首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在植物的生长发育中,植物表皮蜡质能够保护植物免受外来生物和非生物胁迫的侵害。本研究选取榆黍1号、雁黍7号、陇糜8号、晋黍9号和宁糜10号5个糜子品种材料,利用气相色谱(GC)技术对不同品种及不同生长发育时期糜子叶片的表皮蜡质成分进行分析从而了解糜子叶片表皮蜡质的组成,并对不同品种糜子蜡质晶体结构进行扫描电镜观察。结果表明,不同糜子品种叶片表皮蜡质含量不同,高蜡品种榆黍1号蜡质总含量是低蜡品种宁糜10号的1.4倍。不同糜子品种蜡质组成成分相同,均以碳链长度分布范围为C22-C35的烷烃、初级醇、萜类物质等20种化合物为主。初级醇是糜子叶片表皮蜡质的主要组成成分,占蜡质总含量的67.46%;其中C32醇含量最高,占初级醇含量的82.73%。糜子不同生长发育时期蜡质组成比较相似,均含有初级醇、烷烃及萜类物质;且蜡质总量随生长发育时间的延长不断增加。扫描电镜观察表明,叶片表皮蜡质晶体结构为片状和少量球状。  相似文献   

2.
Equilibrium sorption of n-alkyl esters (dimethyl suberate, diethyl suberate, diethyl sebacate, dibutyl suberate and dibutyl sebacate) and monodisperse alcohol ethoxylates (diethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol and octaethylene glycol monododecyl ether) between the reconstituted cuticular waxes of Stephanotis floribunda Brongn (Madagascar jasmine) or Hordeum vulgare L (barley) leaves and an external aqueous receptor solution was determined. Logarithms of the wax/receptor partition coefficient (K(wax/rec)) of the n-alkyl esters increased linearly with the number of C-atoms. With alcohol ethoxylates, log K(wax/rec) decreased linearly with the number of ethylene oxide units. For both groups of compounds, K(wax/rec) increased with increasing lipophilicity. The values of K(wax/rec) in Stephanotis wax were between 5 and 16 times higher than in barley wax. It is argued that this difference was due to different chemical composition and crystallinity of the waxes. Mobility of [14C]2,4-dichlorophenoxybutyric acid (2,4-DB) in reconstituted Stephanotis and barley wax was increased by a factor of 2-8 by both n-alkyl esters and alcohol ethoxylates. Effects on the mobility of 2,4-DB were linearly related to the internal concentrations of n-alkyl esters and alcohol ethoxylates in reconstituted Stephanotis or barley wax. At the same internal concentrations the effect of n-alkyl esters on the mobility of 2,4-DB in wax exceeded that of alcohol ethoxylates by between 1 and 2 orders of magnitude. Results are discussed in relation to formulating systemic pesticides.  相似文献   

3.
Polydisperse ethoxylated fatty alcohol (EFA) surfactants can improve the performance of crop protection agents. At the cuticular level they act as accelerators of penetration by increasing the mobility of active ingredients in the cuticle, the barrier properties of which are mainly caused by cuticular waxes. Polydisperse Genapol C-050 (GP C-050, average formula C12.5E5.8) was also found to increase mobility in wax-extracted polymer matrix membranes (MX) of bitter orange and pear, indicating that sorption of surfactants increased segmental mobility of polymethylene chains in cutin and wax. Sorption into MX of the active fraction of GP C-050 from 5g litre−1 micellar solutions was in equilibrium in less than 1 h after establishing contact. This is almost 100-fold faster than with cuticular membranes (CM). Temperature dependence of solute mobilities in CM was studied in order to measure activation energies (ED) of diffusion in the presence and absence of aqueous surfactant solutions. Monodisperse fatty alcohol ethoxylates C8E3, C8E4 and C12E6, and (non-surface-active) tributylphosphate decreased ED of the model compounds WL 110547 and bifenox in Citrus, Pyrus and Stephanotis CM by more than 100 kJ mol−1. This corresponds to 50 to 275-fold increases of mobilities at 15 °C. Our data suggest that the decrease in activation energies with the concomitant accelerating effect on mobility contributes considerably to the effects of so-called activator surfactants. High temperature and accelerators act similarly on barrier properties of CM. It is shown that effects of both monodisperse and polydisperse EFA surfactants on solute mobility are reversible and that radiolabelled C12E8 penetrated pear CM rapidly. However, rates of penetration were lowered by excess amounts of WL 110547 and especially phenylurea. Partition coefficients of seven organic solutes between Capsicum fruit cuticles and GP C-050 were very low and, with the exception of methylglucose, smaller than 1. They decreased with lipophilicity and differed about 100-fold. Especially for the lipophilic compounds they were orders of magnitude lower than octanol/water or cuticle/water partition coefficients, which indicates the limited usefulness of these values for an understanding of penetration of active ingredients from formulation residues. © 1999 Society of Chemical Industry  相似文献   

4.
Metconazole, (1RS, 5RS; 1RS, 5SR)-5-(4-chlorobenzyl)-2,2-dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol, is a highly active fungicide, in particular controlling seed-borne and foliar diseases of cereals, such as wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). In order to maximize its foliar activity, an experimental survey of some types of surfactants and an emulsifiable oil was undertaken. Two types of metconazole formulation were investigated using a biological assay involving the therapeutic control of two diseases (Erysiphe graminis DC f. sp. tritici Marchal and Leptosphaeria nodorum Muell.) of wheat. Enhancements of activity by ?Genapol’? C12/C14 alcohol ethoxylates of an emulsifiable concentrate (ECM) formulation of metconazole were approximately three- to four-fold. For its, initially, less active suspension concentrate (SCM) formulation, enhancements were around 35-fold, so that with these adjuvants the two formulations were of similar activity. The enhancement ability of these ?Genapol’? surfactants was optimal at lower (5–10 moles) ethylene oxide content. These analogues induced marginally better enhancements of activity than members of a range of nonylphenol ethoxylates (?Arkopal’?), and emulsifiable paraffinic/naphthenic oil (HVI 60E) and a castor oil ethoxylate (?Atlas’? G1281) but were equivalent to a similar series of alcohol ethoxylates (?Dobanol’?) from another source. Varying the alkyl chain length between C9-C11 and C14-C15 in the ?Dobanol’? series had little effect on their high enhancements of metconazole activity. It was determined from trials varying the application rate of the best alcohol ethoxylates that application rates of 1–1.5 kg ha?1 were required for maximum activity. This implied the use of high adjuvant/metconazole ratios in one-pack adjuvant-containing formulations. A range of soluble liquid (SL) formulations were prepared with either ?Dobanol’? 23–6.5 or ?Dobanol’? 91-6/metconazole ratios varying from 5:1 to 15:1. There were found to be highly active and were recommended for field testing.  相似文献   

5.
This study determined the uptake of three model compounds, applied in the presence and absence of surfactants, into the leaves of three plant species (Chenopodium album L, Hedera helix L and Stephanotis floribunda Brongn). The results with 2-deoxy-D-glucose, 2,4-dichlorophenoxyacetic acid and epoxiconazole in the presence ofsurfactants (the polyethylene glycol monododecyl ethers C12EO3, C12EO6, C12EO10 and a trisiloxane ethoxylate with mean EO of 7.5, all used at one equimolar concentration and therefore different percentage concentrations) illustrate that the initial dose (nmol mm(-2)) of xenobiotic applied to plant foliage is a strong positive determinant of uptake. This held true for all the xenobiotics studied over a wide concentration range in the presence of these surfactants. Uptake on a unit area basis (nmol mm(-2)) could be related to the initial dose of xenobiotic applied per unit area (ID) by an equation of the form: Uptake = a [ID]b at time t = 24h. ID is given by the mass of xenobiotic applied, M divided by the droplet spread area, A. Total mass uptake is then calculated from an equation of the form: Total Uptake = a [ID]b x A.  相似文献   

6.
Conidial germination and differentiation, the so‐called prepenetration processes, of the barley powdery mildew fungus (Blumeria graminis f.sp. hordei) are triggered in vitro by very‐long‐chain aldehydes, minor constituents of barley leaf wax. However, until now it has not been demonstrated that these cuticle‐derived molecules also play a significant role in the initiation and promotion of the fungal prepenetration processes in vivo, on the surface of a living plant leaf. In the maize (Zea mays) wax mutant glossy11, which is completely devoid of cuticular very‐long‐chain aldehydes, germination and appressorial differentiation of B. graminis were strongly impeded. Spraying the mutant leaf surface with aldehyde‐containing wild‐type wax or pure n‐hexacosanal (C26‐aldehyde) fully restored fungal prepenetration, whereas maize wild‐type leaf surfaces coated with n‐docosanoic acid exhibited reduced conidial germination rates of 23%, and only 5% of the conidia differentiated infection structures. In vitro studies were performed to further corroborate the extensive prevention of fungal germination and differentiation in response to artificial surfaces coated with aldehyde‐deficient maize wax. Because of its phenotype affecting the B. graminis prepenetration processes, the glossy11 mutation of maize may become a valuable molecular target and genetic tool that could provide a means of developing basal powdery mildew resistance in the globally important crops wheat and barley.  相似文献   

7.
8.
The effects of cuticular crack surface area and inoculum density on the infection of nectarine fruits by conidia of Monilinia laxa were studied using artificial inoculations with conidial suspensions and dry airborne conidia during the 2004 and 2005 seasons, respectively. Additionally, the effect of ambient humidity on fruit infection was evaluated in the 2005 experiment. An exploratory analysis indicated that (i) ambient humidity did not significantly explain the observed variability of data, but that (ii) the incidence of fruit infection increased both with increasing inoculum density and increasing surface area of cuticular cracks. The product of these two variables represented the inoculum dose in the cracks, and was used as a predictor of fruit infection in the model. Natural infection in the orchard was observed to increase throughout the season in both 2004 and 2005. The relationship between the probability of fruit infection by M. laxa and the artificially inoculated dose in the cuticular cracks was well described by a logistic regression model once natural inoculum density was taken into account (pseudo R= 65%). This function could be helpful for estimating the risk of fruit infection at harvest based on fruit size and natural inoculum density.  相似文献   

9.
Effects of monodisperse alcohol ethoxylates on mobilities of 14C-labelled pentachlorophenol (PCP) and tetracosanoic acid (C24AC) in reconstituted cuticular wax of barley leaves were measured. Depending on the respective alcohol ethoxylate investigated, the diffusion coefficient (D) of PCP in barley wax was increased by factors ranging from 3·3 to 19·6, whereas D of C24AC, was increased by factors varying between 22 and 315. In order to analyse the relationship between the concentration of surfactants in the wax and their effects on D, the amounts of alcohol ethoxylates dissolved in the wax at equilibrium with external concentrations well above the critical micelle concentration (CMC) were determined. Wax/water partition coefficients (Kww) of the alcohol ethoxylates were about one order of magnitude lower than cuticle/water partition coefficients (Kcw), which is a consequence of the semi-crystalline structure of the wax compared with amorphous cutin. Correlations between effects on D and maximum amounts of alcohol ethoxylates dissolved in the wax were obtained indicating an unspecific wax/surfactant interaction. This was solely dependent on the amount of surfactant sorbed to the wax, leading to increased mobilities of pesticides in the wax. Applying ESR-spectroscopy, which gave an insight into the molecular structure of the wax, supported this interpretation of an unspecific plasticising effect of the alcohol ethoxylates on the molecular structure of the wax. The results obtained in this study are in good accordance with the results obtained in a recent study investigating the effects of the same group of alcohol ethoxylates on mobilities of pesticides in isolated, but intact, cuticular membranes of Citrus. This demonstrates that the investigation of isolated and subsequently reconstituted cuticular wax is a useful model system analysing the mechanisms of the surfactant interaction with the transport-limiting barrier of plant cuticles.  相似文献   

10.
This study has determined the uptake of three pesticides, applied as commercial or model formulations in the presence of a wide range of surfactants, into the leaves of three plant species (bentazone into Chenopodium album L. and Sinapis alba L., epoxiconazole and pyraclostrobin into Triticum aestivum L.). The results have confirmed previous findings that the initial dose (nmol mm(-2)) of xenobiotic applied to plant foliage is a strong, positive determinant of uptake. This held true for all the pesticide formulations studied, although surfactant concentration was found to have an effect. The lower surfactant concentrations studied showed an inferior relationship between the amount of xenobiotic applied and uptake. High molecular mass surfactants also produced much lower uptake than expected from the dose uptake equations in specific situations.  相似文献   

11.
The adsorption of carbofuran on soils from water‐methanol mixtures has been evaluated by batch shake testing. Two uncontaminated soils having different physicochemical properties were used in these experiments. The volume fraction of methanol in the liquid phase (fs) was varied from 0.25 to 1.0. Higher adsorption of carbofuran was observed in medium black (silt loam) soil than in alluvial (sandy loam) soil; calculated values of the Freundlich constant (Km) and distribution coefficient (Kd) showed that adsorption of carbofuran in both soils decreased with increase in fS values. The decreased carbofuran adsorption in methanol–water mixtures meant a greater potential of ground‐water contamination through leaching from potential sites. The data have been used to evaluate the co‐solvent theory for describing adsorption of carbofuran in methanol–water mixtures. The aqueous phase partition coefficient Kdw (mol g−1) normalized with respect to foc and the aqueous phase adsorption constant Kw for carbofuran were evaluated by extrapolating to fS = 0. © 2000 Society of Chemical Industry  相似文献   

12.
Leaf optical properties can play an important role in determining the red/far‐red light ratio, a signal of impending competition, in plant canopies. Knowledge of leaf optical properties and factors affecting them is important in understanding of the impacts of red/far‐red ratio in agroecosystems. Effects of leaf position on the plant stem on their optical properties at 660 and 730 nm were studied in tomato and two weeds Chenopodium album and Amaranthus retroflexus. Leaf position on stem strongly influenced leaf optical properties. Reflectance and transmittance were generally lower for the C. album and Aretroflexus leaves at higher positions on the stem, except for reflectance at 730 nm in C. album, which did not change. Reflectance was not affected in tomato. Transmittance generally decreased for leaves at higher positions. Red/far‐red ratios of reflected (Rratio) and transmitted (Tratio) light generally decreased in all species, except Rratio in tomato, where it increased slightly at higher positions. These effects were greater in A. retroflexus compared with C. album and tomato. Changes in these ratios were partly explained by chlorophyll content and leaf mass per area. The results show that leaf position on plant stem influences leaf optical properties in tomato and two weeds and this effect differed between species. These influences and the differences among species could modify red/far‐red ratios in canopies comprising these species, which could influence their growth and inter‐plant interactions.  相似文献   

13.
飞机草乙醇提取物对褐稻虱种群的干扰作用   总被引:4,自引:0,他引:4  
应用扩展的均匀设计与干扰作用控制指数,评价了飞机草乙醇提取物使用浓度、次数对褐稻虱种群的干扰作用。结果表明,飞机草乙醇提取物对褐稻虱成虫具有较强的产卵驱避作用,干扰作用控制指数为0.549~0.600;对褐稻虱各龄幼虫具有一定的毒杀效果,同时建立了干扰作用与使用次数、使用浓度之间的回归模型:Y=0.252 7-0.046 1X1-0.023 0X2。使用浓度与次数的不同组合,大多可将褐稻虱种群趋势指数I降至1.00以下,使用浓度对防治褐稻虱的干扰作用大于使用次数。  相似文献   

14.
草地贪夜蛾防治药剂田间试验示范效果   总被引:2,自引:0,他引:2  
为明确几种药剂对草地贪夜蛾Spodoptera frugiperda幼虫的田间防治效果,合理使用化学农药对草地贪夜蛾进行科学防治提供理论依据。对氯虫苯甲酰胺、氟铃·茚虫威、甲维·高氯氟、乙基多杀菌素、乙多·甲氧虫、虱螨脲、阿维·氯苯酰、氯虫·高氯氟、甲氨基阿维菌素苯甲酸盐等9种药剂进行了玉米和马铃薯田间防效试验。结果表明,9种药剂对两种作物上草地贪夜蛾幼虫均有一定毒杀作用,乙多·甲氧虫、乙基多杀菌素和氯虫苯甲酰胺可作为应急防控的首选药剂,氯虫·高氯氟、阿维·氯苯酰和甲维·高氯氟可作为应急防控药剂轮换使用。  相似文献   

15.
The diffusion of two fluorescent dyes, Oregon Green 488 (Oregon Green) and Rhodamine B into the leaves of broad bean (Vicia faba L) plants was studied to simulate the foliar uptake process of pesticides. The uptake rate of these model xenobiotics into bean foliage was measured using a standard leaf surface wash-off method. Diffusion into leaf tissues was visualised in vivo by confocal laser scanning microscopy (CLSM). The moderately lipophilic dye (Rhodamine B) showed faster uptake than the hydrophilic one (Oregon Green), despite the former being a larger molecule. While no distinct channels or domains for preferential entry of any of the dyes could be detected in the cuticle layer by CLSM, two different diffusion patterns were identified for the movement of these two dyes after traversing the cuticle. Upon desorption from the cuticle, Rhodamine B diffused extensively into the vacuole of the epidermal cells. Further transport of this dye from the epidermal cells to the mesophyll cells was not observed. In contrast, Oregon Green was found in the epidermal cell walls and cytoplasm, and was also present in the mesophyll cells. Examination of the petioles of the treated leaves revealed that, once absorbed, Oregon Green moved readily out of the treated leaf, whereas Rhodamine B did not show any phloem translocation. It is proposed that these two different diffusion characters may be responsible for the contrasting phloem mobility of the two xenobiotics. The results are discussed in relation to the current knowledge on the uptake, translocation and efficacy of pesticides as influenced by their properties.  相似文献   

16.
A model for the flux of atmospheric SO2 into leaves and the effects of SO2 metabolites (S(IV) compounds) on leaf photosynthesis and stomatal resistance is presented. The S(IV) balance in the leaf is determined by the rate of SO2 uptake and S(IV) removal by oxidation to sulphate. Toxic S(IV) compounds reduce the rate of photosynthesis and induce stomatal closure as a result of feed back control of stomatal resistance by photosynthesis. Other proposed mechanisms, like effects through a pH reduction, are not likely to play a role in short-term effects of realistic SO2 concentrations. The model contains two key parameters which describe biochemical characteristics: a time coefficient for S(IV) oxidation and a parameter describing the sensitivity of photosynthesis for S(IV).Simulation results demonstrate the potential of plants to avoid extremely toxic concentrations of S(IV) in the leaf by three mechanisms: (i) rapid oxidation of S(IV) to less toxic sulphate, (ii) relatively high resistance to SO2 uptake and (iii) feed back control between photosynthesis and stomatal resistance. S(IV) concentrations in the leaf and SO2 concentrations in the stomatal cavities in stable situations are less than 1% of concentrations which build up without these mechanisms. Leaf thickness appears to be an important factor determining the susceptibility of plants to air pollutants. Thin leaves should be more sensitive than thicker leaves. It is concluded that effects of SO2 on photosynthesis should be related to the uptake per unit of leaf volume instead of the commonly used flux per unit leaf area. The model accurately described the time course of photosynthetic reduction during a short fumigation period and subsequent recovery period.Samenvatting Een model wordt gepresenteerd waarmee de flux van SO2 vanuit de lucht in het blad en de effecten van SO2-metabolieten op de bladfotosynthese en stomataire geleidbaarheid kan worden gesimuleerd. De S(IV)-balans in het blad wordt bepaald door de SO2 opnamesnelheid, en de snelheid van S(IV)-verwerking door met name oxidatie tot sulfaat. Toxische S(IV)-componenten reduceren de fotosynthese en veroorzaken daardoor stomataire sluiting. Andere in de literatuur beschreven mechanismen voor de effecten van SO2, zoals effecten door een daling van de pH, spelen geen rol op de korte termijn. Het model bevat twee parameters die de biochemische karakteristieken beschrijven: de tijdconstante voor S(IV)-oxidatie en een parameter die de gevoeligheid van de fotosynthese voor S(IV) beschrijft.De simulatieresultaten laten zien dat de plant extreem toxische concentraties in het blad kan voorkomen door: (i) de snelle oxidatie van S(IV) tot sulfaat, (ii) de relatief hoge weerstand voor SO2-opname en (iii) de stomataire sluiting die een gevolg is van een gereduceerde fotosynthese. S(IV)-concentraties in het blad en SO2-concentraties in de stomataire holten zijn kleiner dan 1% van de concentratie die zou ontstaan als deze mechanismen niet zouden werken. Bladdikte blijkt de gevoeligheid van planten voor SO2 in sterke mate te bepalen. De effecten van SO2 op de fotosynthese dienen te worden gerelateerd aan de opnamesnelheid per eenheid bladvolume, in plaats van bladoppervlak. Het model simuleert de reductie in fotosynthese gedurende een korte begassingsperiode en een herstelperiode nauwkeurig.  相似文献   

17.
Intrinsic activities of monodisperse ethoxylated dodecanols (MEDs), diethyl suberate (DESU) and tributyl phosphate (TBP) were investigated using Stephanotis floribunda leaf cuticular membranes (CMs) and [14C]2,4‐dichlorophenoxy butyric acid (2,4‐DB) as a model solute. When sorbed in cuticular membranes, MEDs, DESU and TBP increase solute mobility and are called accelerators for this reason. With MEDs, dose‐effect curves (log mobility vs accelerator concentration) were linear but, with DESU and TBP, curves convex to the x axes were obtained that approached a maximum at 90 and 150 g kg−1, respectively. Accelerators increased the mobility of 2,4‐DB in the CMs by 9‐ to 48‐fold, and effects were larger at lower temperatures (range 15–30 °C). Activation energy for diffusion of 2,4‐DB was 105 kJ mol−1, decreasing with increasing accelerator concentrations to 26 kJ mol−1 with DESU at 90 g kg−1 and 64 kJ mol−1 with TBP at 150 g kg−1. Thus, the intrinsic activity of DESU was much higher than that of TBP, which implies that, for a given effect, less DESU than TBP would be needed. MEDs were also very effective accelerators, lowering activation energies to 36 kJ mol−1. Data are discussed in relation to increasing rates of foliar penetration of active ingredients at low temperatures. © 2001 Society of Chemical Industry  相似文献   

18.
A summary version of a model for the SO2 flux into leaves and effects of SO2 on the rate of photosynthesis (Kropff, 1989) was used to analyse experimental data on the effects of SO2 on the rate of photosynthesis with standard statistical techniques. Values for the two key parameters of the model, a sensitivity parameter relating intracellular S(IV) concentration (SO2, bisulphite and sulphite) to photosynthetic reduction, and a time coefficient for S(IV) oxidation, were estimated from data on photosynthesis during fumigation and subsequent recovery period, by combined non-linear regression of both equations.The pattern of rapid photosynthetic reduction by SO2 and rapid recovery following fumigation was accurately described with the model for several data sets. Parameter estimates agree very well with experimentally determined values. It is concluded that differences in photosynthetic sensitivity of plants are mainly due to differences in the time coefficient for sulphite oxidation. Variation in leaf thickness may also have contributed to the differences in sensitivity. This approach can be used to parameterize the model for short-term effects of SO2 on leaf photosynthesis for specific species and environmental conditions from easily obtained data.Samenvatting Een model voor de flux van SO2 in het blad, het metabolisme van SO2 in het blad en de effecten van SO2-metabolieten op de fotosynthese (Kropff, 1989) is gebruikt om gegevens over het effect van SO2 op de fotosynthese tijdens en na een begassingsperiode te analyseren met standaard statistische technieken. De waarde voor de parameter die de relatie tussen S(IV) en fotosynthese karakteriseert en de waarde van de tijdconstante voor de S(IV)-oxidatie werden voor verschillende data-sets over het verloop van de fotosynthese tijdens en na begassing met SO2 geschat.De snelle reductie van de fotosynthese na de start van de begassing, het stabiliseren na 1 uur en het snelle herstel na de begassing werden zeer goed met het model beschreven voor de data-sets. De waarden voor de parameters bleken vergelijkbaar met gegevens uit biochemische analyses. Verschillen in gevoeligheid tussen planten voor SO2 blijken met name te berusten op verschillen in de snelheid waarmee S(IV) wordt geoxideerd. Variatie in bladdikte kan daarnaast van belang zijn geweest. De benadering kan worden gebruikt om inzicht te krijgen in biochemische karakteristieken die de effecten van SO2 bepalen, met behulp van relatief eenvoudig te verkrijgen data-sets.  相似文献   

19.
20.
The possible role of the fusariotoxin, fusaproliferin in plant pathology was investigated with respect to cell membrane potential. Electron microscopy was used to study both the early effect of fusaproliferin on the host’s plasma membrane and ultrastructure responses in the cells of maize leaves. The seedlings of resistant (Lucia) and susceptible (Pavla) to the fusaproliferin maize cultivars were grown in the presence of fusaproliferin at different concentrations, namely 5 and 35 μg ml−1, respectively, and electrophysiological measurements were compared with those obtained using two different toxic compounds, namely fusicoccin and 3-3(3,4 dichlorophenyl)-1,1-dimethylurea (DCMU). It was observed that only the higher concentration of fusaproliferin induced the onset of visible symptoms on the leaves. Comparing the effect of fusaproliferin to that of fusicoccin and DCMU at the higher toxin concentration, it was observed that functional differences in membrane potential induced severe damage to the mesophyll and outer chloroplast membrane; the extent of changes in electrophysiology and ultrastructure disturbances depended on the toxin concentration and was greater in the susceptible cv. Pavla. Results indicated that fusaproliferin could be involved in Fusarium pathogenesis either as a virulence factor or by enhancing the activity of other toxins that might be concomitantly present in infected plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号