首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
Strobilurin类杀菌剂作用靶标的研究进展   总被引:16,自引:4,他引:12  
Strobilurin类杀菌剂是在具有杀菌活性的天然β-甲氧基丙烯酸酯衍生物的基础上研发出来的,具有广谱、高效、安全的特点。主要以粘噻唑为例综述了该类杀菌剂作用靶标及作用位点的研究过程及最新进展。生化作用机理的研究明确了粘噻唑作用于线粒体呼吸链bc1复合物中的细胞色素b及铁硫蛋白,阻止了从细胞色素b到细胞色素c1的电子传递,从而抑制线粒体的呼吸作用;蛋白质晶体学研究明确了粘噻唑的作用位点(Qo位点)是通过氢键与铁硫蛋白及细胞色素b的残基结合的。其他strobilurin类杀菌剂和粘噻唑具有相同的靶标,但由于各化合物之间存在一定的结构差异,其具体作用位点亦有一定的差别。  相似文献   

2.
甾醇生物合成抑制剂类(SBIs)杀菌剂通过抑制植物病原真菌甾醇生物合成途径中不同环节的酶,干扰或阻断病原菌麦角甾醇生物合成而发挥抗真菌作用。综述了植物病原真菌对SBIs杀菌剂的抗药性发生现状、遗传机制、生理生化机制、分子机制及治理策略等方面的最新研究进展。室内及田间有关SBIs杀菌剂抗药性的研究结果表明,植物病原菌对该类杀菌剂的抗药性可能是由1种或多种机制共同作用的结果。ABC和MFS运输蛋白基因及CYP51蛋白基因是植物病原真菌对SBIs杀菌剂产生抗药性的主要分子机制。其中ABC运输蛋白基因能够通过翻转酶将药剂从膜内层转移至外层而排出细胞体外;MFS运输蛋白基因的超表达和本底表达则是导致病原菌产生抗药性的关键因素;而CYP51蛋白基因与药剂作用时易在病原菌体内发生基因点突变或基因超表达,造成编码蛋白与药剂亲和力下降,导致病原菌产生抗药性。随着分子生物学的迅速发展,可从基因水平上寻找出与抗药性直接相关的基因、蛋白及调控途径等信息,同时与其他学科结合,合理设计新的、多作用位点的高效甾醇生物合成抑制剂,从而延长该类杀菌剂的使用寿命。  相似文献   

3.
甾醇脱甲基抑制剂 (DMI) 可通过抑制病原真菌的14α-去甲基化酶(CYP51)而干扰或阻断细胞膜麦角甾醇的生物合成,造成有毒甾醇积累,从而影响细胞膜的结构及功能,进而发挥抗菌作用。随着DMI类杀菌剂的广泛应用,病原菌对其的抗性问题日益严重。本文从抗药性分子机制出发,总结出病原菌对DMI类杀菌剂产生抗性的主要原因为:CYP51氨基酸突变引起其与杀菌剂间的亲和力下降;启动子区域基因片段的插入引起CYP51基因过表达;转录因子激活突变或启动子区域基因片段插入导致外排蛋白基因过表达。本文基于杀菌剂的作用方式及病原菌抗性机制研究展开综述,可为杀菌化合物的结构修饰与优化、新靶点改进和研发以及病原真菌的抗药性治理提供参考。  相似文献   

4.
 田间抗性监测发现了大麦云纹斑病菌新型的抗性菌株,这类菌株对苯并咪唑类(多菌灵)、Phenylcarbamate(乙霉威)及三唑类(三唑醇)表现多重抗性,先前发现的多菌灵抗药性菌株均是在β-维管蛋白基因的198位点出现等位基因的突变,而新发现的菌株则仅在200位点(TTC)由苯并氨酸转变成赖氨酸(TAC)而导致对3种药剂的抗性。温室试验证明,这类菌株的致病性和野生敏感菌的致病性几乎一致,说明大麦云纹斑病菌对杀菌剂抗药性的发展与致病性之间没有相关性。  相似文献   

5.
浙江省果蔬灰霉病菌对嘧菌酯的抗药性研究   总被引:3,自引:2,他引:1  
采用菌丝生长速率法,连续监测了2010—2012年间浙江省果蔬灰霉病菌对QoI类杀菌剂嘧菌酯的敏感性变化。 结果表明:病菌群体中的低敏感性亚群体的比例明显上升,EC50值>5 mg/L 菌株的比例分别为12.5%、15.8%和28.3%;在菌丝生长阶段和孢子萌发阶段,旁路氧化在灰霉病菌对嘧菌酯敏感性中的平均相对贡献值(F)分别为2.91±0.89和5.72±2.82;嘧菌酯抗药性菌株的菌丝生长速率、产孢量、产菌核数和致病力与敏感菌株相比无显著差异。抗药性分子机制研究表明,灰霉病菌中存在2种类型的cyt b基因:Ⅰ型cyt b基因在第143位密码子后紧跟内含子;Ⅱ型cyt b基因在第143位密码子后没有紧跟内含子。大多数的灰霉病菌菌株属于Ⅱ型。Ⅰ型菌株均为嘧菌酯敏感菌株,Ⅱ型菌株为嘧菌酯敏感菌株或抗性菌株。抗性菌株的cyt b 基因的第143位密码子由甘氨酸(GGC)突变为了丙氨酸(GCC),抗药性机制为G143A。  相似文献   

6.
作用于琥珀酸脱氢酶复合体的新型杀菌剂-琥珀酸脱氢酶抑制剂(succinate dehydrogenase inhibitors, SDHIs)已逐步成为继Qo位点呼吸抑制剂类(QoIs)和麦角甾醇生物合成抑制剂类(EBIs)杀菌剂之后的世界第3大类杀菌剂。近年来,SDHIs杀菌剂的市场占有份额逐年增加,新品种不断涌现,在植物病害化学防治中发挥着重要作用。然而,由于该类杀菌剂作用位点单一,抗药性已成为制约该类杀菌剂创制发展与科学应用的重要科学问题。本综述归纳了琥珀酸脱氢酶抑制剂类杀菌剂的开发、品种、抗性发生发展、抗性分子机制与应用现状,并结合作者研究团队的最新研究成果对其靶标生物学及应用技术研究进行了总结,以期为更高活性的SDHIs杀菌剂创制和应用提供参考。  相似文献   

7.
田间抗性监测发现了大麦云纹斑病菌新型的抗性菌株,这类菌株对苯并咪唑类(多菌灵)、Phenylcarbamate(乙霉威)及三唑类(三唑醇)表现多重抗性,先前发现的多菌灵抗药性菌株均是在β-维管蛋白基因的198位点出现等位基因的突变,而新发现的菌株则仅在200位点(TTC)由苯并氨酸转变成赖氨酸(TAC)而导致对3种药剂的抗性。温室试验证明,这类菌株的致病性和野生敏感菌的致病性几乎一致,说明大麦云纹斑病菌对杀菌剂抗药性的发展与致病性之间没有相关性。  相似文献   

8.
新型杀菌剂的创制在农业可持续发展和克服抗药性中具有重要作用。由于杀菌剂作用机制或靶标是新杀菌剂分子设计合成和创制开发的重要基础,因此作用机制或靶标研究的滞后会阻碍新先导化合物的发现或新品种的创制。鉴于此,本文对目前杀菌剂作用靶标的识别及靶向杀菌剂的分子设计进行了概述。首先阐述了基于转录组学、蛋白质组学的研究和药物亲和层析技术在靶标识别中的应用;其次概述了多学科交叉的方法在分子靶标验证中的应用;最后以strobilurin A为先导的Qo位点抑制剂、以肉桂酸为先导的卵菌抑制剂、以萎锈灵为先导的琥珀酸脱氢酶和植物免疫激活剂等不同类型的靶向杀菌剂为例进行了举例说明。  相似文献   

9.
以氟啶胺为代表的解偶联剂具有低毒、广谱和高效的特点,对病原真菌、卵菌和细菌均表现出良好的抑菌活性。然而随着杀菌剂频繁而大量的使用,有害生物发展出越来越严重的抗药性。开展病原菌对杀菌剂的抗性机制研究,能够有效预防或治理病原菌抗药性。病原菌对杀菌剂的抗性机制解析方法通常以杀菌剂的靶标蛋白为线索展开,但由于氟啶胺这类杀菌剂在病原菌体内可能不是通过与靶标蛋白结合而产生的抑菌作用,使得通过寻找抗性突变体中发生变化的氨基酸位点,进而进行抗性机制解析的方法难以奏效。本综述以氟啶胺和我国自主创制的杀菌剂双苯菌胺为研究对象,对其作用机制及病原菌对其抗性机制的研究进展进行归纳总结,旨在为这类杀菌剂的田间科学使用提供参考,同时可为病原菌多药抗性机制的解析提供借鉴,丰富杀菌剂抗性研究体系,并能够在实践中为病原菌的抗性治理提供依据。  相似文献   

10.
植物病原菌抗药性遗传研究   总被引:19,自引:0,他引:19  
 植物病原菌对杀菌剂的抗药性是由遗传基因控制的,抗药基因位于细胞质遗传因子或细胞核染色体基因上,细菌对许多药剂如铜制剂、链霉素等的抗药性和真菌对少数药剂如甲氧丙烯酸酯类药剂的抗性属于前一种情况,而真菌对大多数药剂的抗性则属于后一种情况。核基因控制的抗药性又可分为主效基因(major-gene)抗性和微效多基因(poly-gene)抗性,分别使病菌对药剂的抗性表现质量性状和数量性状。病原菌对苯并咪唑类药剂、春日霉素、羧基酰胺类药剂、苯酰胺类药剂、芳烃类药剂、二甲酰亚胺类药剂等的抗性通常为主效基因控制;使病菌表现微效多基因抗性的杀菌剂主要有多果定、羟基嘧啶类药剂、甾醇合成抑制剂(SBIs)等  相似文献   

11.
Field isolates of Mycosphaerella fijiensis, causing black Sigatoka of banana, were characterised for their sensitivity to different inhibitors of the cytochrome bc1 enzyme complex (Qo respiration inhibitors, strobilurin fungicides), using physiological, biochemical and molecular genetic methods. Strobilurin‐resistant isolates exhibited very high resistance factors both in mycelial growth inhibition and NADH consumption assays. Cross‐resistance was observed among all Qo inhibitors, including trifloxystrobin, azoxystrobin, famoxadone, strobilurin B and myxothiazol. However, the Qi and the cytochrome aa3 inhibitors, antimycin A and potassium cyanide, respectively, were not cross‐resistant to Qo inhibitors. In sensitive but not in resistant isolates, mixtures of Qo inhibitors and SHAM, an inhibitor of the alternative oxidase (AOX), were more active than the components alone, indicating that the alternative pathway is essential in metabolism, but not causal for resistance. In the cell‐free NADH‐consumption assay, the Qo inhibitors affected the sensitive but not the resistant isolates, suggesting that AOX was not active in sub‐mitochondrial particles. In whole cells, however, the AOX has a basic expression level and is probably not inducible by trifloxystrobin. Sequencing of the cytochrome b gene of sensitive and resistant M fijiensis isolates revealed a difference in the nucleotide sequence leading to a single amino acid change from glycine to alanine at position 143 in the resistant isolate. This change is known to occur also in the naturally tolerant basidiomycete Mycena galopoda. It is suggested that the field isolates of M fijiensis can acquire resistance to Qo inhibitors due to a target site alteration with a single base pair change. Resistant isolates do not seem to contain a mixture of mutated and non‐mutated DNA, indicating a complete selection of resistant mitochondria and a maternally donated mode of resistance. © 2000 Society of Chemical Industry  相似文献   

12.
ABSTRACT Between 1998 and 1999, control failure of powdery mildew (Podosphaera fusca) and downy mildew (Pseudoperonospora cubensis) by the strobilurin fungicides azoxystrobin and kresoxim-methyl was observed in cucumber-growing areas of Japan. Results from inoculation tests carried out on intact cucumber plants and leaf disks clearly showed the distribution of pathogen isolates highly resistant to azoxystrobin and kresoximmethyl. Fragments of the fungicide-targeted mitochondrial cytochrome b gene were polymerase chain reaction amplified from total pathogen DNA and their sequences analyzed to elucidate the molecular mechanism of resistance. A single point mutation (GGT to GCT) in the cytochrome b gene, resulting in substitution of glycine by alanine at position 143, was found in resistant isolates of downy mildew. This substitution in cytochrome b seemed to result in high resistance to strobilurins in this pathogen. The same mutation was found in some but not all resistant isolates of powdery mildew. This study suggests that a mutation at position 143 in the target-encoding gene, resulting in an amino acid substitution, was probably a major cause of the rapid development of high strobilurin resistance in these two pathogens.  相似文献   

13.
BACKGROUND: A single nucleotide polymorphism in the mitochondrial cytochrome b gene confers resistance to strobilurin (QoI) fungicides in phytopathogenic fungi. Recent studies have revealed worrying levels of resistance to strobilurins in Podosphaera fusca (Fr.) U Braun & N Shishkoff comb. nov. [ = Sphaerothecafusca (Fr.) S Blumer], the main causal agent of cucurbit powdery mildew in Spain. In the present study the underlying resistance mechanism to QoI fungicides in the Spanish populations of P. fusca was investigated. RESULTS: Analysis of the Q(o) domains of cytochrome b in a collection of isolates revealed that none of the typical mutations conferring resistance to QoI, including the G143A and F129L substitutions, was present in the QoI-resistant isolates. Moreover, although different amino acid polymorphisms were observed in the two regions spanning the Q(o) site, none of them consistently distinguished QoI-resistant from QoI-sensitive strains. Exposure to salicylhydroxamic acid (SHAM), a specific inhibitor of alternative oxidase, in the presence of trifloxystrobin did not have any effect on QoI resistance, ruling out alternative respiration as the mechanism of resistance. Sensitivity tests to a battery of respiration inhibitors revealed high levels of cross-resistance to all Qo-inhibitors tested but not to Qi-inhibitors, these features resembling those of a target-site-based resistance. CONCLUSIONS: The results indicate that the mechanism responsible for QoI resistance in P. fusca is not linked to typical mutations in cytochrome b gene and that the absence of the G143A substitution cannot be explained by an intron following codon 143. These are important observations, especially in relation to the possible molecular diagnosis of resistance.  相似文献   

14.
BACKGROUND: The major facilitator superfamily (MFS) drug transporter MgMfs1 of the wheat pathogen Mycosphaerella graminicola (Fuckel) J Schroeter is a potent multidrug transporter with high capacity to transport strobilurin fungicides in vitro. The data presented in this paper indicate that, in addition to the predominant cause of strobilurin resistance, cytochrome b G143A subsititution, MgMfs1 can play a role in sensitivity of field strains of this pathogen to trifloxystrobin. RESULTS: In a major part of field strains of M. graminicola (collected in the Netherlands in 2004) containing the cytochrome b G143A substitution, the basal level of expression of MgMfs1 was elevated as compared with sensitive strains lacking the G143A substitution. Induction of MgMfs1 expression in wild-type isolates upon treatment with trifloxystrobin at sublethal concentrations proceeded rapidly. Furthermore, in disease control experiments on wheat seedlings, disruption mutants of MgMfs1 displayed an increased sensitivity to trifloxystrobin. CONCLUSION: It is concluded that the drug transporter MgMfs1 is a determinant of strobilurin sensitivity of field strains of M. graminicola.  相似文献   

15.
Strobilurin-resistant isolates of Blumeria ( Erysiphe ) graminis f.sp. tritici , the cause of wheat powdery mildew, were more than 10-fold less sensitive to azoxystrobin than sensitive isolates. In all resistant isolates, a mutation resulting in the replacement of a glycine by an alanine residue at codon 143 (G143A) in the mitochondrial cytochrome b gene was found. Allele-specific primers were designed to detect this point mutation in infected wheat leaves. Using quantitative fluorescent allele-specific real-time polymerase chain reaction (PCR) measurements, strobilurin-resistant A143 alleles could be detected amongst strobilurin-sensitive G143 alleles at a frequency of at least 1 in 10 000, depending on the amount of target and nontarget DNA. Most isolates tested were dominant homoplasmic for either the A143 or G143 allele, although mixed populations of alleles could be detected in some isolates. In some of these isolates, strobilurin resistance was not always stable when they were maintained for many generations in the absence of selection. The allele-specific real-time PCR assay was also used to follow the dynamics of A143 alleles in field populations of B . graminis f.sp. tritici before and after application of fungicides. As expected, the A143 allele frequency only increased under selection pressure from a strobilurin fungicide. After three sprays of azoxystrobin, a pronounced selection for the strobilurin-resistant allele, with an increase in average frequency from 2·2 to 58%, was measured. The use of quantitative real-time PCR diagnostics for early detection of fungicide resistance genes at low frequency, coupled with risk evaluation, will be invaluable for further resistance risk assessment and validation of antiresistance strategies.  相似文献   

16.
Fungicides inhibiting the mitochondrial respiration of plant pathogens by binding to the cytochrome bc1 enzyme complex (complex III) at the Qo site (Qo inhibitors, QoIs) were first introduced to the market in 1996. After a short time period, isolates resistant to QoIs were detected in field populations of a range of important plant pathogens including Blumeria graminis Speer f sp tritici, Sphaerotheca fuliginea (Schlecht ex Fr) Poll, Plasmopara viticola (Berk & MA Curtis ex de Bary) Berl & de Toni, Pseudoperonospora cubensis (Berk & MA Curtis) Rost, Mycosphaerella fijiensis Morelet and Venturia inaequalis (Cooke) Wint. In most cases, resistance was conferred by a point mutation in the mitochondrial cytochrome b (cyt b) gene leading to an amino-acid change from glycine to alanine at position 143 (G143A), although additional mutations and mechanisms have been claimed in a number of organisms. Transformation of sensitive protoplasts of M fijiensis with a DNA fragment of a resistant M fijiensis isolate containing the mutation yielded fully resistant transformants, demonstrating that the G143A substitution may be the most powerful transversion in the cyt b gene conferring resistance. The G143A substitution is claimed not to affect the activity of the enzyme, suggesting that resistant individuals may not suffer from a significant fitness penalty, as was demonstrated in B graminis f sp tritici. It is not known whether this observation applies also for other pathogen species expressing the G143A substitution. Since fungal cells contain a large number of mitochondria, early mitotic events in the evolution of resistance to QoIs have to be considered, such as mutation frequency (claimed to be higher in mitochondrial than nuclear DNA), intracellular proliferation of mitochondria in the heteroplasmatic cell stage, and cell to cell donation of mutated mitochondria. Since the cyt b gene is located in the mitochondrial genome, inheritance of resistance in filamentous fungi is expected to be non-Mendelian and, therefore, in most species uniparental. In the isogamous fungus B graminis f sp tritici, crosses of sensitive and resistant parents yielded cleistothecia containing either sensitive or resistant ascospores and the segregation pattern for resistance in the F1 progeny population was 1:1. In the anisogamous fungus V inaequalis, donation of resistance was maternal and the segregation ratio 1:0. In random mating populations, the sex ratio (mating type distribution) is generally assumed to be 1:1. Therefore, the overall proportion of sensitive and resistant individuals in unselected populations is expected to be 1:1. Evolution of resistance to QoIs will depend mainly on early mitotic events; the selection process for resistant mutants in populations exposed to QoI treatments may follow mechanisms similar to those described for resistance controlled by single nuclear genes in other fungicide classes. It will remain important to understand how the mitochondrial nature of QoI resistance and factors such as mutation, recombination, selection and migration might influence the evolution of QoI resistance in different plant pathogens.  相似文献   

17.
Mitochondrial respiration conserves energy by linking NADH oxidation and electron-coupled proton translocation with ATP synthesis, through a core pathway involving three large protein complexes. Strobilurin fungicides block electron flow through one of these complexes (III), and disrupt energy supply. Despite an essential need for ATP throughout fungal disease development, strobilurins are largely preventative; indeed some diseases are not controlled at all, and several pathogens have quickly developed resistance. Target-site variation is not the only cause of these performance difficulties. Alternative oxidase (AOX) is a strobilurin-insensitive terminal oxidase that allows electrons from ubiquinol to bypass Complex III. Its synthesis is constitutive in some fungi but in many others is induced by inhibition of the main pathway. AOX provides a strobilurin-insensitive pathway for oxidation of NADH. Protons are pumped as electrons flow through Complex I, but energy conservation is less efficient than for the full respiratory chain. Salicylhydroxamic acid (SHAM) is a characteristic inhibitor of AOX, and several studies have explored the potentiation of strobilurin activity by SHAM. We present a kinetic-based model which relates changes in the extent of potentiation during different phases of disease development to a changing importance of energy efficiency. The model provides a framework for understanding the varying efficacy of strobilurin fungicides. In many cases, AOX can limit strobilurin effectiveness once an infection is established, but is unable to interfere significantly with strobilurin action during germination. A less stringent demand for energy efficiency during early disease development could lead to insensitivity towards this class of fungicides. This is discussed in relation to Botrytis cinerea, which is often poorly controlled by strobilurins. Mutations with a similar effect may explain evidence implicating AOX in resistance development in normally well-controlled plant pathogens, such as Venturia inaequalis.  相似文献   

18.
Botrytis cinerea field isolates collected in Japan were screened for resistance to Qo inhibitor fungicides (QoIs). Of the 198 isolates screened, six grew well on a medium containing azoxystrobin, a QoI, when salicylhydroxamic acid, an alternative oxidase inhibitor, was present. The resistance mutation in the cytochrome b gene ( cytb ) was characterized. All QoI-resistant isolates had the same mutation (GGT to G C T) in cytb that led to the substitution of glycine by alanine at position 143 of cytochrome b , which is known to confer QoI resistance in plant pathogens. To detect this mutation, a hybridization probe assay based on real-time PCR amplification and melting curve analysis was developed. Using DNA samples prepared from aubergines coinfected with QoI-resistant and QoI-sensitive B. cinerea isolates, two similar peak profiles with their corresponding melting temperatures were obtained. This result suggests that QoI-resistant and QoI-sensitive isolates may compete equally in terms of pathogenicity, and the assay may be used to assess the population ratio of mutant and wild-type isolates. However, the hybridization probe did not anneal to PCR products derived from the DNA samples of some QoI-sensitive isolates. Structural analysis of cytb revealed that B. cinerea field isolates could be classified into two groups: one with three introns and the other with an additional intron (Bcbi-143/144 intron) inserted between the 143rd and 144th codons. All 88 isolates possessing the Bcbi-143/144 intron were azoxystrobin-sensitive, suggesting that the QoI-resistant mutation at codon 143 in cytb prevents self-splicing of the Bcbi-143/144 intron, as proposed in some other plant pathogens.  相似文献   

19.
Up to 2005 the sensitivity of Stemphylium vesicarium (Wallr.) Simm., the causal agent of pear brown spot, to the strobilurin fungicides kresoxim-methyl, trifloxystrobin and pyraclostrobin was still comparable with baseline values associated with good efficacy in the field. During 2006, the first resistant isolates were detected in two commercial pear orchards in the Emilia-Romagna region (Italy), one of which was affected by considerable control failure linked to strobilurin treatments as demonstrated in a field trial. In vitro sensitivity tests with 0.5 mg l−1 of kresoxim-methyl, trifloxystrobin and pyraclostrobin showed that in the population collected in the orchard with control failure the conidial germination was greater than 90% compared to an untreated control both in 2006 and in 2007, i.e. 1 year after the suspension of strobilurin applications. In the other orchard, where only a few symptomatic fruits were found and the strobilurins were still in use, the conidial germination was lower, about 50% in 2006 and 25% in 2007. The molecular analysis of mitochondrial cytochrome b gene of some monospore isolates with different levels of sensitivity confirmed the presence of the mutation causing G143A substitution in all the resistant isolates. In conclusion, both in vitro tests and molecular analysis confirmed the first occurrence of Stemphylium vesicarium resistance to all strobilurin fungicides tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号