首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tillage systems can influence weed seed viability and the distribution with depth of weed seeds in soil. To investigate this ‘tillage effect’, weed seed bank composition was determined at two soil depths (0–10 and 10–20 cm) in three tillage systems [mouldboard plough (MP), shallow tillage (ST), and direct drilling (DD)] established for 14 years on a sandy loam (Podzol) in Prince Edward Island, Atlantic Canada. The cropping system was a cool-season soybean (Glycine max L. Merr.) in rotation with barley (Hordeum vulgare L.). The objectives were to evaluate the size and composition of the viable soil seed bank, using the seedling germination method, and to determine if the adoption of non-inversion tillage practices (DD and ST) influence seed bank parameters relative to the conventional full inversion MP. The diversity of weed species was slightly lower for MP (17 species) compared to the ST (21 species) and DD treatments (22 species). The population for most weed species was relatively low with only three common species [low cudweed (Gnaphalium uliginosum L.), creeping buttercup (Ranunculus repens L.), common lambsquarters (Chenopodium album L.)] above 5 m−2. For the total soil depth sampled (0–20 cm), weed seed population was significantly greater under DD (56 weeds m−2) and ST (66 weeds m−2), compared to MP (25 weeds m−2), and mainly related to changes in the number of annual broadleaf weeds, compared to perennial broadleaf and grasses. Comparison of the 0–10 with the 10–20 cm soil depth showed a relatively uniform weed seed distribution for the MP treatment, while a greater proportion of weed seeds was found at the lower soil depth for DD and ST. This distribution tended to be weed species dependent. Soil texture and weed seed characteristics were considered to have a critical impact on the total weed seed bank size, specifically for the 10–20 cm soil depth. Overall, the weed bank size was relatively small indicating that adoption of conservation tillage practices for sandy loams in Atlantic Canada should not cause a major change in weed community and weed populations, or present a need for significant changes in weed control management.  相似文献   

2.
The potential benefits of conservation tillage practices depend mainly on the soil and climatic conditions of the site. A study was conducted to determine the effects of three tillage systems (conventional, CT; reduced, RT; zero, ZT) on spring wheat (Triticum aestivum L.) and weed growth on a clay soil in temperate continental climate, northern Alberta (55°43′N, 118°41′W), Canada. A medium duty cultivator with 25 cm sweeps spaced 22 cm apart and a working depth of 8–10 cm was used for tillage in the CT (once in fall and twice in spring) and RT (once in spring) plots. The ZT plots received a harrowing to spread straw and a preseeding application of Roundup (glyphosate) to control weeds. Experimental design was a randomized complete block with four replications and the tillage systems were fixed in space for the 1989, 1990 and 1991 seasons. The RT treatment resulted in higher yields than the CT or ZT treatments. However, the differences were not always significant. The ZT treatment produced higher yields than CT in 1989 and 1991, whereas its yields were lower than CT in 1990. The 3 year means of total dry matter (TDM) were 3899 kg ha−1, 3640 kg ha−1 and 3331 kg ha−1 for the RT, ZT and CT treatments, respectively. The corresponding grain yields were 1728 kg ha−1, 1573 kg ha−1 and 1530 kg ha−1. The concentration of total N in plants and grains of wheat, amounts of extractable NO3-N, NH4-N and P in soil and soil moisture and bulk density were not significantly affected by tillage. The mean weight diameter of aggregates in surface soil was significantly greater under ZT than under the other systems. Wild buckwheat (Polygonum convolvulus L.) was more abundant under CT, but common groundsel (Senecio vulgaris L.), dandelion (Taraxacum officinale Weber), hemp nettle (Galeopsis tetrahit L.), field horsetail (Equisetum arvense L.) and smartweed (Polygonum scabrum Moench) tended to have higher populations under the ZT system. The populations of foxtail barley (Hordeum jubatum L.) wild rose (Rosa sp.), stinkweed (Thlaspi arvense L.) and wild oats (Avena fatua L.) showed no consistent effect of tillage. Tillage or preseeding application of glyphosate did not provide an effective control of all weed species. The spring tillage of the RT system improved crop yields and weed control relative to ZT, whereas the fall tillage of the CT system (in addition to spring tillage) reduced crop yields and had no significant effect on weed population relative to RT. The overall results showed that tillage intensity could be reduced to the level of RT without any adverse influence on crop yields, soil properties or weed populations. The RT system is also economical and environmentally desirable owing to lower tillage and herbicide requirements.  相似文献   

3.
The fertile, but naturally poorly drained soils of the western Fraser Valley in British Columbia, Canada are located in an area subject to about 1200 mm of rainfall annually. These soils were under intensive conventional tillage practices for years, which contributed to their poor infiltrability, low organic matter, and overall poor structure. Development of tillage practices that incorporate winter cover crops and reduce traffic in spring is required to reduce local soil degradation problems. The objective of this study was to determine short-term responses of soil physical properties to fall and spring tillage (ST) and fall and no spring tillage (NST) systems, both using spring barley (Hordeum vulgare L.) and winter wheat (Triticum aestivum L.) as winter cover crops. Field experiments were conducted for 3 years following seeding of the winter cover crops in fall 1992 on a silty clay loam Humic Gleysol (Mollic Gleysol in FAO soil classification). Average aeration porosity was 0.15 m3 m−3 on NST and 0.22 m3 m−3 on ST, while bulk density was 1.22 Mg m−3 on NST and 1.07 Mg m−3 on ST at the 0–7.5 cm depth. Neither of these two soil properties should limit seedling and root growth. After ST, mechanical resistance was consistently greater for 500–1000 kPa in NST than in ST, but never reached value of 2500 kPa considered limiting for root growth. The NST system did not increase soil water content relative to ST, with soil water contents being similar at 10 and 40 cm depth in all years. In 2 out of 3 years NST soil was drier at the 20 cm depth than was ST soil. Three years of NST did not result in a significant changes of aggregate stability relative to ST. This experiment showed that limiting tillage operations to the fall did not adversely affect soil physical conditions for plant growth in a humid maritime climate.  相似文献   

4.
D. Blaise   《Soil & Tillage Research》2006,91(1-2):207-216
Asiatic diploid (n = 13) cotton (Gossypium arboreum L.) is grown on Vertisols of central India with limited amounts of fertilizers and pesticides under rainfed conditions. In an earlier study it was established that reduced tillage (RT) systems improved productivity of tetraploid (n = 26) upland cotton (G. hirsutum L.). Such information is currently not available for the Asiatic cotton. Field studies were continued from 2002–2003 through 2004–2005, to determine the effect of tillage systems on weed control, yield and fibre quality. Tillage treatments continued for 6 years before this phase of the study. The experiment was conducted in a split plot design, with three tillage systems as main plots and combination of species (G. arboreum and G. hirsutum) and N rates (60 and 75 kg N ha−1) as subplots. Conventional tillage (CT) involved mouldboard ploughing + four to five inter-row cultivations and was compared with two levels of RT. RT1 being pre-emergence herbicide application with two inter-row cultivations by a bullock drawn hoe and RT2 was only herbicide application with no inter-row cultivation. Weed density (monocot and dicot weeds) was significantly lower on the RT than on the CT plots. Consequently, the RT plots had accumulated less weed dry matter. Seed cotton yield was affected by tillage systems in 1 out of 3 years. In 2002–2003, the yield trend was: RT1 > CT > RT2. The tillage × species interaction was significant in 2002–2003 and 2004–2005 and combined-across-years. Averaged over years, Asiatic G. arboreum produced 8% less seed cotton with treatment RT2 than with CT. Upland, G. hirsutum produced 118–134 kg ha−1 additional seed cotton on the RT than with CT. Differences in maturity and rooting habit probably contributed to the two species differing in their tillage requirement. The Asiatic cottons were early maturing and are known to possess a deeper root system than the upland cotton. The tillage × N and species × N interactions were not significant. Average seed cotton yield with the 75 kg N was 15.7% more than the 60 kg N ha−1 plots. Among fibre properties, fibre length was significantly better with treatment RT1 than with the CT in 2 out of 3 years. In summary, seed cotton yield of upland G. hirsutum cotton was higher with RT system, whereas converse occurred with G. arboreum. There were no adverse effects of RT on fibre quality.  相似文献   

5.
In the hills of north–west India, maize (Zea mays L.)-wheat (Triticum aestivum L.) is the dominant cropping system. However, rainfed wheat suffers from lack of optimum moisture at sowing. Field experiments were conducted for 3 years on a silty clay loam (Typic Hapludalf) to evaluate the effectiveness of mulches and conservation tillage for rainfed wheat in mitigating this problem. The treatments were ten factorial combinations of five mulch-tillage practices and two nitrogen levels (N60 and N120 kg ha−1). Mulch treatments consisted of application of 10 Mg ha−1 (dry weight basis), to previous standing maize, of either wild sage (Lantana camara L.) or eupatorium (Eupatorium adenophorum Sprengel) in combination with either conventional or conservation (minium) tillage prior to wheat sowing. These alternative practices were compared to the conventional farmer practice of soil tillage after harvest of maize with no mulch. The application of these weed mulches to standing maize maintained friable soil structure owing to a five fold higher mean population of earthworms underneath mulch. Mulches resulted in 0.06–0.10 m3 m−3 higher moisture in the seed-zone when wheat was sown compared with the conventional farmer practice of soil tillage after maize harvest. Mulch-conservation tillage treatments favourably moderated the hydro-thermal regime for growing a wheat crop. The mean root mass density under these treatments at wheat flowering was higher by 1.27–1.40 times over the conventional farmer practice during the 3 year study. Conservation tillage holds promise because it does not require elaborate tillage and may ultimately reduce animal draught in the hilly regions. Recycling available organic materials having no fodder value coupled with conservation tillage may help enrich the soil environment in the long-term. The practice also offers gainful use of these obnoxious weeds that cause great menace in grass and forest lands in the region.  相似文献   

6.
Inherent poor soil fertility is one of the factors responsible for the low productivity of rainfed cotton (Gossypium hirsutum) grown on the vertisols of the Indian sub-continent. A conservation tillage system such as reduced tillage (RT) is one approach to improve soil conditions. Field studies were conducted over 5 years to evaluate RT systems and determine the effects of retaining cotton crop residues on growth and yield of cotton. Results indicated that the RT systems (RT1: two inter-row cultivations and RT2 with no inter-row cultivation) gave significantly greater seed cotton than the conventional tillage (CT) in the first 3 years. In the later 2 years, the differences were not significant. However, yield decline was noticed in RT2 where there was no soil disturbance due to the increased build up of dicot weeds. The effect of crop residue on seed cotton yield was significant in 1998–1999 and 2000–2001. Leaf amended (R1) and leaf+stalk amended (R3) yields were equal to the control (R0). Stalk alone amended (R2) plots had the least seed cotton yield. The RT plots, generally had greater plant dry matter and yield attributes (number of bolls per plant and seed cotton yield per plant) than CT plots during the first 3 years, which contributed to significant yield differences between RT and CT plots. Residue amended plots had significantly greater SOC than the control. Eliminating complete soil disturbance, as in RT2, may not be a viable option, because of increased weed density, especially dicot weeds. The RT1 comprising pre-plant herbicide application and one pass of harrow, and two inter-row cultivation for early season and late season weed control, respectively, is a viable option to cotton growers of the semi-arid tropics of India.  相似文献   

7.
Integrating livestock with cotton (Gossypium hirsutum L.) and peanut (Arachis hypogaea L.) production systems by grazing winter-annuals can offer additional income for producers provided it does not result in yield-limiting soil compaction. We conducted a 3-year field study on a Dothan loamy sand (fine-loamy, kaolinitic, thermic plinthic kandiudults) in southern Alabama, USA to determine the influence of tillage system prior to cotton–peanut planting on soil properties following winter-annual grazing. Two winter-annual forages [oat (Avena sativa L.) and annual ryegrass (Lolium mutiflorum L.)] and four tillage practices [chisel + disk, non-inversion deep tillage (paratill) with and without disking and no-till] were evaluated in a strip-plot design of four replications. We evaluated cone index, bulk density, infiltration, soil organic carbon (SOC), and total nitrogen (N). Paratilling prior to cotton or peanut planting, especially without surface soil tillage, reduced compaction initially to 40 cm and residually to 30 cm through the grazing period in winter. There were no significant differences in cone index, bulk density, or infiltration between forage species. No-tillage resulted in the greatest bulk density (1.65 Mg m−3) and lowest infiltration (36% of water applied), while paratilling increased infiltration in no-tillage to 83%. After 3 years, paratilling increased SOC 38% and N 56% near the soil surface (0–5 cm), as compared to concentrations at the beginning of the experiment, suggesting an improvement in soil quality. For coastal plain soils, integrating winter-annual grazing in a cotton–peanut rotation using a conservation tillage system of non-inversion deep tillage (paratill) with no surface tillage can improve soil quality by reducing cone index, increasing infiltration, and increasing SOC in the soil surface.  相似文献   

8.
The structure of the soil in the arable layer is controlled by tillage, soil biota activities and weathering, whereas the structure below this layer is mainly the result of the activities of soil biota. Organic farmers tend to minimise the depth of the main tillage operation to encourage soil biota to create a soil structure with continuous biopores and a well crumbled topsoil. The best main tillage operation for preventive weed control, especially important in organic farming, is mouldboard ploughing. The shallow ploughing experiments described in this paper were conducted to ascertain the minimum ploughing depth for an ecologically accountable, sustainable tillage system with good weed control, good land qualities (in terms of workable days, aeration and soil moisture conditions) and finally with good yields. The “ecoplough” used for shallow ploughing was developed by Rumptstad Industries to meet the requirements of relatively shallow ploughing with good soil inversion for weed control. The plough has seven or eight bottoms for ploughing depths of 0.12–0.20 m, a working width of 2.1 m and a working speed of 1.7 m s−1. Its width is such that the tractor with wide low-pressure tyres runs on top of the land.

After using the plough for 6 years on Luvisols (>200 gkg−1<2 μm) in the IJsselmeer polders and on Luvisols (120–160 gkg−1<2 μm) in polders near the northern coast of The Netherlands, it was found that compared with conventional ploughing, shallow ploughing required less energy and labour and produced a relatively smooth surface. The latter facilitates the preparation of a seedbed consisting of relatively fine, strong, stable and moist aggregates. Organic matter, soil biota and nutrients were concentrated higher in the profile, influencing the workability of the soil, the growth of weeds and the growth of crops. Most of the yields were similar to yields after conventional ploughing, but weed populations increased when ploughing depth was <0.2 m. It was concluded that for organic farming on “active” soils (soils subject to shrink/swell with >200 g kg−1<2 μm), shallow ploughing seems to be the best reduced tillage system. It has several advantages. The main factor determining the minimum ploughing depth is control of weeds, especially of perennials.  相似文献   


9.
Tillage management can affect crop growth by altering the pore size distribution, pore geometry and hydraulic properties of soil. In the present communication, the effect of different tillage management viz., conventional tillage (CT), minimum tillage (MT) and zero-tillage (ZT) and different crop rotations viz. [(soybean–wheat (S–W), soybean–lentil (S–L) and soybean–pea (S–P)] on pore size distribution and soil hydraulic conductivities [saturated hydraulic conductivity (Ksat) and unsaturated hydraulic conductivity {k(h)}] of a sandy clay loam soil was studied after 4 years prior to the experiment. Soil cores were collected after 4 year of the experiment at an interval of 75 mm up to 300 mm soil depth for measuring soil bulk density, soil water retention constant (b), pore size distribution, Ksat and k(h). Nine pressure levels (from 2 to 1500 kPa) were used to calculate pore size distribution and k(h). It was observed that b values at all the studied soil depths were higher under ZT than those observed under CT irrespective of the crop rotations. The values of soil bulk density observed under ZT were higher in 0–75 mm soil depth in all the crop rotations. But, among the crop rotations, soils under S–P and S–L rotations showed relatively lower bulk density values than S–W rotation. Average values of the volume fraction of total porosity with pores <7.5 μm in diameter (effective pores for retaining plant available water) were 0.557, 0.636 and 0.628 m3 m−3 under CT, MT and ZT; and 0.592, 0.610 and 0.626 m3 m−3 under S–W, S–L and S–P, respectively. In contrast, the average values of the volume fraction of total porosity with pores >150 μm in diameter (pores draining freely with gravity) were 0.124, 0.096 and 0.095 m3 m−3 under CT, MT and ZT; and 0.110, 0.104 and 0.101 m3 m−3 under S–W, S–L and S–P, respectively. Saturated hydraulic conductivity values in all the studied soil depths were significantly greater under ZT than those under CT (range from 300 to 344 mm day−1). The observed k(h) values at 0–75 mm soil depth under ZT were significantly higher than those computed under CT at all the suction levels, except at −10, −100 and −400 kPa suction. Among the crop rotations, S–P rotation recorded significantly higher k(h) values than those under S–W and S–L rotations up to −40 kPa suction. The interaction effects of tillage and crop rotations affecting the k(h) values were found significant at all the soil water suctions. Both S–L and S–P rotations resulted in better soil water retention and transmission properties under ZT.  相似文献   

10.
To promote conservation tillage in organic farming systems, weed control and ley removal within arable-ley rotations need to be optimized. A long-term field trial was thus established in Frick, Switzerland in 2002 on a clayey soil and with a mean precipitation of 1000 mm/year. The tillage experiment distinguished between conventional tillage with mouldboard ploughing (CT, 15 cm depth) and reduced tillage (RT), including a chisel plough (15 cm) and a stubble cleaner (5 cm). Results of a 2-year grass-clover ley (2006/2007) and silage maize (2008) are presented. Due to dry conditions, mean grass-clover yields were 25% higher in RT than in CT, indicating better water retention of RT soils. Clover cover and mineral contents of the fodder mixture were also higher in RT. The ley was successfully removed in autumn 2007 in RT plots, and a winter pea catch crop was sown before maize. In CT, ploughing took place in spring 2008. Maize yields were 34% higher in RT than in CT, despite a two- to three-fold higher but still tolerable weed infestation. Maize in RT plots benefited from an additional 61.5 kg of easily decomposable organic N/ha incorporated into the soil via the pea mulch. Measurement of arbuscular mycorrhizal colonization of maize roots indicated a similar mechanical disturbance of the topsoil through the reduced ley removal system compared with ploughing. It is suggested that RT is applicable in organic farming, even in arable-ley rotations, but long-term effects need further assessment.  相似文献   

11.
Cultivation practices permitting earlier sowing of cotton (Gossypium hirsutum L.) in Greece are required to maximize yields and facilitate harvesting. An experiment was conducted for 2 years in Central Greece to evaluate two alternative systems. The experiment was carried out in a Vertic Cambisol and a Typic Regosol field. Cultivation practices tested were: (1) conventional tillage (CT) and sowing in a flat field, (2) ridge tillage (RT), using autumn ridging and (3) sowing in a flat field under clear plastic film (PF). Early and normal sowings were compared. The effects of the treatment on the crop establishment, growth and yield, as well as on the soil physical properties, were studied. Performance evaluation of the machinery was carried out. The cost of cultivation practices was estimated. Results of soil physical properties were similar for both years. Soil water contents from sowing to plastic removal in 2000 were 14.2, 13.5 and 18.0 g/100 g and temperatures for the same period at 0.04 m depth were 17.7, 18.1 and 19.8 °C for CT, RT and PF, respectively. PF resulted in higher emergence and higher plants with smaller roots. Average yields of seed-cotton in early sowing were 4936, 4591 and 4033 kg/ha for PF, RT and CT, respectively. In late sowing, yields in RT and in CT did not differ significantly. Ridge tillage machinery saved 13.6 kWh/ha (20.9%) compared to conventional tillage machinery. The higher yields under plastic film compensated for the higher cost of the practice at the present prices of seed-cotton.  相似文献   

12.
Reduced tillage methods for field crop production result in less disruption of soil structure and often increased amounts of crop residue maintained on the soil surface. The combination of these two factors produces increased surface soil aggregation. This study was conducted in the field and within pots to determine whether surface residue by itself improves soil aggregation within a short period of time. The soil was a silt loam loess deposit in the Pacific Northwest, USA, where summers are hot and dry, and most precipitation (420 mm) is received during the mild winters. Two pot studies were conducted over winter, one under a shelter with controlled irrigations (183 mm), and the other outdoors receiving natural precipitation (77 mm). In both pot studies 640 g m−2 wheat (Triticum aestivum L.) residue was either placed on the surface of the soil or thoroughly mixed into the soil. The field study was conducted on plots where, for the past 7 years, wheat crop residues were either incorporated through chisel/disk tillage or removed before tillage and replaced on the surface after tillage. The field study included plots where wheat was grown with no tillage. In the pots, there was no significant effect due to residue treatment on aggregate mean weight diameter, measured monthly for 4 winter months. This was true despite dissolved organic carbon being leached from the surface residue. In the 7-year-old field plots, replacing residues on the surface resulted in slightly greater mean weight diameter of aggregates at 5–10 cm depth compared to the mixed residue treatment. The no-till plots had significantly greater mean weight diameter at 0–5 cm depth than either tilled treatment. Our conclusion is that surface residue by itself failed to increase aggregation of tilled surface soil within the first rainy season after tillage.  相似文献   

13.
In a multi-year experiment, weed infestation of pea crop in three tillage systems was analyzed: a) conventional tillage (CT), b) reduced tillage (RT), and c) no-tillage (NT), and in two terms: 1) at 2–3 pea leaves stage (23–25 stage in BBCH scale) and 2) at the flat pod stage (75–79 BBCH). Treatments conducted in the CT system included shallow ploughing and pre-winter ploughing in the autumn. In the RT system, both these treatments were replaced by double cultivation, whereas only glyphosate treatment was applied in the NT system. In both terms of weed infestation assessment, the highest number and air-dry weight of weeds were determined in the RT system, lower ones in CT and the lowest ones in the NT system. In the first term, the number of weeds m?2 in the RT system was higher by 43.9% than in NT and by 26% than in CT system. Also in the second term was the weed number m?2 in RT higher by 58.6% than in NT and by 27.9% than in CT. Tillage systems differentiated also weed mass in pea crop. In RT, it was 4-fold higher than in NT and over 2-fold higher than in CT.  相似文献   

14.
Long-term tillage and nitrogen (N) management practices can have a profound impact on soil properties and nutrient availability. A great deal of research evaluating tillage and N applications on soil chemical properties has been conducted with continuous corn (Zea Mays L.) throughout the Midwest, but not on continuous grain sorghum (Sorghum bicolor (L.) Moench). The objective of this experiment was to examine the long-term effects of tillage and nitrogen applications on soil physical and chemical properties at different depths after 23 years of continuous sorghum under no-till (NT) and conventional till (CT) (fall chisel-field cultivation prior to planting) systems. Ammonium nitrate (AN), urea, and a slow release form of urea were surface broadcast at rates of 34, 67, and 135 kg N ha−1. Soil samples were taken to a depth of 15 cm and separated into 2.5 cm increments. As a result of lime applied to the soil surface, soil pH in the NT and CT plots decreased with depth, ranging from 6.9 to 5.7 in the NT plots and from 6.5 to 5.9 in the CT plots. Bray-1 extractable P and NH4OAc extractable K was 20 and 49 mg kg−1 higher, respectively, in the surface 2.5 cm of NT compared to CT. Extractable Ca was not greatly influenced by tillage but extractable Mg was higher for CT compared to NT below 2.5 cm. Organic carbon (OC) under NT was significantly higher in the surface 7.5 cm of soil compared to CT. Averaged across N rates, NT had 2.7 Mg ha−1 more C than CT in the surface 7.5 cm of soil. Bulk density (Δb) of the CT was lower at 1.07 g cm−3 while Δb of NT plots was 1.13 g cm−3. This study demonstrated the effect tillage has on the distribution and concentration of certain chemical soil properties.  相似文献   

15.
Crop management practices, especially tillage and rotation, can impact soil nutrient stratification, crop growth, and yield. The objectives of this study were to determine the soil-profile distribution of plant-available nutrients in four depth intervals from 0 to 90 cm for different cotton (Gossypium hirsutum L.) cropping systems, tillage regimes, and N fertilization rates in a south-central Texas silty clay loam soil after 5 years of treatment imposition. Distribution of nutrients in the soil profile varied between cropping systems (continuous cotton monoculture and cotton–corn (Zea mays L.) rotation), conventional (CT) and reduced tillage (RT), and N fertilization rates (0, 80, and 160 kg N ha−1). Plant-available P showed the greatest stratification and was 426% higher at 0–15 cm than at 60–90 cm, while SO4 had the greatest increase (42%) with depth. The percentage decrease from 0–15 to 60–90 cm was 47% and 147% for NO3 and K, and 76%, 12%, 43%, and 232% for Mn, Fe, Cu, and Zn, respectively. In contrast, Ca and Mg concentrations increased 22% and 15%, respectively, from 0–15 to 60–90 cm. Increasing the N fertilization rate increased plant-available NO3 and SO4 but decreased K, Fe, Cu, and Zn concentrations. Inclusion of corn in rotation with cotton decreased plant-available Mn, Fe, and Cu from 15 to 90 cm relative to continuous cotton at 160 kg N ha−1. For unfertilized soil, rotation increased micronutrient concentrations at 15–60 cm compared to continuous cotton. On average, CT cotton–corn had significantly lower K, Ca, Mg, Na, and SO4 concentrations than CT continuous cotton. Reduced tillage and diversified cropping systems altered the distribution of plant-available nutrients in soil relative to CT and continuous cotton. In fact, RT increased plant-available P and NO3 in surface soil, which may have contributed to higher lint yields than CT continuous cotton.  相似文献   

16.
Seedbanks of five weed species were monitored in response to tillage and crop rotations in a semi-arid location in northern Jordan. Tillage practices of mouldboard- or chisel-plowing and cropping patterns of barley (Hordeum vulgare) planting or fallow were evaluated on permanently established subplots. Soil samples were collected from the upper 10 cm for three consecutive years, immediately after performing tillage and prior to planting. Soil seedbanks of the five dominant weed species (Anthemis palestina, Diplotaxis erucoides, Hordeum marinum, Rhagadiolus stellatus, and Trigonella caelesyriaca) were estimated by recovering viable seeds through greenhouse and laboratory procedures. At initiation, more viable seeds were present in soil subjected to mouldboard plowing than chisels plowing. In the following two sampling seasons, significant rotation by tillage interaction affected the seedbank of each species. Generally, mouldboard plowing increased weed seedbanks when combined with frequent fallowing. Conversely, chisel plowing combined with barley cropping generally reduced weed seedbank sizes. Results emphasized the importance of managing weeds during fallow to avoid the build up of H. marinum, a serious grass weed in semi-arid environments.  相似文献   

17.
Intensive tillage for annual crop production may be affecting soil health and quality. However, tillage intensity effects on biological activities of volcanic-derived soils have not been systematically investigated. We evaluated the effects of three different tillage practices on some biological activities of an Ultisol from southern Chile during the third year of a wheat–lupin–wheat crop sequence. Treatments were: no tillage with stubble burning (NTB), no tillage without stubble burning (NT) and conventional tillage with disk-harrowing and stubble burning (CT). Biological activities were evaluated in winter and summer at 0–200 mm and at three soil depths (0–50, 50–100 and 100–200 mm) in winter. Total organic C and N were significantly higher under no-tillage systems than CT. In general, NT increased C and N of microbial biomass in comparison with CT, especially in winter. Microbial biomass C was closely associated with microbial biomass N (r = 0.986, P < 0.05); acid phosphomonoesterase (r = 0.999, P < 0.05); β-glucosidase (r = 0.978, P < 0.05), and others. Changes in biological activities occurred mainly in the upper soil layer (0–50 mm depth) in spite of the short duration of the experiment. Biological activities could be used as practical biological indicators to apply the more appropriate management systems for increasing soil sustainability or productivity.  相似文献   

18.
Under semiarid Mediterranean climatic conditions, soils typically have low organic matter content and weak structure resulting in low infiltration rates. Aggregate stability is a quality indicator directly related to soil organic matter, which can be redistributed within soil by tillage. Long-term effects (1983–1996) of tillage systems on water stability of pre-wetted and air dried aggregates, soil organic carbon (SOC) stratification and crop production were studied in a Vertic Luvisol with a loam texture. Tillage treatments included conventional tillage (CT), minimum tillage (MT) and zero tillage (ZT) under winter wheat (Triticum aestivum L.) and vetch (Vicia sativa L.) rotation (W–V), and under continuous monoculture of winter wheat or winter barley (Hordeum vulgare L.) (CM). Aggregate stability of soil at a depth of 0–5 cm was much greater when 1–2 mm aggregates were vacuum wetted prior to sieving (83%) than when slaked (6%). However, slaking resulted in tillage effects that were consistent with changes in SOC. Aggregate stability of slaked aggregates was greater under ZT than under CT or MT in both crop rotations (i.e., 11% vs. 3%, respectively).

SOC under ZT tended to accumulate in the surface soil layer (0–5 and 5–10 cm) at the expense of deeper ones. At depths of 10–20 and 20–30 cm no differences in SOC were encountered among tillage systems, but CT exhibited the highest concentration at 30–40 cm depth. Nevertheless, when comparisons were made on mass basis (Mg ha−1), significant differences in stocked SOC were observed at depths of 0–10 and 0–20 cm, where ZT had the highest SOC content in both rotations. The stock of SOC to a depth of 40 cm, averaged across crop rotations, was greater under ZT (43 Mg ha−1) than under CT (41 Mg ha−1) and MT (40 Mg ha−1) although these figures were not significantly different. Likewise, no significant differences were encountered in the stock of SOC to a depth of 40 cm among crop rotations (i.e., 42 Mg ha−1 for W–V vs. 40 Mg ha−1 for CM).

Crop production with wheat–vetch and continuous cereal showed no differences among tillage systems. Yields were strongly limited by the environmental conditions, particularly the amount of rainfall received in the crop growth season and its distribution. Similar yield and improved soil properties under ZT suggests that it is a more sustainable system for the semiarid Mediterranean region of Spain.  相似文献   


19.
A better understanding of tillage effects on soil organic matter is vital for development of effective soil conservation practices. The objective of this research is to determine the effect of tillage and crop sequence on soil organic carbon (OC) and total nitrogen (TN) content in an irrigated southern Alberta soil. A field experiment was conducted using a split–split plot design from 1994 to 1998 in Alberta, Canada. There were two crop sequences (Sequence 1: spring wheat (Triticum aestivum L.)–sugar beet (Beta vulgaris L.)–spring wheat–annual legume; and Sequence 2: spring wheat–spring wheat–annual legume–sugar beet) and two tillage practices (CT: conventional tillage and MT: minimum tillage). Surface soil under MT had significantly higher OC (30.1 Mg ha−1) content than under CT (28.3 Mg ha−1) after 4 years of treatment. The MT treatment retains crop residue at the soil surface, reduces soil erosion and slows organic matter decomposition, which are key factors in enhancing the soil fertility status of southern Alberta irrigated soils.  相似文献   

20.
Field studies were conducted for three seasons (1978–1979, 1979–1980 and 1981–1982) on a Palouse silt loam near Pullman, Washington, to compare the effects of broadcast and deep banding of nitrogen (N) fertilizer beneath winter wheat (Triticum aestivum L.) seed on N uptake and dry matter production of downy brome (Bromus tectorum L.) and jointed goatgrass (Aegilops cylindrica Host.), and on N uptake, dry matter production and grain yields of winter wheat. Three tillage systems were used: conventional tillage; shallow roto-tilling, or no-tillage prior to planting. Rates of N were 0, 65, 130 and 190 kg N ha−1 as ammonium nitrate. Additional plots were maintained free of weeds at the 130 kg N ha−1 rate. In 1983–1984, deep banding of the fertilizer between rows in a paired-row configuration was compared to surface-broadcast N fertilizer using N rates of 0, 45, 90 and 135 kg N ha−1. There were no significant differences between broadcast and deep-band application of N on grass weed N uptake or dry matter production with mold-board plowed or no-tillage, but there was greater weed growth with surface-broadcast N with shallow roto-tilling. Wheat N uptake, growth and grain yields were consistently higher with band-applied N compared to broadcast N. The yield response to banding N was the same with or without the presence of grass weeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号