首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different Brachyspira (B.) species colonize the porcine intestinal tract, some of which are pathogens of significant clinical and economic importance. In 2002 we published a novel molecular method for differentiation of Brachyspira species from pigs based on the amplification of the nox-gene and the generation of species-specific restriction patterns (nox-RFLP) using the enzymes BfmI and DpnII (Rohde et al., 2002). We applied this method for identification in addition to biochemical testing in doubtful cases until 2008. Since 2009 we have used it as the first line method of identification. The current study documents the results of examining 2050 Brachyspira isolates collected from January 2009 to December 2011. In addition to identifying isolates with previously described patterns, four novel restriction fragment length patterns were observed, and isolates with these patterns could be assigned to the species B. intermedia and the B. innocens/murdochii complex on the basis of their phenotypic properties and by nox-sequence analysis. In 2007 a potentially new Brachyspira species, "B. suanatina", was described in Swedish pigs (R?sb?ck et al., 2007). From the published nox-gene sequence it could be expected that this Brachypira species should show a new restriction pattern making nox-RFLP a suitable technique for identification of "B. suanatina". In this study the new restriction fragment length pattern could be demonstrated in one of the strains described by R?sb?ck et al. (AN4859/03). Nevertheless, no isolates with this new pattern corresponding to "B. suanatina" were identified amongst the 2050 Brachyspira isolates examined from northern Germany.  相似文献   

2.
The distribution of many genes encoding virulence and virulence life-style (VL-S) factors in Brachyspira (B.) hyodysenteriae and other Brachyspira species are largely unknown. Their knowledge is essential e.g. for the improvement of diagnostic methods targeting the detection and differentiation of the species. Thus 121 German Brachyspira field isolates from diarrhoeic pigs were characterized down to the species level by restriction fragment length polymorphism analysis of the nox gene and subsequently subjected to polymerase chain reaction detecting VL-S genes for inner (clpX) and outer membrane proteins (OMPs: bhlp16, bhlp17.6, bhlp29.7, bhmp39f, bhmp39h), hemolysins (hlyA/ACP, tlyA), iron metabolism (ftnA, bitC), and aerotolerance (nox). For comparison, B. hyodysenteriae reference strains from the USA (n=7) and Australia (2) were used. Of all genes tested only nox was detected in all isolates. The simultaneous presence of both the tlyA and hlyA/ACP was restricted to the species B. hyodysenteriae. The hlyA infrequently occurred also in weakly hemolytic Brachyspira. Similarly to tlyA and hlyA all B. hyodysenteriae strains contained the ferritin gene ftnA which was also found in two Brachyspira intermedia isolates. OMP encoding genes were present in B. hyodysenteriae field isolates in rates of 0% (bhlp17.6, bhmp39h), 58.1% (bhlp29.7), and 97.3% (bhmp39f). Since the study revealed a high genetic heterogeneity among German B. hyodysenteriae field isolates differentiating them from USA as well as Australian strains, targets for diagnostic PCR were limited to the nox gene (genus specific PCR) as well as to the species specific nox(hyo) gene and the combination of hlyA and tlyA which allow to specifically detect B. hyodysenteriae.  相似文献   

3.
Rapid identification of porcine Brachyspira species is required in order to differentiate pathogenic from non-pathogenic species. The aim of our study was to compare a recently described genetic method based on polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP), nox RFLP-PCR assay, and three species-specific PCRs described previously in the literature with a 16S rRNA gene RFLP-PCR discriminatory reference assay (16S RFLP-PCR) for the identification of Brachyspira spp. of swine origin. In this study, 20 porcine spirochaetal strains were identified and compared to 33 reference strains by 16S RFLP-PCR and nox RFLP-PCR and three species-specific PCRs. RFLP-PCR methods showed concordant results for 47 strains and discordances for 6 strains (2 differently identified and 4 not revealed by nox RFLP-PCR). In our hands species-specific PCRs showed concordant results with 16S and nox RFLP-PCR for 43 strains and discordances for 10 strains (2 differently identified and 8 not amplified). The same results observed testing the 20 field-isolated spirochaetes were obtained for the corresponding porcine faecal samples. The detection limit was 10(2) -10(3) cells/g of faeces for 16S rRNA gene PCR and 10(4) cells/g of faeces for nox PCR. In our experience nox RFLP-PCR appeared successful for the speciation of B. hyodysenteriae reserving 16S RFLP-PCR for all other pathogenic and non-pathogenic Brachyspira species. Among the species-specific PCR assays tested only that for B. pilosicoli was useful in our hands.  相似文献   

4.
Avian intestinal spirochaetosis (AIS) is an infection of the caeca and/or colo-rectum of laying and meat breeder hens caused by anaerobic intestinal spirochaetes of the genus Brachyspira. AIS can result in a variety of symptoms, including delayed and/or reduced egg production, and increased faecal water content. The two most commonly reported Brachyspira species involved in AIS are Brachyspira pilosicoli and Brachyspira intermedia, and their detection and identification can be difficult and time consuming. In the current study a two-step nested duplex PCR (2S-N-D-PCR) was developed for the detection of these two species, using DNA extracted from washed chicken faeces. In the first step, a duplex PCR (D-PCR) amplifying Brachyspira genus-specific portions of the 16S rRNA and NADH oxidase (nox) genes was undertaken on the washed faeces. In the second step, a nested D-PCR was used that amplified species-specific portions of the 16S rRNA gene of B. pilosicoli and the nox gene of B. intermedia from the amplicons produced in the first step. The 2S-N-D-PCR was rapid and specific, and could be used to detect approximately 10(3) cells of each spirochaete species per gram of washed faeces. When tested on 882 chicken faecal samples from infected flocks, it detected 4-5% more positive faecal samples than did the standard method of selective anaerobic culture followed by individual species-specific PCR assays conducted on the growth on the primary plate. The application of this new technique should improve diagnostic capacity, and facilitate further studies on AIS.  相似文献   

5.
Several species of intestinal spirochaetes, Brachyspira (B.) alvinipulli, B. intermedia and B. pilosicoli, may cause reduced egg production and faecal staining of eggshells in chickens. The aim of this study was to characterize potentially pathogenic and presumably non-pathogenic Brachyspira spp. from commercial laying hens. Selective culture, phenotyping, PCR and 16S rRNA gene sequencing were used and clinical data were collected. Phenotypic profiles were obtained for 489 isolates and 351 isolates obtained after subculture, and 30 isolates were selected for molecular characterization. Seven isolates were positive by a B. intermedia-specific PCR based on the nox gene, and two were positive in a B. hyodysenteriae-specific 23S rRNA gene based PCR. By comparative phylogenetic analysis in combination with PCR and phenotyping, seven isolates were identified as B. intermedia, eight isolates as B. innocens, five as B. murdochii, and three isolates each as B. alvinipulli and "B. pulli". The remaining four isolates could not be assigned to any presently recognized species. Co-infection with several species or genetic variants of Brachyspira spp. were detected in some flocks and samples, suggesting a high level of diversity. Organic flocks with access to outdoor areas were at higher risk (RR=2.3; 95% CI 1.5-3.6) for being colonized than chickens in other housing systems. No significant differences between colonized and non-colonized flocks were found regarding clinical parameters, i.e. mortality, egg production, faecally contaminated eggshells, and wet litter. Our results show that a combination of traditional laboratory diagnostics, molecular tests and phylogeny is needed for identification of Brachyspira sp. from chickens.  相似文献   

6.
Pathogenic intestinal spirochaetes of pigs include Brachyspira (formerly Serpulina) hyodysenteriae, the cause of swine dysentery, and Brachyspira pilosicoli, the cause of porcine colonic spirochetosis (PCS). The purpose of this study was to assess the relative importance of Brachyspira species in diarrhoeal disease of growing pigs on farms in southern Brazil. The intensity and pattern of haemolysis, the production of indole and the hydrolysis of hippurate by reference and field porcine intestinal spirochaetes were compared with 16S-ribosomal RNA (mRNA)- and 23S-rRNA-based polymerase chain reaction assays for the identification of B hyodysenteriae and B pilosicoli. Between July and October 1998, 206 rectal swabs were taken from pigs on 17 farms with a history of diarrhoea developing within 30 days after they had been moved from nursery to growing facilities. Of 49 beta-haemolytic spirochaetes that were cultured, 29 (59.2 per cent) were grown in pure culture for phenotypic and genotypic characterisation, leaving 20 untyped. Of the 29 typed isolates, eight isolates obtained from six farms were identified as B hyodysenteriae, and 15 isolates obtained from seven other farms were identified as B pilosicoli; the remaining six isolates were identified as weakly beta-haemolytic commensal spirochaetes. There was complete agreement between the results of the phenotypic and genotypic analyses.  相似文献   

7.
This report describes the detection of “Brachyspira (B.) hampsonii” clade I in Belgian pigs imported to Germany. Two of seventeen pigs from one herd were reported positive for Brachyspira hyodysenteriae by culture in a Belgian diagnostic laboratory, but negative for this Brachyspira species by specific PCR. In this study, from 22 fecal samples and 2 colon contents of these animals various Brachyspira species were cultured and identified by nox-RFLP as Brachyspira murdochii, Brachyspira innocens and Brachyspira intermedia. Albeit the six B. intermedia isolates proved to be negative in a species specific PCR. Sequencing of the nox-gene of three of these isolates revealed that the sequences were 99% identical to published sequences of “B. hampsonii” clade I. From one pig which was positive for “B. hampsonii” clade I histopathology was done and showed moderate lesions consistent with brachyspiral disease.  相似文献   

8.
Brachyspira infections are significant causes of enterocolitis in pigs. In order to differentiate pathogenic species (Brachyspira (Br.) hyodysenteriae, Brachyspira pilosicoli) from less pathogenic or non-pathogenic species (Brachyspira intermedia, Brachyspira innocens, Brachyspira murdochii) in paraffin-embedded tissue samples a polymerase chain reaction (PCR) protocol allowing identification of Brachyspira at species level in archival material was developed. This approach was complemented by sequencing of the PCR amplification products. All seven cases presented with clinical and morphological Brachyspira-associated enterocolitis. Br. hyodysenteriae was not identified in any of the cases, while Br. pilosicoli was identified in a single case in conjunction with Br. murdochii. One case each was found positive for Br. innocens and Br. intermedia. Interestingly, the majority of cases presented as single or double infections with Br. murdochii. In some of the pigs other pathogens, like porcine circovirus-2 or Lawsonia intracellularis were present. These observations point at the possibility that under certain conditions even Brachyspira species of low pathogenicity can multiplicate extensively and lead to Brachyspira-associated enterocolitis.  相似文献   

9.
The objective of this study was to develop a multiplex polymerase chain reaction (PCR) to detect and differentiate food-borne pathogens of the three genera Campylobacter, Arcobacter and Helicobacter in a single step procedure. One common reverse primer and three genus-specific forward primers were designed by hybridizing to the 16S rRNA of selected reference strains. Besides the species with significance as food-borne pathogens isolated from poultry meat--Campylobacter jejuni, Campylobacter coli, Arcobacter butzleri and Helicobacter pullorum--several other members of these genera were tested to determine the specificity of the designed multiplex PCR. In total, 20 ATCC and NCTC reference strains of Campyobacter, Arcobacter and Helicobacter were used to evaluate the PCR. Specific amplificates were obtained from all thermophilic species of Campylobacter as well as from species of Arcobacter and Helicobacter. No amplification product was obtained from the non-thermophilic Campylobacter, C. hyointestinalis and C. fetus. Furthermore, a total of 43 field strains of the three genera isolated from poultry, pigs, cattle and humans were investigated using this PCR. To confirm the classification of 10 H. pullorum strains the 16S rRNAs were sequenced. The developed PCR is a helpful diagnostic tool to detect and differentiate Campylobacter, Arcobacter and Helicobacter isolated from poultry and poultry products.  相似文献   

10.
Faeces samples were taken three times at two-week intervals, from the farrowing units of four herds of known Brachyspira (formerly Serpulina) status and one of unknown Brachyspira status. Brachyspira hyodysenteriae, Brachyspira pilosicoli, Brachyspira intermedia and Brachyspira group III were isolated from the faecal samples from the weaners in the herds using either a maximum of 50 ppm of olaquindox or no feed additives. The detection rates were relatively consistent. However, B hyodysenteriae was not detected at one sampling in a known positive herd. The prevalence of Brachyspira species was also studied in feeder pigs originating from LSO 2000 health class farrowing units, comparable with specific pathogen-free herds. These farms were free from swine dysentery, sarcoptic mange, swine enzootic pneumonia and progressive atrophic rhinitis. Fifty of 428 herds were sampled once. B hyodysenteriae was not isolated from any of them, but B intermedia, B pilosicoli and Brachyspira group III were isolated from five, 14 and 37 of the herds, respectively. The detection of Brachyspira species did not relate to the prevalence of diarrhoea in the herds, as judged by the farmers. The herds using carbadox (40 to 50 ppm) had a lower prevalence of Brachyspira species than those using olaquindox (40 to 50 ppm).  相似文献   

11.
The API 20E System and the Encise Enterotube were evaluated for the identification of the Enterobacteriaceae isolated from clinical specimens of animal origin at a veterinary diagnostic laboratory. Compared to conventional tubed media, the API 20E System identified 235 of 240 isolates (97.9%) correctly. The Encise Enterotube correctly identified 229 of the 240 isolates (95.4%). Thus, both these identification systems could be used to replace conventional methods for identifying members of this family isolated from animal origin.  相似文献   

12.
The Brachyspira (formerly Serpulina) species rrl gene encoding 23S ribosomal RNA (rRNA) was used as a target for amplification of a 517bp DNA fragment by polymerase chain reaction (PCR). The primers for PCR amplification had sequences that were conserved among Brachyspira 23S rRNA gene and were designed from nucleotide sequences of Brachyspira hyodysenteriae, Serpulina intermedia, Brachyspira innocens and Brachyspira pilosicoli available from the GenBank database. Digestion of PCR-generated products from reference and field isolates of swine intestinal spirochetes with restriction enzymes Taq I and Alu I revealed five restriction fragment length polymorphism (RFLP) patterns. Each RFLP pattern corresponded to previously established genetic groups including B. hyodysenteriae (I), S. intermedia/B. innocens (II), Brachyspira murdochii (III), B. pilosicoli (IV) and B. alvinipulli (V). The 23S rRNA PCR/RFLP provided a relatively simple genotypic method for identification of porcine pathogenic B. hyodysenteriae and B. pilosicoli.  相似文献   

13.
A survey is given on the occurrence and distribution of different Brachyspira species in pigs, in the northwest of Germany. In total 2975 specimen (feces, fecal swabs, colon) were taken and sent for laboratory analysis during the years 1997 to 1999. 1218 Brachyspira (B.) strains were found by cultural analysis. 1757 samples (59%) were negative. The cultural and biochemical differentiation revealed 720 (59.1%) strains B. hyodysenteriae (77.5% were indole negative), 22 (1.8%) B. pilosicoli, 29 (2.4%) B. intermedia, 167 (3.7%) B. innocens and 114 (9.4%) B. murdochii. 166 (13.6%) strains could not be identified. These strains could either not be compared with any of the described species by the methods used or it was impossible to achieve a pure culture from these isolates. The results demonstrate the wide spread of B. hyodysenteriae in pig herds in the northwest of Germany with a very high prevalence of indole negative strains. The most frequent strain was B. hyodysenteriae. B. pilosicoli which causes spirochaetal diarrhoea was rarely isolated and seems not to play an important role in Germany. Experience from routine cultures for Brachyspira give evidence that it is more useful to examine faeces from single pigs instead of pooled samples from a herd. It is recommended to use special transport media for the transport of the specimen.  相似文献   

14.
Two of four weak beta-hemolytic isolates of intestinal spirochetes isolated from pigs in Japan possessed a unique base alignment of TTTTTT on the 16S ribosomal DNA of Brachyspira pilosicoli and were identified as B. pilosicoli. The other two isolates were not identified by this technique. The identified isolates were 4.2 to 11 microm in length and 0.2 to 0.3 microm in diameter, 4 periplasmic flagella at each end were observed dominantly. The isolates were hippurate positive but indole negative. This is the first report on the isolation of B. pilosicoli from pigs in Japan.  相似文献   

15.
Feral pigs are recognized as being a potential reservoir of pathogenic microorganisms that can infect domestic pigs and other species. The aim of this study was to investigate whether feral pigs in Western Australia were colonized by the pathogenic enteric bacteria Lawsonia intracellularis, Brachyspira hyodysenteriae and/or Brachyspira pilosicoli. A total of 222 feral pigs from three study-populations were sampled. DNA was extracted from faeces or colonic contents and subjected to a previously described multiplex PCR for the three pathogenic bacterial species. A subset of 61 samples was cultured for Brachyspira species. A total of 42 (18.9%) of the 222 samples were PCR positive for L. intracellularis, 18 (8.1%) for B. hyodysenteriae and 1 (0.45%) for B. pilosicoli. Four samples were positive for both L. intracellularis and B. hyodysenteriae. Samples positive for the latter two pathogens were found in pigs from all three study-sites. A strongly haemolytic B. hyodysenteriae isolate was recovered from one of the 61 cultured samples. Comparison of a 1250-base pair region of the 16S rRNA gene amplified from DNA extracted from the isolate and five of the B. hyodysenteriae PCR positive faecal samples helped confirm these as being from B. hyodysenteriae. This is the first time that B. hyodysenteriae has been detected in feral pigs. As these animals range over considerable distances, they present a potential source of B. hyodysenteriae for any domesticated pigs with which they may come into contact.  相似文献   

16.
An improved polymerase chain reaction (PCR)-based method for determining the species composition of Eimeria in poultry litter was developed by incorporating species-specific internal standards in the assay. Internal standard molecules were prepared by fusing seven different Eimeria species-specific intervening transcribed sequence 1 (ITS1) rDNA primer pairs to a non-Eimeria DNA molecule and by cloning the hybrid DNA molecules into a plasmid. The internal DNA standards were then used in Eimeria-specific ITS 1 PCR, and they were found to be capable of detecting E. acervulina, E. maxima, E. praecox, and E. tenella oocysts isolated directly from poultry litter.  相似文献   

17.
The prevalence of infections with different Brachyspira species was assessed in 202 pigs with various chronic herd problems using different methods. Twenty-seven pigs (13.4%) were positive for Brachyspira spp. with at least one of the methods used. The highest number of positives was identified with mucosal scraping-PCR (23), followed by PET-PCR (22) and bacteriological-biochemical analysis (15). With the exception of three cases of B. pilosicoli infections, only weakly pathogenic Brachyspira species were identified. The majority was B. murdochii, followed by B. innocens and B. intermedia. Concurrent infections with two or more Brachyspira species were common and accounted for 37.1% of the total. Presence of weakly haemolytic Brachyspira was associated with wasting and diarrhoea in a number of cases. This investigation shows that infections with weakly haemolytic Brachyspira spp. may contribute to colonic pathology in pigs with chronic herd problems and that mixed infections seem to occur more frequently than previously noticed.  相似文献   

18.
Eleven cattle farms, 8 layer farms, 7 broiler farms and 30 broiler meat samples were investigated in south-eastern Italy throughout 2003 to evaluate the prevalence, the molecular type and antimicrobial resistance of thermophilic Campylobacters. A total of 398 samples were analysed. One Campylobacter isolate for each positive faecal swab and three isolates per positive broiler meat sample were selected for further analysis. Multiplex PCR was performed for species-level identification and PCR-RFLP of the flagellin A gene for genotyping. Resistance to 14 antimicrobials was studied in 188 Campylobacter isolates. Prevalence of campylobacters was high both on farms (100%) and in food samples (73%). On 4/11 cattle farms and on 10/15 poultry farms more than one species was isolated. The presence of more than one genotype was found on 8/11 cattle farms, on 10/15 poultry farms and in 8/22 Campylobacter-positive food samples. High rates of resistance to quinolone were observed: 9/31 (29%) C. jejuni bovine isolates, 4/22 (18%) C. jejuni poultry isolates, and 14/26 (54%) C. coli poultry isolates. Resistance to sulphamethoxazole-trimethoprim was also observed frequently: 18/26 (69%) of the avian C. coli strains, 25/31 (80%) of the C. jejuni strains isolated from poultry and 15/22 (68%) of those isolated from cattle were resistant. There was a significant difference between the rate of resistance to macrolides of C. coli and C. jejuni isolated in poultry, which amounted to 23% and 3%, respectively. This study provided data on the prevalence and antimicrobial resistance of thermophilic campylobacters in south-eastern Italy and confirmed that flaA-typing is an efficient tool to study the epidemiology of Campylobacter strains in short-term investigations.  相似文献   

19.
Four urease-negative Bordetella bronchiseptica isolates originating from pigs were examined by phenotypic and molecular methods. The phenotypic properties of the isolates were in harmony with the data of the literature, except for the lack of urease activity in conventional tube test, API 20 NE and Diatabs? assays. Using genotypic methods, the urease-negative isolates did not differ from the urease-positive reference strain. They were positive in species-specific and ureC PCR, and all strains showed uniform bands in PCR-RFLP studies of flaA genes. The reason for the lack of urease activity, a characteristic considered species specific for B. bronchiseptica, needs to be studied further. The finding underlines the significance of genotyping when the phenotypic identification of B. bronchiseptica seems questionable.  相似文献   

20.
Multilocus enzyme electrophoresis (MLEE) was used to identify, examine genetic relationships and look at disease associations of a collection of 53 intestinal spirochaete isolates previously recovered from the faeces of adult hens on 14 farms in Qld, Australia. The MLEE results were compared with those previously obtained using species-specific PCR amplifications. The isolates were divided into five Brachyspira species groups by MLEE: Brachyspira murdochii (n=17), B. intermedia (n=15), B. pilosicoli (n=14), B. innocens (n=2) and "B. pulli" (n=1). Three new MLEE groups each containing single isolates also were identified. The results of the PCR assay for B. pilosicoli were concordant with the MLEE results, but the 23S rDNA-based PCR for B. intermedia had failed to detect 8 of the 15 isolates. The B. innocens/B. murdochii nox-based PCR had correctly identified all the isolates of B. murdochii, but did not identify either of the two B. innocens isolates. Using MLEE, isolates from two farms (14%) were identified as B. murdochii, whilst the pathogenic species B. intermedia and B. pilosicoli were present in hens from eight (57%) and five (36%) farms, respectively, and were identified together in four (29%) farms. All seven of the farms with production problems or wet litter were colonised with B. intermedia and/or B. pilosicoli. Six farms had multiple spirochaete isolates available for examination. Two broiler breeder farms both had five isolates of B. pilosicoli that shared the same MLEE electrophoretic type (ET), whilst one laying hen farm had three isolates of B. intermedia that all belonged to the same ET. Hence on each of these farms a predominant strain of a pathogenic species was present. On the other farms isolates of the same species were more diverse and belonged to different ETs. These results show that the epidemiology of intestinal spirochaetal infections in broiler breeder and laying hen flocks can vary considerably between farms, although the reasons for these differences were not established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号