共查询到19条相似文献,搜索用时 78 毫秒
1.
基于变化向量分析的冬小麦长势变化监测研究 总被引:5,自引:4,他引:5
现有的农作物长势遥感监测的基本思路是利用NDVI曲线形态变化与作物苗情变化的响应关系,提取特征参数,推测作物的生长发育状况.但由于表征NDVI时间序列曲线的特征参数较多,难以对所有特征参数进行全面变化分析.本研究引进变化向量分析理论,以东部五省冬小麦为研究对象,以1999-2005年SPOT-VGT的旬最大合成NDVI数据为主要数据源,采用Savizky-Golay滤波器重构NDVI时间序列,进而构建基于变化向量分析的长势监测模型,分别对研究区的年际与年内长势变化进行时间和空间上的定量分析.研究表明,变化向量分析方法能有效地从空间域和时间域反映东部五省冬小麦长势变化规律,以单一综合性指标综合了NDVI时间序列曲线的大多数特征参数,为农作物长势遥感监测提供了一种新的研究思路. 相似文献
2.
面向对象的湖北省土地覆被变化遥感快速监测 总被引:1,自引:3,他引:1
为了快速监测湖北省土地覆被变化,以HJ-CCD、TM以及ETM影像为数据源,探索出了集成面向对象技术与"3S"技术的中尺度土地覆被变化遥感流程和方法。该方法首先基于HJ-CCD影像和面向对象技术进行2010年湖北省土地覆被信息的提取,并用野外采样点对结果进行验证。在保证高精度的情况下利用向量相似性函数对湖北省2000-2005年以及2005-2010年进行变化检测,从而获得2个变化时期影像的变化区域,然后利用面向对象技术中的最邻近分类器对变化区进行自动化分类。最后分别将2期的变化结果与未变化结果融合后获得湖北省2000年、2005年和2010年的土地覆被图,在GIS中处理后建成县、市、省3级行政级别的湖北省土地覆被变化本底数据库。试验表明分类结果的总体精度为93.24%,Kappa系数为0.914;2000-2005年与2005-2010年变化检测的总体精度分别为90.88%和90.75%。同时研究发现景观破碎的地区应用面向对象技术有一定的局限性。 相似文献
3.
冬小麦冻害灾情及长势恢复的变化向量分析 总被引:1,自引:3,他引:1
大尺度监测冬小麦冻害灾情,需要结合受冻后长势监测,以提高冻害监测精度。鉴于温度并非唯一冻害因子,且归一化植被指数(NDVI)易高估封垄前冬小麦覆盖度,该文引入基于多时相植被指数的变化向量分析法,进行冬小麦冻害灾情及受灾后长势监测研究。选取河北藁城2010年冬小麦冻害作为研究对象,利用多时相环境小卫星数据提取多种植被指数,构建变化向量并分析其动态变化趋势,结合冬小麦冻害光谱特征敏感性分析,建立冻害灾情遥感监测模型,并展开长势恢复程度监测。结果表明,变化向量分析法能有效地反映冬小麦受冻和长势恢复程度及空间分布,在基于多种植被指数建立的变化向量监测模型中,基于光谱结构不敏感指数SIPI建立的模型较精度最高,其冻害监测及长势恢复监测模型精度分别达83.3%、88.9%。因此,变化向量分析法能有效地监测冬小麦冻害灾情与灾后长势恢复情况,同时对其他作物灾害监测提供了途径。 相似文献
4.
5.
基于NDVI象元二分法的植被覆盖变化监测 总被引:2,自引:2,他引:2
研究了NDVI象元二分法计算植被覆盖度的精度,并对其适用范围进行了分析。利用2002年、2007年合肥市的TM数据,针对于城市地区的特点,选择合适的NDVIsoil 和NDVIveg,计算各自时相的植被覆盖度,然后采用差值运算方法得到该时段合肥市区植被覆盖度变化数据。对于合肥市来说,在研究时段,植被覆盖度总体呈下降的趋势,下降最为明显的是滨湖新区和包河工业区,下降值分别为16.7%和21.4%,植被覆盖的锐减是由于城市扩张造成的,是一个值得注意的生态问题。与航片调绘结果进行比较,NDVI二分法得到的植被覆盖度对于低植被覆盖区偏高,对于高植被覆盖的林区偏低,两个时相植被覆盖度差值可以消除部分系统误差的影响,具有更高的精度,可以作为植被覆盖监测的重要手段。 相似文献
6.
通过连续2年进行玉米最佳收获期试验,研究了不同收获期对强盛101、先玉335和农华206(对照)玉米生长和产量的影响.试验表明,在甘肃省广河县的自然条件下,随着收获期逐渐后延,产量逐渐增加,在不增加任何成本的情况下,生产上延迟收获,产量可增加8%左右. 相似文献
7.
基于NDVI加权指数的冬小麦种植面积遥感监测 总被引:8,自引:2,他引:8
该文针对农业信息服务中冬小麦种植面积调查业务的现状与需求,提出了一种基于NDVI(normal difference vegetation index)时间序列的冬小麦NDVI加权指数(WNDVI,weighted NDVI index)影像算法,可在训练样本、验证样本选择的基础上实现冬小麦面积的自动提取,并以河北省安平县及周边地区2013-2014年度冬小麦面积提取为例,采用GF-1/WFV(wide field view)数据进行了算法实现。算法的主要思路是在时序影像基础上,通过冬小麦NDVI加权指数影像的构建,扩大冬小麦地类与其他地类的差异,结合自适应的阈值获取方法,区分冬小麦地类,获取冬小麦作物面积。算法包括冬小麦时间序列影像的获取、基于网格的样本点设置、构建冬小麦 NDVI 加权指数影像、迭代确定冬小麦NDVI加权指数提取阈值、精度验证这5个部分。影像的获取根据冬小麦的生长时间确定,保证每月1景GF-1/WFV无云影像,并进行预处理及NDVI计算;同时将研究区划分为一定数量的网格,每个网格再等分为2×2个子网格,根据目视解译、专家知识、实地调查等方法,确定左上网格中心点及右下网格中心点的地物类型。统计该期所有左上网格点冬小麦及其他地物的NDVI均值,冬小麦NDVI大于其他地物的将该期影像的权值设置为1,否则设置为?1,将所有时相NDVI影像进行加权平均,即可获取冬小麦NDVI加权指数影像。获取冬小麦NDVI加权指数影像后,还需设置合适的阈值提取冬小麦。该文选用右下网格点目视解译分类结果作为阈值提取依据,具体方法是将冬小麦指数从小到大按照一定间隔划分,作为冬小麦 NDVI 加权指数提取阈值,将各阈值二值法运用,与右下网格点的冬小麦提取的目视解译结果对比,精度最高的就是最优冬小麦 NDVI 加权指数分割阈值。在所有网格中,以初始识别获取的冬小麦面积为准,等概率选择10个样方作为精度验证样方进行验证。精度验证结果表明分类总体精度达到94.4%,Kappa系数达0.88。该文通过构建冬小麦NDVI加权指数,将比较复杂的多个参数转换为一个参数,并且农学意义明确,相比传统的NDVI时序影像进行冬小麦面积的提取,具有自动化程度高、面积提取精度高、分类结果稳定的特点,已经在全国农作物面积遥感监测业务中进行了应用。 相似文献
8.
农作物长势的定义与遥感监测 总被引:51,自引:24,他引:51
监测作物生长过程的状况与趋势,即长势监测是农业遥感更为重要的任务。其目的是:1)为田间管理提供及时的信息;2)早期估计产量。该文以冬小麦为例,根据实地调查与北方数省的资料,用作物的个体与群体特征定义作物长势,讨论了遥感监测的可能性,提出了基于植被指数与植被表面温度的长势遥感监测的评估模型与诊断模型的概念与算法。 相似文献
9.
基于小麦长势遥感监测的土壤氮素累积估测研究 总被引:1,自引:1,他引:1
农田长时间被植被所覆盖给遥感直接监测农田土壤养分及其动态带来巨大难度。由于不同的土壤条件和施肥量会在一定程度上引起作物长势的差异,并最终反映在作物冠层光谱反射率的差异,因此,通过遥感监测作物长势动态实现农田土壤养分与环境质量将是遥感监测土壤质量的一个重要方法。该文利用追肥前后两期高光谱航空影像提取反映小麦长势状况的归一化植被指数NDVI,并结合小麦种植前后的土壤采样数据,分析了追肥前后NDVI及其增量与小麦种植前后土壤碱解氮增量之间的关系。研究结果表明:与追肥前后NDVI绝对增量相比,追肥前的NDVI能够较好地估测小麦生育期内土壤碱解氮增量,追肥前后NDVI绝对增量与追肥前的NDVI的比值是估测小麦生育期内土壤碱解氮增量的最好指标,而追肥后的NDVI与土壤碱解氮增量之间没有显著的相关关系,不能用于土壤碱解氮增量的估测。 相似文献
10.
基于遥感的国外作物长势监测与产量趋势估计 总被引:4,自引:5,他引:4
国外重点产粮区的作物长势和产量增长趋势信息对于中国政府决策和制订合理的粮食政策具有重要意义,但由于地域的限制、生产方式的差异以及国外可获取的气象资料有限,气象模型和农学模型在国外估产方面尚存在不足,遥感以其便捷、快速、客观的优势已被越来越多地采用进行国外作物长势监测和产量估计。该文以美国玉米和印度水稻为例,探讨了基于1kmSPOT-VGT遥感资料进行作物长势监测和产量趋势估计的方法,并结合当地气象条件对其结果进行了分析。经检验,利用该方法得到的长势状况及空间分布与实际基本一致,产量增长趋势预测准确率为100%;在作物生长旺盛季节,植株覆盖密度较大时,EVI比NDVI能更真实地反映作物的长势状况。该研究可为国外作物长势遥感监测与产量估算业务应用提供参考。 相似文献
11.
基于时序归一化植被指数的冬小麦收获指数空间信息提取 总被引:5,自引:1,他引:5
为获取农作物收获指数(HI)空间分布信息,该研究充分利用遥感技术,以冬小麦为例,利用时序归一化植被指数NDVI构成的作物生长过程曲线提取MODIS NDVI阶段性累积特征参数,并用生殖生长关键阶段和营养生长关键阶段对应的NDVI累积参数比值HINDVI_SUM构建了用于反演冬小麦收获指数的参数,并建立了参数HINDVI_SUM与冬小麦实测收获指数的定量关系,利用上述定量关系实现作物收获指数空间信息的提取。经过对反演冬小麦收获指数的精度验证,结果表明,利用构建参数HINDVI_SUM在区域范围内反演冬小麦收获指数取得了较好的效果。其中,冬小麦收获指数预测的平均相对误差为2.40%,均方根误差(RMSE)为0.02,证明了该研究利用时序NDVI构建参数HINDVI_SUM反演区域冬小麦收获指数空间信息的方法准确性和可行性。 相似文献
12.
小波分析与支持向量机结合的冬小麦白粉病遥感监测 总被引:2,自引:4,他引:2
为利用遥感影像数据在区域尺度上实现快速、准确地监测小麦白粉病的发生、发展情况,该研究基于环境与灾害监测预报小卫星(HJ-1A/1B)数据对地表温度(land surface temperature,LST)进行反演、提取4个波段反射率数据并构建7个植被指数。耦合K-mean和Relief算法对小麦白粉病遥感特征进行筛选。通过支持向量机(support vector machine,SVM)与小波特征(Gabor)结合SVM(Gabor SVM)的方法分别建立河北省晋州市小麦白粉病发生监测模型,并对2种模型的监测精度进行对比。结果表明:归一化植被指数(normalized difference vegetation index,NDVI)、比值植被指数(simple ratio index,SR)和地表温度3种特征参量可较好地表征小麦白粉病的发生情况,Gabor SVM的总体精度达到86.7%,优于SVM的80%。因此,小波分析与支持向量机结合的方法可用于基于卫星遥感影像的大面积病害监测,对提高病害监测精度具有重要应用价值。 相似文献
13.
基于NDVI-SI特征空间的土壤盐渍化遥感模型 总被引:6,自引:7,他引:6
同时考虑植被和土壤信息,构建盐渍化遥感信息提取模型。选取具有长期研究基础的塔里木南缘于田绿洲为研究靶区,综合分析归一化差值植被指数(NDVI)、盐分指数(SI)二者之间的关系,在此基础之上提出NDVI-SI特征空间概念,并构建土壤盐渍化遥感监测指数模型(SDI),结果表明:土壤表层含盐量与SDI相关性较高,其R2=0.8596。非盐渍地、轻度盐渍地、中度盐渍地、重度盐渍地的SDI平均值分别为0.399,0.763,0.974和1.201,差异较大;经差异性矩阵分析,亦表明SDI能够很好的区分研究区内不同盐渍化程度地类的分布范围。SDI能反映盐渍化土壤地表盐量组合及其变化,具有明确的生物物理意义,并且指标简单、易于获取、有利于盐渍化定量分析与监测,对今后干旱区盐渍地信息提取以及动态监测研究具有重要意义。 相似文献
14.
基于GF-1影像NDVI年度间相关分析的冬小麦面积变化监测 总被引:1,自引:0,他引:1
为实现区域冬小麦种植面积变化的快速监测,减少监测难度,提高监测效率和精度,该文提出一种基于年际NDVI相关关系的监测方法(relationship analysis of normal difference vegetation index,rNDVI)。选择河北省黄骅市、孟村县、海兴县3个县市为研究区,基于2014年4月14日、2017年4月26日两个时期的GF-1/WFV数据,基于rNDVI方法,通过将样本点两年度的NDVI值构建二维空间,采用最小二乘法拟合的方法获得不变地物点的上下包络线方程,进而得到冬小麦变化区域的监测阈值,提取冬小麦种植增加和减少区域,实现对研究区域的变化监测。结果表明,采用rNDVI算法总体精度分别为90.60%,Kappa系数为0.84,相比传统的先最大似然分类后再提取冬小麦种植变化区域的方法,总体精度与Kappa系数分别提高了6.6个百分点和16.7%。对冬小麦增加区域、冬小麦减少区域的变化监测结果进行分析,发现基于rNDVI的变化监测方法可以有效提高裸地、线状道路、破碎的冬小麦地块等区域的变化识别能力,提高监测精度。同时分别利用2014年3月1日和2017年3月12日、2014年5月17日与2017年5月20日两对GF-1/WFV数据进行基于rNDVI的冬小麦变化区域监测,结果表明3月份的监测精度较低,主要是由于3月份冬小麦长势尚不明显,5月份与4月份的总体精度相近,主要是由于5月份冬小麦NDVI已较高,易于识别。上述研究结果表明,基于rNDVI的冬小麦变化快速监测方法可以有效监测区域冬小麦种植面积的变化情况,算法简单高效,且能够在种植结构相对单一的冬小麦分布区域保持较高精度,能够满足农情遥感监测信息快速获取的需要。 相似文献
15.
支持向量机与分类后验概率空间变化向量分析法相结合的冬小麦种植面积测量方法 总被引:1,自引:1,他引:1
利用遥感手段提取农作物种植面积时,需要结合作物物候特征,以提高面积的提取精度。该文以北京市通州区西南部为试验区,以冬小麦为研究对象,利用多时相的环境减灾小卫星遥感影像数据,通过基于支持向量机二分法的分类后验概率空间变化向量分析法进行冬小麦种植面积遥感测量试验研究。研究结果表明:该文提出的方法测量结果总体精度、Kappa系数分别为95%、0.90,远高于支持向量机(SVM)分类后直接比较方法(总体精度91%,Kappa系数0.79);解决了实际应用中的变化阈值选取的主观性问题,该方法的频度直方图两极化现象使得变化阈值取值部分频度被压低摊平,阈值敏感度降低,变化阈值取值更为客观,一定程度上解决了阈值难以设定的问题;SVM二分法和变化向量分析的结合增强了对光谱的敏感性,能够监测不同季相上植被的长势变化,进而提高了农作物种植面积遥感测量的精度,同时对其他农作物种植面积测量提供了途径。 相似文献
16.
利用无人机平台搭载多光谱相机组成的遥感监测系统在农业上已取得了一些成果,但利用无人机多光谱影像开展作物氮素估测研究少有尝试。基于此,该文利用国家精准农业基地2017年夏玉米3个关键生育期无人机多光谱影像和田间实测叶片氮含量数据,开展夏玉米叶片氮素含量的无人机遥感估测研究。对该研究选用的15个光谱变量,通过相关性分析解析光谱变量与LNC的相关关系,筛选出对玉米叶片氮素含量敏感的光谱变量;应用后向逐步回归方法分析不同变量指数下估测精度变化,最终确定不同生育期夏玉米LNC估测的光谱变量,实现对夏玉米叶片氮含量的较高精度监测。研究发现:1)在3个生育时期,GRE和GNDVI与LNC都有很强的相关性,表明绿波段可以很好地进行夏玉米生物理化参数的反演;2)在喇叭口期和灌浆期,OSAVI、SAVI与LNC具有高度相关性,证明在夏玉米生长前期和后期选择控制土壤因素的光谱变量可以提高对氮素估测的能力。在筛选最优光谱变量建模过程中发现,喇叭口期选取5个光谱变量(GNDVI、GRE、OSAVI、REG、SAVI)建模效果最好,估测模型的R~2、RMSE和nRMSE分别为0.63、27.63%、11.62%;抽雄吐丝期选取6个光谱变量(REG、GRE、GNDVI、MNLI、RED、NDVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.64、20.50%、7.80%;灌浆期选取5个光谱变量(GRE、GNDVI、RED、NDVI、OSAVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.56、31.12%、12.71%;在不同生育期选取最优光谱变量进行夏玉米LNC估测具有很好的效果。应用无人机多光谱遥感影像数据可以很好地监测田块尺度夏玉米LNC的空间分布,可为玉米田间氮素精准管理提供空间决策服务信息支持。 相似文献
17.
基于GIS和RS的中国西北NDVI变化特征及其与气候变化的耦合性 总被引:8,自引:7,他引:8
整合遥感和地理信息技术,对中国西北地区近25 a来NDVI时空变化特征及其与气候变化的耦合关系进行了研究,结果表明:高寒草甸和落叶针叶林的NDVI增加趋势较明显,线性倾向率p=0.2%/10 a。枯黄期推后导致NDVI明显增加,线性倾向率达0.27%/10 a;青藏高原、天山南脉的春季气温和北疆、汉中地区的秋季气温上升较明显,半湿润和半干旱过渡地区降水变幅较大;江河源地区NDVI和气温的相关系数达到0.6,河西-阿拉善、南疆等干旱地区NDVI和降水的相关性较高,相关系数为0.65。夏、秋季汉中、祁连和天山 相似文献
18.
基于植被指数的春玉米干旱响应遥感监测 总被引:1,自引:2,他引:1
东北地区是中国主要的玉米种植区,同时也是中国易发生干旱的地区,干旱常态化严重制约着该地区玉米生产的稳定发展。以辽宁省春玉米为研究对象,在明确春玉米不同发育期干旱变化特征的基础上,基于FY-3A/MERSI、Terra/MODIS、春玉米发育期和土壤相对湿度观测等数据,建立春玉米干旱遥感监测指标集,构建各发育期不同土层深度的土壤相对湿度遥感监测模型,并以2000年为例开展了辽宁省春玉米干旱监测的应用研究,结果表明:1993—2012年辽宁省春玉米在各个发育期均有干旱发生,其中1999—2002年为干旱高发期,乳熟期干旱最为严重;多指数协同配合能提高遥感手段对土壤相对湿度的监测能力,其中陆表水分指数对土壤相对湿度监测能力较强,其次是水分指数;利用构建的春玉米各发育期土壤相对湿度遥感监测模型,监测2001—2004年部分发育期和土层深度的干旱状况,总体监测准确率为73.32%;实现了2000年辽宁省春玉米发育期干旱等级动态监测,所得监测结果与当年农业气象观测记录在发育阶段和空间上都有很好的一致性,遥感监测结果正确。因此,此项研究对于大范围准确跟踪监测春玉米干旱,以及提高春玉米生产的防灾减灾能力具有重要意义。 相似文献
19.
基于时间序列环境卫星影像的作物分类识别 总被引:6,自引:11,他引:6
环境星影像具有较高的时间和空间分辨率,利用其时序遥感数据进行作物信息提取优势明显。该文以黑龙江垦区友谊农场作物为研究对象,利用2010年6月至9月共10景HJ-CCD数据进行作物种植分类信息提取。首先,通过SPLINE算法对云影响区域插值去噪,重构时间序列影像数据;其次,通过分析试验区主要作物的光谱和植被指数时序变化特征,构建基于决策树分层分类的主要作物遥感分类模型,成功提取了黑龙江友谊农场大豆、玉米和水稻的种植信息,分类总体精度达到96.33%。同时,将分类结果同基于时间序列植被指数影像的支持向量机和最大似然法分类结果相比较,结果表明,决策树分类效果最好,支持向量机次之,最大似然分类较差。研究表明,通过去云处理后构建的时间序列HJ卫星遥感影像,结合作物的光谱和典型植被指数时序变化特征,借助于决策树分类方法能够有效提高黑龙江垦区主要种植作物分类的准确性和精度。 相似文献