首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Individual animal samples were collected from ten VTEC O157 positive farms approximately monthly over 11 months to investigate the shedding of VTEC O157 by youngstock. VTEC O157 was isolated from 7.7% of the 6266 samples and 28.9% of the 1383 animals. On six of the farms VTEC O157 was isolated at multiple visits from several animals, whereas the remaining four farms had one or two positive animals at any one visit, with VTEC isolated from a maximum of four visits. A total of 92 animals were positive more than once (up to four sampling occasions) with a maximum of four negative samples between positive isolations. The results reveal a large variation in individual animal shedding patterns; the proportion of shedding animals on positive farms; and over time within the same farm. The lack of consistent shedding restricts the ability to target potential interventions to specific positive animals/groups or herds.  相似文献   

2.
Verocytotoxin-producing Escherichia coli (VTEC) O157 is an important emerging human pathogen. Cattle are considered to be the main reservoir for VTEC O157. The objectives of this study were to determine the prevalence of VTEC O157 in Danish dairy herds and to investigate the relationship between shedding of VTEC O157 and a number of animal and herd characteristics. Sixty dairy farms were visited once in August-October, and from each herd faecal samples from up to 50 animals were analysed for VTEC O157 by enrichment, immunomagnetic separation (IMS), and plating on selective agar. In total, 2419 animals were sampled, and 3.6% of these excreted VTEC O157. These animals were located on 10 farms (17%). On average, 21% of the sampled animals in the positive herds excreted VTEC O157. Register data, including age, sex, breed, housing conditions and herd composition, were extracted from a database. No influence of herd size or housing conditions was found. A strong effect of age was seen with 2-6-month-old calves as the high-risk age group (8.6% positive) in contrast to calves <2 months (0.7%) and cows (2.4%). There was a non-significant tendency of bull calves to have a higher prevalence than heifers within the age group of 2-6 months. Significantly, more of the herds characterised by having relatively many bull calves or many animals bought into the herd were positive for VTEC O157. Despite the low incidence of human VTEC O157 infections in Denmark, the prevalence in Danish dairy herds was found to be at a similar level as in many other countries.  相似文献   

3.
Rectal content grab samples were collected from 2436 beef cattle reared on 406 beef farms in Japan between November 2007 and March 2008. STEC strains O157 and O26 were isolated from 110 (27.1%) and 7 (1.7%) farms, respectively. Farms that tested positive for STEC O157 were located in 35 out of all 47 Japanese prefectures. This indicates that STEC O157 strains are widespread on beef farms nationwide. Of the 2436 tested beef cattle, 218 (8.9%) and 10 (0.4%) had STEC strains O157 and O26 in the rectal content, respectively. The most common Shiga toxin genes detected in the isolated STEC O157 strains were: stx(2c) alone (32.1%), stx(2)/stx(2c) (27.2%), and stx(1)/stx(2) (21.8%). Almost all of the STEC O157 and STEC O26 strains expressed Shiga toxins (Stx). Most of the STEC O157 and STEC O26 strains possessed eaeA and EHEC-hlyA. These results strongly suggest that STEC strains O157 and O26 from beef cattle would be pathogenic to humans. Therefore, it is important to reduce STEC strains O157 and O26 in beef cattle in order to prevent foodborne disease caused by STEC. The presence of dogs and/or cats on a farm was significantly (P=0.02) associated with the prevalence of STEC O157. More research is needed to clarify the role of dogs and cats.  相似文献   

4.
During the decade to 1999, the incidence of human infections with the zoonotic pathogen verocytotoxin-producing Escherichia coli O157 (VTEC O157) increased in England and Wales. This paper describes the results of a survey of 75 farms to determine the prevalence of faecal excretion of VTEC O157 by cattle, its primary reservoir host, in England and Wales. Faecal samples were collected from 4663 cattle between June and December 1999. The prevalence of excretion by individual cattle was 4.2 per cent (95 per cent confidence interval [CI] 2.0 to 6.4) and 10.3 per cent (95 per cent CI 5.8 to 14.8) among animals in infected herds. The within-herd prevalence on positive farms ranged from 1.1 to 51.4 per cent. At least one positive animal was identified on 29 (38.7 per cent; 95 per cent CI 28.1 to 50.4) of the farms, including dairy, suckler and fattening herds. The prevalence of excretion was least in the calves under two months of age, peaked in the calves aged between two and six months and declined thereafter. The phage types identified most widely were 4, 34 and 2, which were each found on six of the 29 positive farms.  相似文献   

5.
The prevalence of enterohemorrhagic Escherichia coli (EHEC) O157 was examined in bovine faeces. EHEC O157 was isolated from the faeces of 42 (13.0%) of 324 cattle. Of the 4 farms and the facilities tested, the 3 farms and the facilities were found positive for EHEC O157. The highest isolation rate among the farms was 33.7%. The prevalence of EHEC O157 in heifers was higher than that in calves and other cattle. No cattle positive for EHEC O157 showed any clinical signs except 2 calves with diarrhea in a veterinary hospital. Almost all isolates possessed the stx gene, and Stx-positive strains carrying both stx(1) and stx(2) genes were predominant. These results indicate that EHEC O157 are distributed in bovine faeces, and that dairy and beef farms in selected regions of Japan are heavily contaminated with the organisms.  相似文献   

6.
Among the verocytotoxin producing E. coli strains (VTEC) the enterohemorrhagic group (EHEC) have emerged as important source of serious disease in human, e.g. the haemolytic uremic syndrome (HUS). VTEC strains possess different virulence profiles where by virulence traits can be provided by the chromosome, by plasmids and, in the case of verocytotoxins (except: VT2e) by bacteriophages. The original and main reservoir are ruminants. In Germany, VTEC strains were isolated in ruminant stocks regularly. In part, the prevalence was estimated up to 100%. However, strains of important EHEC serovar groups, e.g. O157, O26, O111, O103 and O145 as main source of human infections are isolated rarly. This is even the case for food originated from those animals. The hygienic management to avoid fecal contamination of carcasses during the slaughter process is of crucial importance. Future preventive strategies in the field of primary production may be the development of vaccination programs and/or the feeding management to reduce the shedding of acid resistant VTEC. Slowly recognized environmental sources of infection and contamination are biotic (e.g. flys, rodents) and abiotic factors (e.g. pasture, water, feed). In an own study that investigated the prevalence of VTEC positive animals in free range cows during sojourn on pasture a significant increase was estimated. Even asymptomatic human carriers can serve as source of infection or contamination.  相似文献   

7.
OBJECTIVE: To determine the prevalence of fecal shedding of Escherichia coli O157:H7 in white-tailed deer (Odocoileus virginianus) with access to cattle pastures. DESIGN: Survey study. SAMPLE POPULATION: 212 fecal samples from free ranging white-tailed deer. PROCEDURE: Fresh feces were collected on multiple pastures from 2 farms in north central Kansas between September 1997 and April 1998. Escherichia coli O157:H7 was identified by bacterial culture and DNA-based methods. RESULTS: Escherichia coli O157:H7 was identified in 2.4% (5/212) of white-tailed deer fecal samples. CONCLUSIONS AND CLINICAL RELEVANCE: There is considerable interest in the beef industry in on-farm control of E coli O157:H7 to reduce the risk of this pathogen entering the human food chain. Results of our study suggest that the design of programs for E coli O157:H7 control in domestic livestock on pasture will need to account for fecal shedding in free-ranging deer. In addition, the results have implications for hunters, people consuming venison, and deer-farming enterprises.  相似文献   

8.
Data of the prevalence, age-related and housing-dependence of naturally acquired cryptosporidiosis on 11 dairy and 11 beef farms in South Bohemia (Czech Republic) were collected. The farms were visited over four consecutive years (from 2002 to 2005). The prevalence of Cryptosporidium in pre-weaned (animals until second month of age) and post-weaned (animals from the third month of age) calves was determined. A total of 7001 faecal samples were collected, concentrated by Sheather's floatation method and stained by aniline-carbol-methyl violet. All samples were examined by light microscopy. Cryptosporidium parvum and C. andersoni oocysts were differentiated on morphological criteria. Of the 7021 specimens, 1814 (25.8%) were positive for Cryptosporidium oocysts; 561 samples (8%) for C. parvum and 1253 (17.8%) for C. andersoni. Pre-weaned dairy calves had higher infection levels of C. parvum than pre-weaned beef calves. The prevalence of C. parvum ranged from 1.4 to 56.5% on dairy farms. Only three cases of C. parvum oocysts shedding in pre-weaned calves on beef farms were found. Only one case of C. andersoni infection in pre-weaned calves was detected and no infections of C. parvum in post-weaned calves were found. The prevalence of C. andersoni reached 35.5% on dairy farms and 61.7% on beef farms. Calves that were on pasture all year long, had a lower probability of C. andersoni infection than those calves kept in a cowshed during the winter season.  相似文献   

9.
Fecal samples from 544 beef cattle and 140 sheep were investigated by PCR for verotoxin (VT)-producing Escherichia coli (VTEC) without and with an enrichment step. 6.1% (after enrichment 14%) of cattle samples and 10% (after enrichment 29.2%) of sheep samples were VT-PCR-positive. Moreover, a noticeable age-depending prevalence in cattle was found. Eleven VTEC strains isolated from fecal samples of 5 cattle and 6 sheep were taken for further characterization. None of the strains belonged to serogroup O157. But, as reported previously, we also found in this study strains with virulence genes that are associated with increased pathogenicity. The importance of slaughter hygiene and of bacteriological monitoring of carcass contamination has to be pointed out.  相似文献   

10.
Escherichia coli O157 is often associated with hemorrhagic colitis and the hemolytic uremic syndrome (HUS). The verocytotoxins are considered to be the major virulence determinants. However, vt-negative E. coli O157 were recently isolated from patients with HUS. Several transmission routes to humans are described, but cattle feces are the primary source from which both the food supply and the environment become contaminated with E. coli O157.In a prevalence study performed on dairy, beef, mixed dairy/beef and veal farms in the summer of 2007, vt-negative isolates were detected on 11.8% (8/68) of the positive farms. From these eight farms, a total of 43 sorbitol-negative E. coli O157:H7 were collected. On five farms, only strains negative for the vt genes were present whereas both vt-negative and vt-positive strains could be detected on three other farms. Further characterization revealed that all isolates carried the eaeA and hlyA genes. Pulsed-field gel electrophoresis (PFGE) of all isolates resulted in nine different PFGE types and within the vt-negative strains, four different genotypes were identified, indicating that certain genetic clones are widespread over the cattle population.  相似文献   

11.
A seroepidemiological survey of bovine leukemia virus (BLV) infection was conducted in Japan in 2007 using an enzyme-linked immunosorbent assay (ELISA) and an agar gel immunodiffusion (AGID) test. A total of 5420 cattle (dairy, 3966; breeding beef, 797; fattening beef, 657) from 209 farms in seven prefectures in Japan were tested. The overall prevalence of BLV infection was 28.6%. The prevalence of BLV infection in dairy cattle (34.7%) was higher than for both fattening beef cattle (7.9%) and breeding beef cattle (16.3%). Age-specific prevalence showed that BLV prevalence increased with age in all types of cattle and was notably different between dairy and beef cattle under 1 year of age. Among 207 farms, 141 herds (68.1%) had one or more positive animals. The proportion of these positive farms was significantly higher among dairy farms (79.1%) than among beef breeding farms (39.5%) and beef fattening farms (51.9%) (P < 0.001). Dairy farms (40.5%) also showed a significantly higher within-herd prevalence than beef breeding (27.4%) and fattening (14.9%) farms (P = 0.001). This study indicated that BLV is more widely spread in dairy cattle than in beef breeding cattle in Japan. Given the prevalence of BLV infection in dairy and beef cattle was 8- and 1.7-fold higher, respectively, than rates previously found in 1980–1982, BLV appears to be spreading particularly among the dairy cattle population during the last two decades. Further investigation is required to determine the risk factors necessary to control BLV infection that take into account the different farming practices that exist between dairy and beef sectors.  相似文献   

12.
OBJECTIVE: To describe the frequency and distribution of Escherichia coli O157:H7 in the feces and environment of cow-calf herds housed on pasture. SAMPLE POPULATION: Fecal and water samples for 10 cow-calf farms in Kansas. PROCEDURE: Fecal and water samples were obtained monthly throughout a 1-year period (3,152 fecal samples from 2,058 cattle; 199 water samples). Escherichia coli O157:H7 in fecal and water samples was determined, using microbial culture. RESULTS: Escherichia coli O157:H7 was detected in 40 of 3,152 (1.3%) fecal samples, and 40 of 2,058 (1.9%) cattle had > or = 1 sample with E coli. Fecal shedding by specific cattle was transient; none of the cattle had E coli in more than 1 sample. Significant differences were not detected in overall prevalence among farms. However, significant differences were detected in prevalence among sample collection dates. Escherichia coli O157:H7 was detected in 3 of 199 (1.5%) water samples. CONCLUSIONS AND CLINICAL RELEVANCE: Implementing control strategies for E coli O157:H7 at all levels of the cattle industry will decrease the risk of this organism entering the human food chain. Devising effective on-farm strategies to control E coli O157:H7 in cow-calf herds will require an understanding of the epidemiologic characteristics of this pathogen.  相似文献   

13.
A longitudinal study was conducted on two dairy farms to investigate the pattern of shedding of verotoxin-producing Escherichia coli (VTEC) in goats. Faecal samples were taken from 20 goat kids once weekly during the first 4 weeks of life and then once every month for the next 5 months of life, and from 18 replacement animals and 15 adults once every month for 12 months. The proportion of samples containing VTEC was higher for replacement animals and adults (85.7% and 78.7%, respectively) than for goat kids (25.4%). About 90% of the VTEC colonies isolated from healthy goats belonged to five serogroups (O33, O76, O126, O146 and O166) but the most frequent serogroups of these isolates, except one, were different in the two herds studied. E. coli O157:H7 was found in three goat kids on only one occasion. None of the VTEC isolates, except the three E. coli O157:H7 isolates, was eae-positive. The patterns of shedding of VTEC in goat kids were variable, but, in contrast, most of the replacement animals and adults were persistent VTEC shedders. Our results show that isolates of VTEC O33, O76, O126, O146 and O166 are adapted for colonising the intestine of goats but that, in contrast, infection with VTEC O157:H7 in goats seems to be transient.  相似文献   

14.
Inclusion of distillers grains (DG) in cattle diets has been shown to increase fecal shedding of Escherichia coli O157:H7. It is hypothesized that altered gut fermentation by DG may be responsible for the positive association. Therefore, feed additives affecting ruminal or hindgut fermentation of DG also may affect fecal shedding of E. coli O157:H7. The objectives of the study were to evaluate effects of monensin (33 or 44 mg/kg of DM), supplemental urea (0, 0.35, or 0.70% of DM), and ractopamine (0 or 200 mg/steer daily administered during the last 42 d of finishing) in a steam-flaked corn grain-based diet containing 30% wet sorghum DG on fecal shedding of E. coli O157:H7. Seven hundred twenty crossbred beef steers, housed in 48 pens (15 steers/pen), were assigned to dietary treatments in a randomized complete block design with a 2 × 3 × 2 factorial treatment arrangement. Fresh pen floor fecal samples (10 per/pen) were collected every 2 wk for 14 wk (July through November) and cultured for E. coli O157:H7. Isolation of E. coli O157:H7 was by selective enrichment of fecal samples in an enrichment broth, immunomagnetic separation, followed by plating onto a selective medium. Samples that yielded sorbitol-negative colonies, which were positive for indole production, O157 antigen agglutination, and contained rfbE, fliC, and stx2 were considered positive for E. coli O157:H7. Fecal prevalence data were analyzed as repeated measures using negative binomial regression to examine effects and interactions of sampling day, urea, monensin, and ractopamine. Mean fecal prevalence of E. coli O157:H7 was 7.6% and ranged from 1.6 to 23.6%. Cattle fed monensin at 44 mg/kg of feed had less (P = 0.05) fecal E. coli O157:H7 prevalence than cattle fed 33 mg/kg (4.3 vs. 6.8%). Although the reason for the reduction is not known, it is likely because of changes in the microbial ecosystem induced by the greater amount of monensin in the hindgut. Supplemental urea at 0.35 or 0.70% had no effect (P = 0.87) on fecal shedding of E. coli O157:H7. Fecal prevalence of E. coli O157:H7 were 5.3, 5.7, and 5.9% for groups fed 0, 0.35, and 0.7% urea, respectively. The inclusion of ractopamine at 0 or 200 mg/(animal?d) had no effect (P = 0.89) on fecal prevalence of E. coli O157:H7 (4.4 vs. 4.0%). Additional research is needed to confirm the reduction in fecal shedding of E. coli O157:H7 in cattle fed monensin at 44 mg/kg of feed compared with cattle fed 33 mg/kg of feed.  相似文献   

15.
The aim of the study was to investigate the effect of transport and lairage on the prevalence of Escherichia coli O157 faecal shedding and the subsequent contamination of beef carcasses. Individual rectal faecal samples were taken from two cohorts of cattle (109 and 59) at the farm before transport and at the abattoir post-transport and lairage. The entire outer and inner surfaces of the carcass of each animal were swabbed immediately following slaughter and dressing. The prevalence of E. coli O157 shedding in cattle sampled at farm, post-transport and lairage was 18% (20), 13% (14) and 12% (13) for cohort A and 1.7% (1), 1.7% (1) and 0 for cohort B, respectively. No E. coli O157 was recovered from the 168 dressed carcasses. In total, 98% (46 of 47) of the E. coli O157 isolates from cohort A were potentially pathogenic to man. Transport and lairage do not cause an increase in the prevalence of E. coli O157 faecal shedding in cattle. This study demonstrates that even positive cohorts of cattle may be slaughtered and processed to produce clean carcasses by following good hygienic practices.  相似文献   

16.
In order to evaluate the prevalence of Shiga toxin-producing Escherichia coli (STEC) strains, 197 fecal samples of healthy cattle from 10 dairy farms, four beef farms and one slaughterhouse at Rio de Janeiro State, Brazil, were examined for Shiga toxin (Stx) gene sequences by polymerase chain reaction (PCR). For presumptive isolation of O157:H7 E. coli, the Cefixime-potassium tellurite-sorbitol MacConkey Agar (CT-SMAC) was used. A high occurrence (71%) of Stx was detected, and was more frequently found among dairy cattle (82% vs. 53% in beef cattle), in which no differences were observed regarding the age of the animals. Dot blot hybridization with stx1 and stx2 probes revealed that the predominant STEC type was one that had the genes for both stx1 and stx2 in dairy cattle and one that had only the stx1 gene for beef cattle. Three (1.5%) O157:H7 E. coli strains were isolated from one beef and two dairy animals by the use of CT-SMAC. To our knowledge, this is the first report of O157:H7 isolation in Brazil. A PCR-based STEC detection protocol led to the isolation of STEC in 12 of 16 randomly selected PCR-positive stool samples. A total of 15 STEC strains belonging to 11 serotypes were isolated, and most of them (60%) had both stx1 and stx2 gene sequences. Cytotoxicity assays with HeLa and Vero cells revealed that all strains except two of serotype O157:H7 expressed Stx. The data point to the high prevalence of STEC in our environment and suggest the need for good control strategies for the prevention of contamination of animal products.  相似文献   

17.
AIM: To estimate the prevalence of Neospora infection in a sample of New Zealand beef cattle. METHODS: The prevalence of Neospora caninum infection in New Zealand beef cattle was estimated by collecting blood at slaughter from 499 beef cattle from 40 different farms at 2 slaughter plants in the North Island and 1 in the lower South Island . Sera were tested using an ELISA against Neospora tachyzoite antigen. RESULTS: The prevalence of seropositive cattle was 2.5% (n=120), 3.6% (n=166) and 2.3% (n=213) at the plants surveyed, the overall prevalence being 2.8%. The serologically positive cattle came from 9 farms, 3 of which had more than 1 positive animal. The highest prevalence recorded amongst animals from 1 farm was 4/13 (31%), in a group of young steers. CONCLUSION: Neosporosis appears to be present at a lower level in the New Zealand beef cattle population than in the New Zealand dairy cattle population. Nevertheless, from the high seroprevalence evident amongst young cattle on 1 farm, we suggest that Neospora may be a cause of infertility in beef cattle in this country.  相似文献   

18.
OBJECTIVE: To describe the occurrence of fecal shedding, persistence of shedding over time, and serogroup classification of Salmonella spp on a large number of dairy farms of various sizes. DESIGN: Longitudinal study. SAMPLE POPULATION: 22,417 fecal samples from cattle and 4,570 samples from the farm environment on 110 organic and conventional dairy farms in Minnesota, Wisconsin, Michigan, and NewYork. PROCEDURE: 5 visits were made to each farm at 2-month intervals from August 2000 to October 2001. Fecal samples from healthy cows, calves, and other targeted cattle groups and samples from bulk tank milk, milk line filters, water, feed sources, and pen floors were collected at each visit. Bacterial culture was performed at 1 laboratory. RESULTS: Salmonella spp were isolated from 4.8% of fecal samples and 5.9% of environmental samples; 92.7% of farms had at least 1 Salmonella-positive sample. The 75th percentile for median within-herd prevalence of Salmonella spp in cattle for 5 sampling visits to a given farm was 2.0% and for maximum within-herd prevalence of Salmonella spp was 13.6%. Farms with a median within-herd prevalence of Salmonella spp of > or = 2.0% accounted for 76.3% of Salmonella-positive samples. There was no significant difference in the prevalence of Salmonella spp between conventional and organic farms. Seasonal differences in Salmonella shedding were observed. More farms had at least 1 serogroup B isolate than any other serogroup, whereas serogroup E1 was the most common among all Salmonella-positive samples. More than 1 serogroup was isolated on 76.4% of Salmonella-positive farms. CONCLUSIONS AND CLINICAL RELEVANCE: Salmonella spp were isolated from > 90% of dairy farms; however, 25% of farms accounted for > 75% of Salmonella-positive samples. This information is critical for the direction of intervention strategies to decrease the prevalence of Salmonella spp on dairy farms.  相似文献   

19.
This study determined the prevalence of verotoxin (VT)-producing Escherichia coli (VTEC) in Ontario beef cattle at slaughter and characterized the isolates by serotype, virulence factors, virulence markers, and antimicrobial resistance. Cultures of rectal feces from 500 animals were screened for VT by an enzyme-linked immunosorbent assay (ELISA) and by polymerase chain reaction (PCR) for genes vt1, vt2, and eae. The VT-ELISA-positive samples were tested by a VT-immunoblot to isolate VTEC colonies. The prevalence rates of VTEC by VT-ELISA and PCR were 10.2% [95% confidence interval (CI), 7.8% to 13.2%] and 6.2% (95% CI, 4.4% to 8.7%), respectively. Colonies of VTEC were isolated from 27 (53%) of the 51 VT-ELISA-positive samples and belonged to 24 serotypes, which did not include O157:H7. Twelve of the serotypes have been implicated in disease in humans. Virulence profiling of the isolates by PCR revealed that 2 (8%) were eae-positive, 5 (21%) had vt1 only, and 19 (79%) had vt2, of which 3 had vt2 only, 7 had vt1 + vt2, 4 had vt2 + vt2c, 2 had vt2 + vt2c + vt2d, 2 had vt1 + vt2 + vt2c, and 1 had vt1 + vt2 + vt2c + vt2d. The distribution of selected plasmid-encoded putative virulence genes was as follows: ehxA, 63%; espP, 46%; saa, 67%; and subA, 54%. Nine of the 24 isolates were resistant to 1 or more antimicrobials. Major conclusions are that the VTEC prevalence of 10.2% was among the lower rates reported for beef cattle, a high proportion of the isolates had vt2 genes, the subA gene was reported for the 1st time in Canadian VTEC, and the absence of O157 VTEC likely reflects the use of a technique that detected all VTEC.  相似文献   

20.
We conducted a cross-sectional study on 255 cattle farms in England and Wales to identify risk factors for verocytotoxin-producing E. coli O157 (VTEC). Exposure variables were collected at the levels of the farm and of the group of young-stock within the farms. On each farm a group of young-stock (6-18 months of age) was sampled to establish VTEC status. In our multiple logistic regression, farm VTEC status was associated with access to springs (OR: 0.31, CI95%: 0.12, 0.78) and assessing the wetness of the bedding material less frequently than daily (OR: 3.89 CI95%: 1.5, 10.2). At group-level we found no associated risk factors for animals housed outdoors in fields. Significant for groups housed in pens were wet bedding (wet OR: 3.43, CI95%: 1.3, 9.4; very wet OR: 4.24, CI95%: 1.2, 14.6), number of animals in the group (10-15 OR: 2.72, CI95%: 0.75, 9.9, 16-24, OR: 3.78, CI95%: 1.2, 12.3; >25 OR: 3.78, CI95%: 1.1, 12.7) and feeding straw (OR: 2.29, CI95%: 1.2, 5.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号