首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Spatially-distributed estimates of biologically-driven CO2 flux are of interest in relation to understanding the global carbon cycle. Global coverage by satellite sensors offers an opportunity to assess terrestrial carbon (C) flux using a variety of approaches and corresponding spatial resolutions. An important consideration in evaluating the approaches concerns the scale of the spatial heterogeneity in land cover over the domain being studied. In the Pacific Northwest region of the United States, forests are highly fragmented with respect to stand age class and hence C flux. In this study, the effects of spatial resolution on estimates of total annual net primary production (NPP) and net ecosystem production (NEP) for a 96 km2 area in the central Cascades Mountains of western Oregon were examined. The scaling approach was a simple `measure and multiply' algorithm. At the highest spatial resolution (25 m), a stand age map derived from Landsat Thematic Mapper imagery provided the area for each of six forest age classes. The products of area for each age class and its respective NPP or NEP were summed for the area wide estimates. In order to evaluate potential errors at coarser resolutions, the stand age map was resampled to grain sizes of 100, 250, 500 and 1000 m using a majority filter reclassification. Local variance in near-infrared (NIR) band digital number at successively coarser grain sizes was also examined to characterize the scale of the heterogeneity in the scene. For this managed forest landscape, proportional estimation error in land cover classification at the coarsest resolution varied from –1.0 to +0.6 depending on the initial representation and the spatial distribution of the age class. The overall accuracy of the 1000 m resolution map was 42% with respect to the 25 m map. Analysis of local variance in NIR digital number suggested a patch size on the order of 100–500 m on a side. Total estimated NPP was 12% lower and total estimated NEP was 4% lower at 1000 m compared to 25 m. Carbon flux estimates based on quantifying differences in total biomass stored on the landscape at two points in time might be affected more strongly by a coarse resolution analysis because the differences among classes in biomass are more extreme than the differences in C flux and because the additional steps in the flux algorithm would contribute to error propagation. Scaling exercises involving reclassification of fine scale imagery over a range of grain sizes may be a useful screening tool for stratifying regions of the terrestrial surface relative to optimizing the spatial resolution for C flux estimation purposes.  相似文献   

2.

Purpose

Accurately assessing forest carbon storage on a landscape scale is critical to understanding global carbon cycles and the effects of land cover changes on ecological processes. Calculations of regional-scale forest carbon storage that rely on maps of land cover typically reflect only coarse forest classes. How differences in carbon stored by different tree species may affect such assessments is largely unexplored. We examined a range of forest carbon storage models to understand the effects of forest type specificity on carbon storage estimates in the northeastern United States.

Methods

Models estimated forest carbon in total aboveground and coarse root biomass based on three levels of forest classification specificity: (1) relative basal area by species, (2) species associations, and (3) broad forest types per IPCC (in: IPCC guidelines for national greenhouse gas inventories, IPCC, Japan, 2006) guidelines.

Results

The specificity of forest type classifications influenced results with generally lower carbon storage estimates resulting from higher-specificity forest classifications. The two most specific models, with mean carbon storage estimates of 103–107 Mg/ha, were most accurate compared to field validation points. These estimates are greater than 2013 field-based U.S. Forest Service estimates (84–90 Mg/ha).

Conclusions

There are many sources of uncertainty in landscape-scale carbon storage assessments. Here we show that improving detail in one of these sources, forest stand composition, increases the accuracy of these assessments, and better reflects carbon storage patterns across heterogeneous landscapes. While more work is needed, particularly to improve stand age maps, this information can inform the interpretation of current carbon storage estimates and improve future estimates in heterogeneous forests.
  相似文献   

3.

Context

Forest landscape models (FLMs) are important tools for simulating forest changes over broad spatial and temporal scales. The ability of FLMs to accurately predict forest changes may be significantly influenced by the formulations of site-scale processes including seedling establishment, tree growth, competition, and mortality.

Objective

The objectives of this study were to investigate the effects of site-scale processes and interaction effects of site-scale processes and harvest on landscape-scale forest change predictions.

Methods

We compared the differences in species’ distribution (quantified by species’ percent area), total aboveground biomass, and species’ biomass derived from two FLMs: (1) a model that explicitly incorporates stand density and size for each species age cohort (LANDIS PRO), and (2) a model that explicitly tracks biomass for each species age cohort (LANDIS-II with biomass succession extension), which are variants from the LANDIS FLM family with different formulations of site-scale processes.

Results

For early successional species, the differences in simulated distribution and biomass were small (mostly less than 5 %). For mid- to late-successional species, the differences in simulated distribution and biomass were relatively large (10–30 %). The differences in species’ biomass predictions were generally larger than those for species’ distribution predictions. Harvest mediated the differences on landscape-scale predictions.

Conclusions

The effects of site-scale processes on landscape-scale forest change predictions are dependent on species’ ecological traits such as shade tolerance, seed dispersal, and growth rates.
  相似文献   

4.

Context

Although small isolated habitat patches may not be able to maintain a minimum viable population, small patches that are structurally isolated may be functionally connected if individuals can cross the gaps between them, in which case, their areas could be added to form a larger habitat patch, eventually surpassing the size threshold for holding a viable population.

Objectives

We studied whether models based on the size and isolation of habitat patches could be used to predict the distribution of the Chestnut-throated Huet-Huet (Pteroptochos castaneus) in fragmented landscapes of the coastal range of the Maule region, central Chile.

Methods

We selected seven 10,000-ha landscapes (8.4–70.7% forest cover). For each habitat patch we made 18 predictions of the presence of the species based on the combination of two thresholds: three critical patch sizes for maintaining a viable population (62.5, 125 and 250 ha) and six critical isolation distances between patches (0, 10, 50, 100, 150 and 200 m). We used playbacks in 59 sampling points to estimate the species’ presence/absence. We used logistic regressions to test whether the output of the patch-matrix models could explain part of the variation in the presence of Pteroptochos castaneus.

Results

The best predictions for the presence of P. castaneus were obtained with the most conservative scenarios (125–250 ha to 0–10 m), including a positive effect of the understory cover and a lack of effect of the forest type (native or exotic).

Conclusions

Our findings suggest that the long term persistence of P. castaneus may depend on the existence of large and/or very connected forest tracts.
  相似文献   

5.
Landscape analysis of plant diversity   总被引:9,自引:0,他引:9  
Studies to identify gaps in the protection of habitat for speciesof concern have been inconclusive and hampered by single-scale orpoor multi-scale sampling methods, large minimum mapping units(MMU's of 2 ha to 100 ha), limited and subjectively selected fieldobservations, and poor mathematical and ecological models. Weovercome these obstacles with improved multi-scale samplingtechniques, smaller MMU's (< 0.02 ha), an unbiased sampling designbased on double sampling, improved mathematical models includingspecies-area curves corrected for habitat heterogeneity, andgeographic information system-based ecological models. We applythis landscape analysis approach to address resource issues inRocky Mountain National Park, Colorado. Specifically, we quantifythe effects of elk grazing on plant diversity, identify areas ofhigh or unique plant diversity needing increased protection, andevaluate the patterns of non-native plant species on thelandscape.Double sampling techniques use satellite imagery,aerial photography, and field data to stratify homogeneous andheterogeneous units and keystone ecosystems (ecosystems thatcontain or support a high number of species or have distinctivespecies compositions). We show how a multi-scale vegetationsampling design, species-area curves, analyses of within- andbetween-vegetation type species overlap, and geographic informationsystem (GIS) models can be used to quantify landscape-scalepatterns of vascular plant diversity in the Park.The new multi-scale vegetation plot techniques quickly differentiated plantspecies differences in paired study sites. Three plots in the OuzelBurn area (burned in 1978) contained 75 plant species, while only17 plant species were found in paired plots outside the burn.Riparian areas contained 109 plant species, compared to just 55species in paired plots in adjacent forests. However, plant speciesrichness patterns inside and outside elk exclosures were morecomplex. One elk exclosure contained more species than its adjacentopen range (52 species inside and 48 species outside). Two elkexclosures contained fewer species inside than outside (105 and 41species inside and 112 and 74 species outside, respectively).However, there was only 26% to 48% overlap (using Jaccard'sCoefficient) of plant species composition inside and outside theexclosures. One elk exclosure had 13% cover of non-indigenousspecies inside the exclosure compared to 4% outside, butnon-indigenous species cover varied by location.We compared plantdiversity patterns from vegetation maps made with 100 ha, 50 ha, 2ha, and 0.02 ha MMU's in the 754 ha Beaver Meadows study area usingfour 0.025 ha and twenty-one 0.1 ha multi-scale vegetation plots.Preliminary data suggested that the 2 ha MMU provided an accurateestimate of the number of plant species (–14%) for a study area,but the number of habitats (polygons) was reduced by 67%, andaspen, a unique and important habitat type, was missed entirely. Wedescribe a hypothesis-driven approach to the design andimplementation of geospatial databases for local resourcemonitoring and ecosystem management.  相似文献   

6.
The crested ibis (Nipponia nippon), a species at the brink of extinction in 1981, remain restricted to a small (25 km radius) area of temperate forests in central China. To improve the chances of successful reintroduction into new areas we developed a multifactor logistic regression model of habitat association at multiple scales. Using habitat variables, i.e. vegetation, human impact, elevation, and wetland, we compared occupied and unoccupied sites at grain sizes ranging from 1 to 6400 ha. The goodness-of-fit of the habitat suitability model depended on grain size, with the best fit (most information) at a grain size of 2 ha. Semivariograms showed the habitat variables at control sites have a gradient pattern, yet the crested ibis had their specific habitat preferences, and only selected a narrow range from the available gradient. Our results indicated that spatial scale needs to be considered in developing habitat models for applications such as conservation planning.  相似文献   

7.
Historical and future projected landscape patterns and changes caused by harvesting and silviculture were evaluated for a 189,000 ha, intensively managed forest in New Brunswick, Canada. We compared changes in species composition, age classes, and patch characteristics (area, size, density, edge, shape, and core area) between 1945, 2002, and projections to 2027 (based on the landowner's spatial forest management plan). In 1945, the landbase was 40% softwood, 37% mixed hardwood–softwood, 10% hardwood, and 9% softwood–cedar. From 1945 to 2002 and 2027, respectively, softwood forest area increased by 2 and 11%, mixedwood decreased by 19 and 20%, and hardwood area increased by 15 and 14%, and softwood–cedar increased by 6% and then decreased by 7%. In 1945, forest >70 years old comprised 85% of the landscape, but declined to 44% in 2002 and was projected to encompass 41% in 2027. Increased area harvested, decreasing harvest patch size, and protection against natural disturbances resulted in progressively smaller mean and less variable patch sizes from 1945 to 2002. Based upon the 25-year forest management plan, this trend was projected to continue, with the exception of nine patches >1000 ha created by 2027, eight of which were softwood plantations. Stand type successional dynamics were highly variable in both harvested and non-harvested areas, and in some cases were unexpected. Few of the 1945 stand types remained static by 2002, with 42 and 35% of mixedwood shifting to softwood as a result of harvesting, and to hardwood as a result of both harvesting and spruce budworm (Choristoneura fumiferana Clem.) outbreaks in the 1950s and 1970s. This study demonstrates the strong cumulative effect of forest management on landscape patterns, especially the socially mandated drive for smaller clearcuts resulting in the loss of large patches.  相似文献   

8.
Three central related issues in ecology are to identify spatial variation of ecological processes, to understand the relative influence of environmental and spatial variables, and to investigate the response of environmental variables at different spatial scales. These issues are particularly important for tropical dry forests, which have been comparatively less studied and are more threatened than other terrestrial ecosystems. This study aims to characterize relationships between community structure and landscape configuration and habitat type (stand age) considering different spatial scales for a tropical dry forest in Yucatan. Species density and above ground biomass were calculated from 276 sampling sites, while land cover classes were obtained from multi-spectral classification of a Spot 5 satellite imagery. Species density and biomass were related to stand age, landscape metrics of patch types (area, edge, shape, similarity and contrast) and principal coordinate of neighbor matrices (PCNM) variables using regression analysis. PCNM analysis was performed to interpret results in terms of spatial scales as well as to decompose variation into spatial, stand age and landscape structure components. Stand age was the most important variable for biomass, whereas landscape structure and spatial dependence had a comparable or even stronger influence on species density than stand age. At the very broad scale (8,000–10,500 m), stand age contributed most to biomass and landscape structure to species density. At the broad scale (2,000–8,000 m), stand age was the most important variable predicting both species density and biomass. Our results shed light on which landscape configurations could enhance plant diversity and above ground biomass.  相似文献   

9.
Timber harvesting affects both composition and structure of the landscape and has important consequences for organisms using forest habitats. A timber harvest allocation model was constructed that allows the input of specific rules to allocate forest stands for clearcutting to generate landscape patterns reflecting the look and feel of managed landscapes. Various harvest strategies were simulated on four 237 km2 study areas in Indiana, USA. For each study area, the model was applied to simulate 80 years of management activity. The resulting landscape spatial patterns were quantified using a suite of landscape pattern metrics and plotted as a function of mean harvest size and total area of forest harvested per decade to produce response surfaces. When the mean clearcut size was 1 ha, the area of forest interior remaining on the landscape was dramatically reduced and the amount of forest edge on the landscape increased dramatically. The potential consequences of the patterns produced by the model were assessed for a generalized neotropical migrant forest bird using a GIS model that generates maps showing the spatial distribution of the relative vulnerability of forest birds to brood parasitism by brown-headed cowbirds. The model incorporates the location and relative quality of cowbird feeding sites, and the relation between parasitism rates and distance of forest from edge. The response surface relating mean harvest size and total area harvested to the mean value of vulnerability to cowbird brood parasitism had a shape similar to the response surfaces showing forest edge. The results of our study suggest that it is more difficult to maintain large contiguous blocks of undisturbed forest interior when harvests are small and dispersed, especially when producing high timber volumes is a management goal. The application of the cowbird model to landscapes managed under different strategies could help managers in deciding where harvest activity will produce the least negative impact on breeding forest birds.  相似文献   

10.
Possible effects of changing climate and increasing CO2 on forest stand development were simulated using a forest succession model of the JABOWA/FORET type. The model was previously tested for its ability to generate plausible community patterns for Alpine forest sites ranging from 220 m to 2000 m a.s.l., and from xeric to mesic soil moisture conditions. Each model run covers a period of 1000 yrs and is based on the averaged successional characteristics of 50 forest plots with an individual size of 1/12 ha. These small forest patches serve as basic units to model establishment, growth, and death of individual trees. The simulated CO2 scenario assumes linear climate change as atmospheric CO2 concentration increases from 310 l/l to 620 l/l and finally to 1340 l/l. Direct effects of increasing CO2 on tree growth were modeled using tree-ring and growth chamber data. The simulation experiment proved to be a useful tool for evaluating possible vegetation changes that might occur under CO2-induced warming. On xeric sites from the colline to the high montane belt, the simulated climate change causes drastic soil water losses due to elevated evapotranspiration rates. This translates into a significant biomass decrease and even to a loss of forest on xeric low-elevation sites. Biomass gains can be reported from mesic to intermediate sites between 600 and 2000 m a.s.l. Increasing CO2 and warming alters the species composition of the simulated communities considerably. In today's montane and subalpine belt an invasion of deciduous tree species can be expected. They outcompete most conifers which in turn may migrate to today's alpine belt. Some of these changes occur as early as 40 yrs after climate begins to change. This corresponds to a mean annual warming of 1.5°C compared with today's mean temperatures.  相似文献   

11.
A measure of the historic range of variability (HRV) in landscape structure is essential for evaluating current landscape patterns of Rocky Mountain coniferous forests that have been subjected to intensive timber harvest. We used a geographic information system (GIS) and FRAGSTATS to calculate key landscape metrics on two ∼130,000-ha landscapes in the Greater Yellowstone Area, USA: one in Yellowstone National Park (YNP), which has been primarily shaped by natural fires, and a second in the adjacent Targhee National Forest (TNF), which has undergone intensive clearcutting for nearly 30 years. Digital maps of the current and historical landscape in YNP were developed from earlier stand age maps developed by Romme and Despain. Maps of the TNF landscape were adapted from United States Forest Service Resource Information System (RIS) data. Key landscape metrics were calculated at 20-yr intervals for YNP for the period from 1705-1995. These metrics were used to first evaluate the relative effects of small vs. large fire events on landscape structure and were then compared to similar metrics calculated for both pre- and post-harvest landscapes of the TNF. Large fires, such as those that burned in 1988, produced a structurally different landscape than did previous, smaller fires (1705-1985). The total number of patches of all types was higher after 1988 (694 vs. 340-404 before 1988), and mean patch size was reduced by almost half (186 ha vs. 319-379 ha). The amount of unburned forest was less following the 1988 fires (63% vs. 72-90% prior to 1988), yet the number of unburned patches increased by nearly an order of magnitude (230 vs. a maximum of 41 prior to 1988). Total core area and mean core area per patch decreased after 1988 relative to smaller fires (∼73,700 ha vs. 87,000-110,000 ha, and 320 ha vs. 2,123 ha, respectively). Notably, only edge density was similar (17 m ha−1 after 1988) to earlier landscapes (9.8-14.2 m ha−1).Three decades of timber harvesting dramatically altered landscape structure in the TNF. Total number of patches increased threefold (1,481 after harvest vs. 437 before harvest), and mean patch size decreased by ∼70% (91.3 ha vs. 309 ha). None of the post-harvest landscape metrics calculated for the TNF fell within the HRV as defined in YNP, even when the post-1988 landscape was considered. In contrast, pre-harvest TNF landscape metrics were all within, or very nearly within, the HRV for YNP. While reference conditions such as those identified by this study are useful for local and regional landscape evaluation and planning, additional research is necessary to understand the consequences of changes in landscape structure for population, community, ecosystem, and landscape function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A tree diversity inventory was carried out in urban green spaces (UGSs) of Chennai metropolitan city, India. This inventory aims to study the diversity, density and richness of trees in UGSs of Chennai. A total of one hundred 10 m × 10 m (total 1 ha) plots were laid to reveal tree diversity and richness of UGSs. Trees with ≥10 cm girths at breast height (gbh) were inventoried. We recorded 45 species in 42 genera and 21 families. Caesalpiniaceae and Fabaceae each with 6 species dominated the study area followed by Arecaceae (3). Density and stand basal area of the present study were 500 stems ha?1 and 64.16 m2, respectively. Most of the inventoried trees were native (31 species) and deciduous (28 species). Fabaceae and Caesalpiniaceae dominated the present study area in terms of stand basal area and density. The Shannon diversity index and evenness of study area were 2.79 and 0.73, respectively. The most important species and families based on species important value index (IVI) and family important value index were Albizia saman, Polyalthia longifolia and Azadirachta indica; Fabaceae, Caesalpiniaceae and Annonaceae respectively. We find Chennai's urban forest is relatively superior to many urban forests of the world in terms of stand basal area and species richness. Results emphasize the importance of enhancement of urban green spaces in Chennai metropolitan city.  相似文献   

13.

Context

In modern agricultural landscapes, fragmentation of partial habitats is a significant filter for multi-habitat users, reducing local taxonomic and functional diversity. There is compelling evidence that small species are more susceptible than large species. The impact of habitat fragmentation on intraspecific body-size distribution, however, is yet unexplored.

Objectives

We tested habitat fragmentation, a major driver of pollinator loss, for its impact on intraspecific body-size distributions of solitary wild-bee species. Subsequently, we tested individual body size for its impact on pollination services.

Methods

We sampled 1272 individuals of the four most common Andrena wild bee species in 22 newly established flowering fields (0.21–0.41 ha) in Hessen, Central Germany, over two consecutive years. Study sites were located in a ca. 80 ha landscape context of increasing habitat fragmentation. We analysed the pollen loads of the most abundant species.

Results

Body size within local populations of the two medium-sized bees increased with fragmentation, suggesting intraspecific selection for higher dispersal capacity. Pollen analysis carried out for the most common species revealed that larger individuals visited a significantly smaller plant spectrum. Habitat fragmentation may thus alter pollination services without necessarily affecting species richness or composition.

Conclusions

Systematic body-size variation at the population level thus explains the considerable variability between simple community measures and ecosystem functioning. Filtering processes at the individual level require increased understanding for targeting pollination services under current and future land-use change.
  相似文献   

14.

Context

Understanding how landscape patterns affect species diversity is of great importance in the fields of biogeography, landscape ecology and conservation planning, but despite the rapid advance in biodiversity analysis, investigations of spatial effects on biodiversity are still largely focused on species richness.

Objectives

We wanted to know if and how species richness and species composition are differentially driven by the spatial measures dominating studies in landscape ecology and biogeography. As both measures require the same limited presence/absence information, it is important to choose an appropriate diversity measure, as differing results could have important consequences for interpreting ecological processes.

Methods

We recorded plant occurrences on 112 islands in the Baltic archipelago. Species richness and composition were calculated for each island, and the explanatory power of island area and habitat heterogeneity, distance to mainland and structural connectivity at three different landscape sizes were examined.

Results

A total of 354 different plant species were recorded. The influence of landscape variables differed depending on which diversity measure was used. Island area and structural connectivity determined plant species richness, while species composition revealed a more complex pattern, being influenced by island area, habitat heterogeneity and structural connectivity.

Conclusions

Although both measures require the same basic input data, species composition can reveal more about the ecological processes affecting plant communities in fragmented landscapes than species richness alone. Therefore, we recommend that species community composition should be used as an additional standard measure of diversity for biogeography, landscape ecology and conservation planning.
  相似文献   

15.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

16.

Context

Primates are an important component of biodiversity in tropical regions. However, many studies on the effects of habitat change on primates ignore the relative influence of landscape composition and configuration.

Objectives

This study addresses the question: how important are landscape-scale forest area and composition relative to patch-scale (1–1080 ha) and site-scale (transect of 1 km) habitat variables for the occupancy and abundance of four primate species in the Colombian Llanos.

Methods

Using a randomly stratified survey design, 81 fragments were surveyed for primate occupancy and abundance. We used zero-inflated models to test the relative influence of landscape-scale, patch-scale and site-scale variables on occupancy and abundance for each species. A 95% confidence set of models was constructed using the cumulative Akaike weight for each model and the relative importance of each set of variables calculated for each primate species.

Results

Occupancy was determined by a combination of site-scale, patch-scale and landscape-scale variables but this varied substantially among the primate species.

Conclusion

Our study highlights the importance of managing primates at a range of scales that considers the relative importance of site-, patch- and landscape-scale variables.
  相似文献   

17.
At Naringal in south-western Victoria, Australia, clearing of the original forest environment has created an agricultural landscape dominated by grazed pastures of introduced grasses. Remnant forest vegetation is re-stricted to small patches of less than 100 ha in size, that are loosely linked by narrow forested strips along road reserves and creeks. Six native and two introduced species of small terrestrial mammal (< 2 kg) occur within this environment. The native mammals, being dependent upon forest vegetation, were less tolerant to forest fragmentation than were the introduced species that also persist in farmland and farm buildings. The native mammals displayed an increasing frequency of occurrence in successively larger size-classes of forest patches. Those species with the greatest body-weight were the most vulnerable to habitat loss. All species of small mammal occurred in narrow habitat corridors of forest vegetation on roadsides. The resident status, seasonal variation in relative abundance, patterns of reproduction, and movements of each species were monitored in two habitat corridors during a 25-month trapping study. The corridors were found to facilitate continuity between otherwise-isolated populations of small mammals in this locality in two ways: firstly, by providing a pathway for the dispersal of single animals between patches; and secondly, by enabling gene flow through populations resident within the corridors. The small size of forest remnants at Naringal, and the vulnerability of species with low population sizes, emphasize the importance of preserving a mosaic of numerous habitat patches that together will support regional populations of sufficient size for longer-term persistence. The continuity between remnant habitats that is provided by a network of habitat corridors is an essential, and critical, component of this conservation strategy.  相似文献   

18.
Management of urban recreational woodlands: The case of Norway   总被引:1,自引:0,他引:1  
A questionnaire was mailed to 351 forest supervisors in Norway about the condition and management of urban woodlands important for recreation. The overall respondense rate was 56% and included 29 large urban settlements (10,000 inhabitants) and 168 small urban settlements (200–9999 inhabitants), encompassing about 37% of the Norwegian population. The areas included in the survey cover 194,100 ha, i.e. 1.6% of the forested area. Urban woodlands were defined as the annually most frequently visited forest areas larger than 50 ha. The average size of urban woodlands was about 1000 ha, equal in large and small urban settlements. About 73% of the urban woodlands were closer than 500 m from settlements. The mean proportion of forest in the urban fringe was 40%. Like most forested land in Norway, urban woodlands were mainly privately owned. In large urban settlements the proportion of municipal forest was slightly higher than in small urban settlements. The distributions of forest stand age and tree species composition in urban woodlands did not deviate from the overall forest situation in the region. Silviculture and forest plans were prominent in urban woodlands around both large and small urban settlements, but special plans for recreation and conservation were equally rare. Recreational facilities and conflicts were most common in urban woodlands around large urban settlements. The effect of the recommendations on management of urban woodlands developed during the 1970s is questioned regarding the small differences between urban woodlands and the general forest situation, as well as between woodlands of large and small urban settlements. However, recreational efforts may have been more intensive in smaller neighbourhood woodlands of less than 50 ha, which were beyond the scope of this survey.  相似文献   

19.
Effects of sensor spatial resolution on landscape structure parameters   总被引:16,自引:1,他引:16  
We examined the effects of increasing grain size from 20 m to 1100 m on landscape parameters characterizing spatial structure in the northern Wisconsin lake district. We examined whether structural parameters remain relatively constant over this range and whether aggregation algorithms permit extrapolation within this range. Images from three different satellite sensors were employed in this study: (1) the SPOT multispectral high resolution visible (HRV), (2) the Landsat Thematic Mapper (TM), and (3) the NOAA Advanced Very High Resolution Radiometer (AVHRR). Each scene was classified as patches of water in a matrix of land. Spatial structure was quantified using several landscape parameters: percent water, number of lakes (patches), average lake area and perimeter, fractal dimension, and three measures of texture (homogeneity, contrast, and entropy). Results indicate that most measures were sensitive to changes in grain size. As grain size increased from 20 m using HRV image data to 1100 m (AVHRR), the percent water and the number of lakes decreased while the average lake area, perimeter, the fractal dimension, and contrast increased. The other two texture measures were relatively invariant with grain size. Although examination of texture at various angles of adjacency was performed to investigate features which vary systematically with angle, the angle did not have an important effect on the texture parameter values. An aggregation algorithm was used to simulate additional grain sizes. Grain was increased successively by a factor of two from 20 m (the HRV image) to 1280 m. We then calculated landscape parameter values at each grain size. Extrapolated values closely approximated the actual sensor values. Because the grain size has an important effect on most landscape parameters, the choice of satellite sensor must be appropriate for the research question asked. Interpolation between the grain sizes of different satellite sensors is possible with an approach involving aggregation of pixels.  相似文献   

20.
We compared three kinds of habitats: small remnants of native forests, recent hedges and barley crops, in order to investigate their respective roles in the maintenance of carabid-beetle diversity in a 950-ha area of an intensive agricultural landscape. Carabid faunas in remnants differed weakly from these found in hedges and crops. In particular, small remnants had few typical forest carabid species and a large number of open-area or ubiquitous species. Different approaches in the measurement of and -diversity (classical indices, and additive partitioning of Simpson's index) showed similar results: hedges supported a high -diversity but habitat types were quite similar overall, with weak differences between open and closed or disturbed and undisturbed habitats.A comparison of species dispersal powers in the various habitat types showed that species with a low dispersal power were rare in all habitats. However, wing development measured on two dimorphic species revealed, surprisingly, that brachypterous individuals were mainly present in hedges, which were expected a priori to be more disturbed, than remnants hence less suitable for the establishment of populations with a low dispersal power.These results suggest that small remnants do not behave as 'climax' habitats in this intensive agricultural landscape, probably because of their small size and strong isolation. We discuss the interest of new undisturbed habitats, such as recent hedges, for the maintenance of carabid diversity at both the local and landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号