.两品种旗叶NR活性变化趋势基本相同,但开花后5~20d内,豫麦49旗叶NR活性高于豫麦66,开花后20~35d内情  相似文献   

14.
以小麦品种皖麦54为试验材料,研究不同氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光特性的影响。结果表明,孕穗期小麦旗叶叶绿素含量最高,随后下降,至成熟期降到最低;渍水处理叶绿素含量下降幅度高于对照处理。对照处理孕穗期后叶绿素荧光参数Fv/Fm、Fv/Fo和qp随小麦生育期的推进呈先增加后降低的变化趋势,于渍水处理孕穗期后第11~20天达到最高峰,NPQ呈先降低再升高的趋势。孕穗期渍水7 d后Fv/Fm、Fv/Fo和qp均呈“低–高–低”的变化趋势,与对照相比,Fv/Fm低1.8%~2.3%,Fv/Fo低8.0%~10.9%,ΦPSII则显著低于对照。基肥30%+拔节肥50%+孕穗肥20%(N4)处理生育后期旗叶叶绿素含量显著高于全部氮肥基施(N1)处理,而Fv/Fo、Fv/Fm和qp显著高于N1和基肥70%+拔节肥30%(N2)处理。叶绿素含量与Fv/Fm、qp和ΦPSII呈显著正相关,与NPQ呈显著负相关。ETR-PAR响应曲线的拟合结果表明,孕穗期渍水7 d小麦生育后期旗叶ETRmax、α和Ek值较对照降低。N4的旗叶ETRmax、α和Ek均高于N1和N2。孕穗期渍水7 d条件下不同氮肥运筹方式间各叶绿素荧光参数变异系数高于对照,氮肥的补偿效应较对照明显。氮肥后移运筹方式显著减轻渍水逆境对光合器官的破坏,使小麦生育后期功能叶具有较强的光捕获能力和光化学效率,改善了旗叶光合性能,使灌浆期延长,平均灌浆速率提高,从而较氮肥前移处理显著提高小麦千粒重。  相似文献   

15.
冬小麦子粒充实度及灌浆模式的研究   总被引:2,自引:0,他引:2  
通过对小麦子粒灌浆及发育的研究分析,提出了子粒充实度的概念及计算公式,并据此对河南省小麦子粒灌浆模式进行了研究,结果表明,品种间的子粒充实度存在着显著差异,它可以较好地反映子粒生长潜力的发挥程度。河南省的高产小麦品种可以划分为四种灌浆模式:①高灌浆速度与短灌浆持续期相结合类型;②长灌浆持续期与早开花相结合类型;③长灌浆持续期与晚开花相结合类型;④低灌浆速度与长灌浆持续期相结合类型。其中,①②模式类型比较适合河南省的生态条件,子粒充实度较高。子粒充实度与子粒灌浆持续期、子粒灌浆完成期、开花期、起始生长势等密切相关  相似文献   

16.
赵秀兰  李文雄 《作物学报》2006,32(2):301-305
以3个不同品质类型春小麦品种为材料,在设定不 同肥力和气象条件等环境因子基础上,通过建立灌浆期籽粒沉淀值动态曲线拟合方程,定量揭示籽粒沉淀值的动态与规律。结果表明,灌浆期籽粒沉淀值随时间的变化符合一元三次多项式凸性曲线,即自开花始先增后降的单峰曲线。灌浆期籽粒沉淀值的动态,不同基因型具有不同特点。高蛋白强筋、高蛋白中筋和低蛋白弱筋品种曲线峰值分别出现在开花后28 d、23 d和30 d前后。各品种沉淀值积累速度的动态特点是成熟时沉淀值高蛋白强筋品种最高,高蛋白中筋品种次之,低蛋白弱筋品种最低的主要原因。  相似文献   

17.
大气CO2浓度升高对小麦旗叶衰老和产量的影响   总被引:4,自引:0,他引:4  
通过对不同大气CO2浓度水平下的小麦观测试验,研究了大气CO2增加对小麦旗叶衰老过程中丙二醛、光合色素、净光合速率的影响以及产量构成的变化。结果表明,在大气CO2含量为550和750μmol/mol时,与大气CO2背景浓度相比,小麦灌浆过程中旗叶MDA含量分别下降了6.4%~15.0%和14.1%~18.9%,叶绿素含量则平均增加11.6%和16.7%,类胡萝卜素含量也同步增加10.1%和16.9%,同时高浓度CO2促进了净光合速率的提高,平均提高幅度分别为14.9%和22.1%,明显延缓了旗叶衰老进程。CO2含量增加提高了小麦小穗数、穗粒数和千粒重,产量分别增加13.3%和21.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号