首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The wild non-tuberous species Solanumetuberosum is resistant to biotic andabiotic stresses, but is very difficult tocross with cultivated potato. Therefore,interspecific somatic hybrids between adihaploid clone of potato S.tuberosum (2n=2x=24, AA genome) and thediploid species S. etuberosum(2n=2x=24, EE genome) were produced byprotoplast fusion. Among the 7 fertilefusion hybrids analysed by genomic insitu hybridisation (GISH), three groups ofplants were found with the genomicconstitution of AAEE, AAEEEE and AAAAEE.Four fusion hybrids had exactly theexpected chromosome composition, while eachof the three aneuploid hybrids had lost twochromosomes of S. etuberosum. Twobackcross progenies were developed, andGISH analysis was applied to analysetransmission of the parental chromosomesinto the sexual generations. BC1hybrids derived from the crosses of thehexaploid somatic hybrids with tetraploidpotato were pentaploid with thetheoretically expected genomic compositionor with slight deviation from thisexpectation. In the three BC2 hybridsanalysed by GISH seven to 12 chromosomes ofS. etuberosum were detected in thepredominant S. tuberosum background.No recombinant chromosomes in the hybridswere detected. Genome dosage affects tuberformation in hybrids and their progenies,but has less effect on resistance to potatovirus Y (PVY) in fusion hybrids. Severalgenotypes of the fusion hybrids andBC1 progeny did not show viralinfection even in the graftingexperiments.  相似文献   

2.
Wheat pre-breeding using wild progenitors   总被引:6,自引:1,他引:6  
J. J. Valkoun 《Euphytica》2001,119(1-2):17-23
To facilitate the use of wheat wild relatives in conventional breedingprograms, a wheat pre-breeding activity started at ICARDA in 1994/1995season. Preliminary results of gene introgression from wild diploidprogenitors, Triticum urartu, T. baeoticum, Aegilops speltoides andAe. tauschii and tetraploid T. dicoccoides are described. Crosseswith wild diploid Triticum spp. yielded high variation in plant andspike morphology. Synthetic hexaploids were produced from crosses of alocal durum wheat landrace `Haurani' with two Ae. tauschiiaccessions. Both Ae. tauschii accessions carry hybrid necrosis allelesthat gave necrotic plant phenotypes in crosses with some bread wheats.Backcross progenies with agronomical desirable traits, i.e. high spikeproductivity, short plant stature, earliness, drought tolerance and highproductive tillering, were identified in crosses of durum wheat with wild Triticum spp. and in a cross of one of the hexaploid synthetics with alocally adapted bread wheat cv. `Cham 6'. Resistance to yellow rust wasfound in durum wheat crosses with the three wild Triticum spp. andAe. speltoides and leaf rust resistance was identified in crosses withT. baeoticum and Ae. speltoides. The results show that wheatimmediate progenitors may be a valuable and readily accessible source ofnew genetic diversity for wheat improvement.  相似文献   

3.
Garlic cultivated in rural farms of South Italy is often a heterogeneous clone population, which can comprise different cytotypes. A collection of cultivated garlic from the University of Basilicata gene-bank, was evaluated for ploidy level, and 16 different morphological traits. Out of50 accessions, 7 were hexaploids (Allium ampeloprasum L.) and43 diploids (Allium sativum L.). Significant differences in yield were observed within and between ploidy levels. The heritable traits most correlated with yield were plant height (h2 = 0.62) within diploid types and neck diameter (h2 = 0.75) within hexaploids. Discriminant analysis did show that four characters (leaf basal width, total n° of leaves, clove diameter and neck height) were able to correctly discriminate all germ plasm accessions between the two species. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Summary Derivatives of a cross between cultivated peanuts, Arachis hypogaea L. (2n=40), and the wild species collection GKP 10017 (2n=20) were compared morphologically, for leafspot resistance and for yield. The objective of the study was to determine the effects of wild species germplasm on the A. hypogaea genome. The sterile F1 hybrid which resulted from crossing the two species was treated with colchicine to restore fertility at the 6x ploidy level. The resulting hexaploid was cytologically unstable and progeny lost chromosomes until stability was regained at the 2n=40 chromosome level. Forty-seven characters were used to analyze the variation among plants in the tetraploid interspecific hybrid population. The plants were compared to four cultivated lines plus GKP 10017. Many hybrids were intermediate to the two parents in morphology. Individual traits such as growth habit, pod and seed size, elongation of the constricted area between pods, nodulation and leaflet size were altered by the presence of GKP 10017 germplasm in many of the hybrid plants. Cercospora arachidicola Hori and Cercosporidium personatum (Berk. & Curt.) Deighton resistances were evaluated for all plants. Several hybrids had few lesions due to either leafspot pathogen. In addition, 24 largeseeded interspecific hybrid selections were compared to the cultivated variety NC 5 for yield. Five selections were superior to both parents at p=0.01. Morphology, disease resistance and yields appeared to be greatly influenced by the wild species GKP 10017 germplasm in plants of the interspecific hybrid population. The potentials of using wild species for improvement of the cultivated peanut are discussed.Paper number 5948 of the journal series of the North Carolina Agricultural Research Service, Raleigh, NC 27650. The investigation was supported in part by ICRISAT and SEA-CR grant no. 701-15-51.  相似文献   

5.
Summary Glycine tabacina (Labill.) Benth. is a wild perennial species related to the cultivated soybean, G. max (L.) Merr. It is composed of diploid (2n=40) and tetraploid (2n=80) cytotypes. Currently, to differentiate the cytotypes, plants are grown out in the greenhouse and chromosome counts made on pollen mother cells. It is a laborious and time consuming process. The objective of this study was to determine whether electrophoretic techniques could be utilized to separate the cytotypes. Electrophoretic examination of seven isozyme systems from seed of 67 G. tabacina accessions revealed banding patterns that could be used to differentiate between diploid and tetraploid cytotypes in the species. Among the tetraploid accessions, the number of bands observed were always greater than the diploids. Some tetraploid banding patterns consisted of bands similar to the diploid tabacina and/or additional bands previously identified in other Glycine species. The patterns of isozyme multiplicity and variation in the tetraploid tabacinas suggests more than one mode of origin for the tetraploids.  相似文献   

6.
The present investigation discusses the scope for transferring of resistance to leaf spot disease incited by Alternaria helianthi from two hexaploid wild species (H. tuberosus and H. resinosus) to diploid cultivated sunflower. Interspecific hybrids produced between sunflower and these two hexaploid species were partially fertile with tetraploid chromosome status. Backcrosses of these interspecific hybrids with cultivated sunflower resulted in the formation of sterile triploid plants. To overcome the problem of sterility and facilitate backcrosses with cultivated sunflower, anther culture of the tetraploid interspecific hybrids was carried out to bring down their chromosome number to diploid status. Anthers from both interspecific hybrids were cultured on basal Murashige and Skoog media supplemented with varying concentrations of organics and the growth regulators benzyladenine and naphthaleneacetic acid. Anthers of interspecific hybrids involving H. resinosus responded well and regenerated through an embryogenic route at a frequency of 98.7%. But in interspecific hybrids with H. tuberosus, anthers formed callus and subsequently regenerated shoots through an organogenic pathway. DNA ploidy analysis of anther culture plants of interspecific hybrids derived from H. tuberosus crosses was carried out to identify plants with desired diploid status. In vitro screening of parents, interspecific hybrids and anther culture plantlets against A. helianthi showed resistance in 68.5% of the anther culture plants of interspecific hybrids from H. tuberosus and in 24.3% of the plants derived from interspecific hybrids involving H. resinosus.  相似文献   

7.
Summary Fourteen germplasm accessions of Paspalum compressifolium native from southern Brazil were cytologically and embryologically analysed. The study revealed that one accession was diploid (2n=20), twelve were tetraploid (2n=40) and one was hexaploid (2n=60). This is the first report of diploid and hexaploid cytotypes for this species. Studies on microsporogenesis, megasporogenesis, and embryo sac development indicated that the diploid cytotype had regular meiotic behavior and reproduces sexually. Tetraploid cytotype usually had an important proportion of chromosomes that associated as quadrivalents during meiosis and reproduced by mean of aposporous apomixis. The hexaploid cytotype showed irregular meiotic behavior with about one third of the chromosomes associated as multivalents and reproduced by aposporous apomixis. Thus, P. compressifolium could be an agamic complex. Breeding in this complex is possible due to the presence of diploid sexuals which can be treated by colchicine and pollinated by apomicts.  相似文献   

8.
Summary Introgression of germplasm from diploid wild Arachis species to A. hypogaea has great potential for improving pest resistance in cultivated peanuts. This investigation evaluated methods for incorporating exotic germplasm into cultivated peanuts, especially for Cercospora arachidicola Hori resistance. Interspecific hybrids between A. hypogaea (cvs. NC 2 and NC 5) and the wild species A. cardenasii Krap. et Greg. nom. nud. and A. chacoense Krap. et Greg. nom. nud. were analyzed cytologically and for leafspot resistance. All F1 hybrids were sterile, had irregular meiosis, and very few multivalents. They were highly resistant to C. arachidicola in field tests and had a 10-fold reduction of conidia per lesion in the greenhouse as compared to A. hypogaea cultivars. After colchicine treatments of F1 hybrids, hexaploids (2n=60) and aneuploids (2n=54, 56, 63) were observed. The hexaploids had up to 18 univalents per pollen mother cell and very few multivalents, indicating a low frequency of intergenomic chromosome pairing. For C. arachidicola resistance, significant differences were not found among wild species parents, F1 hybrids and two generations of hexaploids. Most hexaploids were stable at 2n=60 and embryos aborted when backcrosses with the respective wild species were attempted. However, when hexaploids were backcrossed to A. hypogaea, several fertile pentaploid (2n=50) offspring were obtained. Use of self-pollinating pentaploids is believed to be the quickest method to recover 40-chromosome hybrid derivatives in these hybrids.  相似文献   

9.
Summary We cultured colchicine-treated hybrid ovules in vitro to produce fertile amphidiploids of C. persicum (2n=2x=48. referred to as AA) × C. purpurascens (2n=2x=34, referred to as BB). Seedlings and mature plants were obtained from the ovules without colchicine and those exposed to 50 mg/l colchicine for 5, 10 and 15 days, whereas they were not obtained from the ovules exposed to 50 mg/l colchicine for 20 days and 500 mg/l for 5, 10, 15 and 20 days. Although 8 mature hybrids derived from the ovules without colchicine produced a few fertile pollen grains, they failed to produce viable seeds by self-fertilization. The hybrids had 41 somatic chromosomes. Four and 3 mature plants were derived from ovules exposed to 50 mg/l colchicine for 10 and 15 days, respectively. One each among 4 and 3 mature plants showed a high frequency of pollen grain fertility, produced several seeds by self-fertilization, and had 82 somatic chromosomes which is twice the number of hybrid chromosomes (2n=41, AB). These findings indicated that these plants are amphidiploids (2n=82, AABB) between C. persicum and C. purpurascens. Three and 2 viable seeds were derived by the conventional crosses of diploid C. persicum × the amphidiploid and the amphidiploid × C. purpurascens, respectively. Flowering plants that developed from the seeds of diploid C. persicum × the amphidiploid were barely fertile and had 65 somatic chromosomes (2n=65, AAB), whereas those that developed from the seeds of the amphidiploid × C. purpurascens were barely fertile and had 58 somatic chromosomes (2n=58, ABB). The somatic chromosomes indicated that these plants are probably sesquidiploids between the amphidiploid and either C. persicum or C. purpurascens. The interspecific cross-breeding of cyclamen using the amphidiploids and the sesquidiploids is discussed.  相似文献   

10.
The F1 hybrids of seven diploid Alstroemeria species (2n=2x=16) were investigated for the production of numerically unreduced (2n) gametes and their mode of origin. Based on a survey of 17 interspecific hybrid combinations,consisting of 119 genotypes, it was found that the F1 hybrids of Chilean-Brazilian species mostly produced first division restitution (FDR) 2n gametes. These F1 hybrids were self-pollinated in order to obtain F2 seeds, which was an indication that the F1 plants also produced 2neggs simultaneously. All the F2 progeny plants were typical allotetraploids, most of which formed 16 bivalents and a small proportion formed multivalents during metaphase I stages of meiosis. Through genomic in situ hybridisation (GISH) it was proved that multivalent formation in F2plants, derived from A. inodora ×A. pelegrina hybrid, was due to homoeologous recombination but not from reciprocal translocations. In order to test the segregation pattern of the recombinant chromosomes, an F3 population from one genotype, P6C49-6, was investigated. The recombinant chromosomes assorted independently from each other supporting the hypothesis that the segregation of chromosomes in ring quadrivalents did not behave like those in translocation heterozygotes. It was concluded that in allopolyploids of Alstroemeria,bilateral sexual polyploidisation could accomplish genetic recombination by both homoeologous crossing-over as well as through the assortment of chromosomes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Resistance to viruses such as wheat streak mosaic virus (WSMV) and barley yellow dwarf virus(BYDV) is lacking in the primary gene pool of wheat, and therefore resistance is being introgressed from wild relatives such as Thinopyrum species. Resistance to BYDV was found in partial amphiploids (2n = 8x = 56, consisting of 42 wheat and14 alien chromosomes) obtained in hybrids between wheat and both Th. intermedium and Th.ponticum. GISH analysis revealed that the alien genomes of all but one resistant partial amphiploid were heterogeneous consisting of different ratios of St, Js and J genome chromosomes obtained from theThinopyrum parent. Translocated chromosomes consisting of Robertsonian, interstitial and terminal translocations between the different genomes were also detected. The tissue blot immunoassay showed that partial amphiploids having resistance could be inoculated with the virus but both virus multiplication and spread were completely blocked. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Late maturity α-amylase (LMA) is a genetic defect that is fairly widely spread in bread wheat (Triticum aestivum L.) germplasm, and recently detected in durum cultivars, which can result in unacceptably high α-amylase activity (low falling number) in ripe grain. LMA has also been observed at unexpectedly high frequency and severity in synthetic hexaploid wheats derived from the interspecific hybridisation of Triticum durum (AABB) and Aegilops tauschii (DD). Since synthetic hexaploids represent an important new source of resistances/tolerances to a range of biotic and abiotic stresses for wheat breeders, there is a pressing need to understand the mechanisms involved in LMA in synthetics and develop strategies for avoiding its adverse effects on grain quality. The objectives of this study were to firstly, compare the LMA phenotype of synthetics that varied for plant height, secondly, to characterise the LMA phenotype in groups of synthetics derived from the same durum parents and finally to determine whether LMA in primary synthetics is associated with the QTL previously reported in conventional bread wheat. More than 250 synthetic hexaploids, a range of durum cultivars and a doubled haploid population derived from Worrakatta (non-LMA) × AUS29663 (high LMA synthetic) were phenotyped and genotyped with markers reported to be linked to LMA in conventional bread wheat and markers diagnostic for the semi-dwarfing gene, Rht1. More than 85% of synthetics were prone to LMA, approximately 60% ranked as very high. Genetic control of LMA in synthetic hexaploids appeared to involve QTL located on 7B, and to a lesser extent 3B, similar to bread wheats. However, the LMA phenotype of many synthetic hexaploids appeared to be more extreme than could be explained by comparisons with bread wheat even taking into account the apparent absence of Rht1 in most genotypes. Other mechanisms, possibly triggered by the interaction between the AABB and DD genomes cannot be excluded. The presence of wild type rht1 in most synthetic hexaploids and their extreme height is difficult to reconcile with the semi-dwarf, Rht1, stature of many of the durums used in the interspecific hybridisation process. Mechanisms that could explain this observation remain unclear.  相似文献   

13.
The ability of 13 Nemesia species (six annual and seven perennial) to sexually hybridize was investigated. Six of the perennial Nemesia species investigated were inter-fertile with one another. Two of the annual species, N. macroceras and N. strumosa, were inter-fertile. Thirty three crosses were successful and resulted in viable seeds. The analysis of meiotic chromosome behaviour in interspecific hybrids indicated that Nemesia chromosomes in different parental species were homeologous. No evidence of chromosome inversions or chromosome translocations was observed during meiosis in interspecific hybrids between the six perennial Nemesia species. In the hybrids produced between N. macroceras and N. strumosa, a quadrivalent was observed during meiotic metaphase I, indicating that these two species differ by a reciprocal translocation. A successful hybridization was made between N. anisocarpa (annual) and N. foetans (perennial), producing two triploid hybrids. In the unsuccessful crosses, pollen tubes were observed entering ovaries and ovules, suggesting that post-fertilization barriers were preventing sexual hybridization. Many of these crosses produced nonviable, shrunken, empty seeds, suggesting that endosperm breakdown and embryo abortion prevent interspecific hybridization in unsuccessful crosses. The manipulation of ploidy levels in N. fruticans and N. strumosa and tissue culture of N. strumosa × N. fruticans ovules failed to overcome post-fertilization barriers between these species.  相似文献   

14.
Summary F1 hybrids of triazine resistant Brassica napus and triazine susceptible B. oleracea were morphologically intermediate to the parent species. Of 49 hybrids examined, 44 had 28 chromosomes, two had 37, one had 38 and two had 56. The 38-chromosome plant was thought to be a matromorph, the others, A1C1C (28), A1C1CC (37) or A1A1C1C1CC (56) type hybrids. Pollen stainability averaged 9.0% in the sesquidiploid, 32.0% in the tetraploids and 89.5% in the hexaploids. All the interspecific hybrids were resistant to 1.0×10-4 mol L-1 atrazine. The sesquidiploid hybrids produced gametes with chromosome numbers ranging from 9 to 17 and the tetraploid hybrid gametes had chromosome numbers from 15 to 22. Most hybrids produced self-seed. The partial fertility of these hybrids may permit their backcrossing to one or both parents.  相似文献   

15.
A. A. Levy  M. Feldman 《Euphytica》1989,41(1-2):113-122
Summary The genetic control of grain protein percentage (GPP) in the wild tetraploid wheat, Triticum turgidum var. dicoccoides, was determined by crossing four accessions of this taxonomic variety with durum cultivar Inbar, and analyzing the parents, F1 and F2 populations. Reciprocal crosses indicated no cytoplasmic effect on GPP. The F2 variation was continuous in all crosses, showing no transgressive segregation. However, crosses between different accessions of var. dicoccoides showed transgressive segregation indicating the presence of different genes for high GPP in these accessions. Grain protein percentage was mostly codominant with high GPP, showing either no dominance, or a weak dominance. Heritability coefficients (broad sense) ranged from 0.30 to 0.53. Correlation coefficients between GPP and yield components were usually significantly negative, with the exception of the number of spikelets per spike, and in some crosses, grain weight.The number and chromosomal location of genes coding for high GPP were determined by the association between GPP and 27 markers (23 morphological and 4 biochemical markers). For this purpose, the genetic control of these markers, their linkage groups and chromosomal location were studied. At least four loci for high GPP that segregated in the F2 populations are suggested: one on chromosome arm 1AS, marked by the black glume gene (Bg); one on 1BS, marked by the HMW gliadin locus Gli-B1; one on group 5, marked by the genes for beaked glume (Bkg) and toothed palea (Tp); and one on group 7, marked by the kinky neck gene (Kn). The relationship between GPP and several yield components was studied in a similar manner. In general, loci of markers that correlated positively with high GPP were not correlated with a decrease in yield components. Moreover, several loci of var. dicoccoides were associated with an increase in yield components.The utilization of markers for chromosomal location of genes coding for quantitative traits is compared to the technique of aneuploid analysis, commonly used in wheat. The significance of the above findings for breeding is discussed.  相似文献   

16.
Summary Kalanchoe blossfeldiana was described by Von Poellnitz in 1935. It is an endemic species of Madagascar where it was discovered in 1924 by Perrier de la Bâthie, who described it as the variety coccinea of K. globulifera. By 1930 living plants had been spread throughout Europe and the United States. At the same time commercial growing was initiated by Blossfeld at Potsdam, Germany. Selection within the species and, from 1939, hybridisation with several other Kalanchoe species yielded cultivars from which many have disappeared. K. blossfeldiana, like two selections, has 2n=34 chromosomes. The remaining cultivars, which are likely of hybrid origin, are polyploids. They are usually tetraploids (2n=ca 68), but in some cases numbers of 2n=72, 75, 84, 85 and 96 have been counted. Polyploidy already occurred in 1939, when the first interspecific cross, in this case with K. flammea (2n=34), was recoreed. Other species which have been crossed with K. blossfeldiana are K. pumila (2n=40), K. grandiflora (2n=34), K. schumacheri (2n=?), K. kirkii (2n=?) and K. manginii (2n=34).  相似文献   

17.
M. Dujardin  W. W. Hanna 《Euphytica》1988,38(3):229-235
Summary An interspecific hybridization program designed to transfer gene(s) controlling apomixis from Pennisetum squamulatum Fresen. (2n=6x=54) to induced tetraploid (2n=4x=28) cultivated pearl millet, Pennisetum americanum (L.) Leeke resulted in four offtype plants, two with 27 chromosomes and two with 28 chromosomes. These plants were found among 217 spaced plants established from open-pollinated seed of an apomictic 21-chromosome polyhaploid (2n=21) plant derived from an apomictic interspecific hybrid (2n=41) between tetraploid pearl millet and Pennisetum squamulatum. It appeared that a 21- (or 20-) chromosome unreduced egg from the apomictic polyhaploid united with a 7-chromosome pearl millet (2n=2x=14) gamete to produce a 28- (or 27-) chromosome offspring. Meiotic chromosome behavior was irregular averaging from 3.60 to 4.05 bivalents per microsporocyte in the 27- and 28-chromosome hybrids. The 27- or 28-chromosome hybrids, like the 21-chromosome female parent, shed no pollen, but set from 1.8 to 28 seed per panicle when allowed to outcross with pearl millet. Progeny of the 28-chromosome hybrids were uniform and identical to their respective female parents, indicating that apomixis had been effectively transferred through the egg. In addition, a 56-chromosome plant resulting from chromosome doubling of a 28-chromosome hybrid was identified. Pollen was 68 per cent stainable and the plant averaged 2.3 selfed seeds per panicle. Chromosomes of the 56-chromosome plant paired as bivalents (x=10.67) or associated in multivalents. Three to nine chromosomes remained unpaired at metaphase I. Multiple four-nucleate embryo sacs indicated the 56-chromosome hybrid was an obligate apomict. The production of 27-, 28-, and 56-chromosome hybrid derivatives were the results of interspecific hybridization, haploidization, fertilization of unreduced apomictic eggs, and spontaneous chromosome doubling. These mechanisms resulted in new unique genome combinations between x=7 and x=9 Pennisetum species.  相似文献   

18.
Summary The crossability of 12 Cucumis species of African and Asiatic origin was studied in a diallel cross, in order to find ways to realise the cross between the common cucumber (C. sativus L.) and its wild relatives which carry resistances against diseases and pests.Self-pollinations and cross-pollinations within species gave normal pollen tube growth and seet set. The different accessions within a species, as a rule reacted alike in interspecific crosses. In crosses between African species different crossing patterns were found, viz. bilateral congruity, bilateral incongruity and unilateral incongruity. Within C. sativus all accessions intercrossed freely, except one, which displayed unilateral incongruity.Good seed was harvested from several crosses and in some cases embryo culture was needed for further development of seeds. No good seeds were obtained from any cross between a species of the African group and C. sativus L.  相似文献   

19.
Summary Crosses between a wild species C. chacoense and three cultivated species of chili pepper viz. C. annuum, C. frutescens and C. chinense yielded hybrids when C. chacoense was the seed parent but the reciprocal crosses were unsuccessful. C. chacoense × C. annuum F1 hybrids were partly fertile and therefore an F2 population could be raised; the other two F1 hybrids were totally sterile. Chromosome pairing in the F1 plants resulted largely in bivalents and a few multivalents and univalents. The genomes of the four species share large homologies and the role of chromosome structural changes in genome differentiation is suggested. Hybrid sterility is the major reproductive isolation mechanism.  相似文献   

20.
Summary Fifteen species from the genus Agropyron were crossed together. Fourteen of the crosses did not produce fruits. Twenty crosses produced varying numbers of caryopses. Of the fruits produced, 22% contained no embryos. For a variety of reasons it was possible to obtain only 2 plants from the remaining 140 embryos. The crosses which yielded viable plants were between A. trachycaulum cv. Primar (2n=28) and A. intermedium cv. Chief (2n=42) as well as between A. trachycaulum from Lethbridge (2n=28) and A. desertorum cv. Nordan (2n=28). The somatic chromosome numbers for the hybrids are 37 and 28. respectively. Studies of vegetative plant character are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号