首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Triplicate groups of Mystus nemurus (Cuvier & Valenciennes) were fed isoenergetic semipurified diets containing seven dietary protein levels from 200 to 500 g kg–1 diet for 10 weeks. Dietary protein was supplied by graded amounts of a protein mixture (tuna muscle meal:casein:gelatine) at a fixed ratio of 50:37.5:12.5. Mystus nemurus fingerlings of initial weight 7.6 ± 0.2 g were fed close to apparent satiation at 2.5% of their body weight per day in two equal feedings. Growth performance and feed utilization efficiency increased linearly with dietary protein level from 202 to 410 g kg–1 diet and declined with protein levels of 471 g kg–1 diet or above. Protein efficiency ratio and apparent net protein utilization started to decline when the fish were fed with dietary protein levels exceeding 471 g kg–1 diet. Fish fed with lower protein diets (202–295 g kg–1 diet) had significantly ( P  < 0.05) higher carcass lipid content compared with fish fed with higher protein diets. Carcass lipid contents were inversely related to moisture content. Dietary protein did not significantly affect fish carcass protein and ash content. Using two-slope broken-line analysis, the dietary protein requirement for M. nemurus based on percentage weight gain was estimated to be 440 g kg–1 diet with a protein to energy ratio of 20 mg protein kJ–1 gross energy. This level of protein in the diet is recommended for maximum growth of M. nemurus fingerlings weighing between 7 and 18 g under the experimental conditions used in this study.  相似文献   

2.
Abstract. Six groups of tropical freshwater catfish, Mystus nemurus (Cuvier & Valenciennes)(mean weight. 20·45 ± l·5g), were reared in 0·34m3 fibreglass tanks at different stocking densities (105, 195, 285, 375, 465 and 555 specimens/m3 water) for 84 days. The objective of the study was to determine the effect of various stocking densities on the growth, nutrition, biochemical composition and survival of M. nemurus. The lowest growth rate appeared in fish at the highest density and the highest was observed in fish stocked in moderate density of 285 and 375 fish/m3 water. Fish production was also lower at relatively low stocking densities of 105 and 195 fish/m3. Food conversion ratio (FCR), protein efficiency ratio (PER) and biochemical composition of M. nemurus indicate that there exists an optimum stocking density which lies between 285 and 375 fish/m3.  相似文献   

3.
4.
The effects of varying dietary protein level on several nutritional parameters of Sarotherodon mossambicus were studied. Eight approximately isoenergetic diets were formulated with protein levels ranging from 0% to 56% in increments of 8%. A zero protein diet was included so that true digestibility, Net Protein Utilization (NPU) and Biological Values (BV) were determined.Specific growth rates (%/day) were: 40% protein (3.85) > 48% protein (3.49), 56% protein (3.51) > 32% protein (3.04), 24% protein (3.10) > 16% protein (2.46) > 8% protein (1.32) > 0% protein (?0.16). Food conversion decreased with increasing dietary protein levels, although not significantly above 40%. Protein efficiency ratio, NPU and BV all decreased with increasing dietary protein level whilst carcass analysis and protein digestibility were little affected. The minimum dietary protein level producing maximum growth of S. mossambicus was found to be 40%, with a dietary protein to energy ratio (P : E) of 116.6 mg protein per kilocalorie of calculated metabolizable energy.  相似文献   

5.
Three size groups of Colossoma macropomum were submitted to a 4-week growth trial. Five nearly isocaloric (18.8-21.0 kJ g?1) diets with protein concentrations ranging between 17 and 64% were administrated at a fixed, near satiation level. Maximum growth was 6.6, 3.6 and 1.9 g protein kg?0.8 day?1 for 5, 50 and 125 g fish, respectively. The protein requirement to achieve maximum growth decreased from 28.9 g protein kg?0.8 day?1 for 5 g fish to 11.7 g kg?0.8 day?1 for 125 g fish. Possibly because of its high growth rate. C. macropomum needs a slightly higher dietary P/E ration (25.4-27.9 mg protein kJ?1) to obtain maximal growth than most other fishes. The relation between protein ration and protein gain was studied by a quadratic regression model. In fish receiving protein rations equal or below rations resulting in maximal growth, protein ration and protein gain were almost linearly related. The model showed that the portion of the dietary protein which is digested decreases with increasing protein ration. Body protein content increased and body lipid content decreased with feed protein level. Fish fed a 17% protein diet deposited as much as 18% lipid.  相似文献   

6.
Diets formulated with increasing digestible energy (10–22 DE MJ kg−1) contents and decreasing digestible crude protein (DCP)/DE ratios (34–15 g MJ−1) were fed to triplicate groups of Sparus aurata in three consecutive trials. Fish were hand-fed to apparent satiation and voluntary feed intake was found to be dependent upon dietary DE content. Daily growth was regulated both by energy and protein intake and reached its maximum at high energy levels. Growth composition showed narrow limits regarding protein gain (157–190 g kg−1) and a wider range regarding lipid (55–210 g kg−1) deposition reflecting the dietary energy to protein supply. Energy utilization for growth was constant at a value of 0.50 regardless of energy intake. Efficiency of protein utilization for growth varied between 0.33 and 0.60 depending on the DCP/DE ratio in the diet. The optimal protein utilization for protein deposition was found to be at 0.47. These values allow daily energy and protein requirements for growing S. aurata to be quantified. This demonstrates that the optimal dietary DCP/DE supply changes with fish size, growth potential and daily feed intake.  相似文献   

7.
The effects of different salinities (0, 2, 4, 6 and 10‰) on food intake, growth, food conversion, and body composition of the freshwater catfish Mystus vittatus (Bloch) were studied. Under a restricted feeding schedule daily intake of food was found to be salinity dependent. Fish reared in 10‰ consumed more Tubifex tubifex, converted less efficiently and displayed poor growth as compared to individuals reared in fresh water. Fish flesh production decreased from 483 g (fresh water) to 177 g (10‰ salinity) as the salinity was increased. Water content of the fish was found to decrease with increase in salinity, while maximum ash (25.56%) and fat (42.25%) were exhibited by fish reared in 10‰ salinity.  相似文献   

8.
The aim of this study was to evaluate the effects of practical diets with different protein content on survival, growth, feed utilization and body composition of juvenile tench (Tinca tinca). A 90-day experiment was conducted with 6-month-old juveniles (34.35 mm total length, 0.411 g weight). Six practical diets differing in the protein level were tested: 40, 44, 48, 52, 56 or 60 %. Survival rates ranged from 96.7 to 100 %. The 52 % protein enabled the highest growth (55.49 mm total length, 2.11 g weight, 1.80 % day?1 specific growth rate) and the lowest feed conversion ratio (1.61) without significant differences (P > 0.05) from the 48 %. Protein productive value ranged from 15.64 to 22.01. The percentages of fish with visible deformities ranged from 1.1 to 4.4 %. The relationship among amino acid profiles of the diets, growth of juveniles, body composition and amino acid requirements of other fish species is discussed. Second-order polynomial regression analysis showed that the optimum dietary protein requirement for maximum growth of juvenile tench may be 52.7 %.  相似文献   

9.
Seven diets containing 350 g protein/kg and with energy levels varying from 1 860 to 3 150 kcal/kg were fed to groups of turbot at a rate of 25 g diet/kg biomass/day for 18 weeks.An additional group of turbot was similarly fed a diet containing 500 g protein and 2 895 kcal/kg. Weight gain, food conversion and body composition of these eight groups of fish were compared.At a constant dietary protein level, weight gain and protein utilization increased with increasing dietary energy level. The body fat content of the experimental fish did not exceed that of wild fish even at the highest dietary energy level.At comparable dietary energy levels (about 3 000 kcal/g) protein utilization of turbot given diets containing 350 g protein/kg was superior to that of turbot given diets containing 500 g protein/kg. Weight gains of the two groups were similar.  相似文献   

10.
The effects of several dietary protein levels on the growth, feed conversion, body composition and diet digestibility of juvenile Lutjanus argentimaculatus (body weight 12.3 g) were examined. Seven isolipidic (7.4%) diets were formulated to contain graded levels of protein (28–58%) with dietary energy ranging from 19.7 to 21.5 kJ g?1. Diets were distributed to triplicate groups of fish thrice a day at ration of 2% body weight for 90 days. Growth, feed conversion, protein utilization and digestibility of nutrients increased with increasing dietary protein level up to 43%, after which no significant improvement was observed. Digestibility of dry matter and energy showed a concomitant increase with the reduction in dietary wheat meal, attaining maximal values with high protein diets. No significant differences were detected in moisture, protein, lipid and ash content of whole fish or body organs as dietary protein increased. The mesenteric fat, hepato‐ and viscerosomatic indices decreased with increasing protein level. The cholesterol, triglycerides and haematocrit values were similar among treatments, except that high levels of plasma lipids were recorded above 43% protein diet. The use of a practical diet containing 43% protein is appropriate for the growth of L. argentimaculatus juveniles under the experimental conditions of the present study.  相似文献   

11.
A 6-week feeding trial with four dietary protein levels (22%, 32%, 42% and 52%) and two dietary lipid levels (10% and 19%) was conducted to investigate the optimum dietary protein and lipid level for the growth of bagrid catfish fingerlings (0.92±0.01 g initial weight). Survival of fish was not affected by either dietary protein or dietary lipid level. Specific growth rate of fish fed the diets containing 10% lipid increased with increasing protein level and that of fish fed the diets containing 19% lipid increased with increasing protein level up to 42%. Feed efficiency of fish fed the 42% protein diet with 19% lipid and 52% protein diet with 10–19% lipid was higher than that of other groups. Daily feed intake of fish decreased with increasing dietary protein level at both lipid levels and showed a tendency toward higher values at 10% lipid diets than at 19% lipid diets. Protein efficiency ratio and protein retention of fish decreased with increasing dietary protein level, and those of fish fed the 19% lipid diet were higher than those of fish fed the 10% diet at 42% protein diet. Moisture content of fish fed 10% lipid diets was higher than that of fish fed 19% lipid diets, at each protein level. Crude lipid content of fish fed 19% lipid diets was higher than that of fish fed 10% lipid diets at each protein level. The results of this study indicate that an increase of dietary lipid level can improve growth and protein utilization, and the diet containing 42% protein with 19% lipid would be suitable for optimum growth and effective protein utilization of bagrid catfish fingerlings.  相似文献   

12.
The effect of supplemental feeds with different levels of crude protein on pond water quality and food utilization efficiency by pacú (Piaractus mesopotamicus) was evaluated in a semi‐intensive culture system. Fish were stocked at a density of one individual per m2, raised for 299 days, and fed isocaloric diets containing soybean meal, blood and bone meal, and yellow maize. Dietary treatments consisted of diets containing 25%, 35%, and 45% crude protein. Ponds receiving the two highest protein levels showed significantly higher values of alkalinity, conductivity and nitrites. High dietary protein diets resulted in no significant improvements in final weight (336.4±77.2, 308.2±92.6 and 368.4±82.2 g, mean±standard deviation, for 25%, 35% and 45% protein levels respectively). Moreover, fish carcass composition was not significantly different among treatments. Instead, significant augmentations in feed conversion ratio (1.36, 1.54 and 1.73 respectively) and reductions in protein retention (35.7%, 33.5% and 29.0% respectively) occurred as protein levels increased. Results indicate that at the lowest protein level, pacú growth rates and carcass composition were similar to the other experimental treatments, with a significant improvement in pond water quality and feed utilization efficiency.  相似文献   

13.
An 8‐week feeding trial was conducted to assess the effects of dietary l ‐threonine on growth, protein utilization, threonine retention efficiencies, nucleic acid indices and body composition of fingerling Heteropneustes fossilis (6.6 ± 0.1 g; 10.9 ± 0.2 cm). Casein–gelatin based isonitrogenous (38% crude protein; CP) and isocaloric (15.3 kJ g?1 digestible energy; DE) amino acid test diets with six levels of dietary l ‐threonine (0.75%; 1.0%; 1.25%; 1.5%; 1.75%; 2.0% dry diet) were prepared and hand‐fed to quadruplicate groups of fingerling to apparent visual satiation twice daily. Weight gain (WG; 46.3 g fish?1), feed conversion ratio (FCR; 1.98), protein utilization efficiency (PUE; 0.25), threonine retention efficiency (TRE; 0.69), lipid productive value (LPV; 0.45), body protein (18.2%) and RNA/DNA ratio (3.6) of fish fed graded levels of dietary threonine increased significantly (P < 0.05) up to 1.49% threonine of dry diet. To generate precise information, the WG, RNA/DNA and LPV data were subjected to broken‐line and quadratic regression analyses. The two models were superimposed and requirement was determined by establishing the point, where the quadratic curve first intersected the plateau of broken‐line. Based on the above mathematical analyses, optimum dietary threonine requirement of fingerling Hfossilis was estimated to range between 1.62% and 1.69% of the diet, corresponding to 4.26–4.44% protein.  相似文献   

14.
This study examined the effect of dietary protein and lipid levels on growth, feed utilization and body composition of Asian catfish Pangasius hypophthalmus reared in cages. Eight test diets were formulated at four protein (340, 380, 420 and 460 g kg−1 crude protein) and two lipid (50 and 90 g kg−1 crude lipid) levels. Fish (initial weight 4.7 g fish−1) were fed the test diets for 8 weeks. Final body weight, weight gain (WG), feed intake (FI), feed conversion ratio (FCR), contents of crude protein, lipid and energy in whole body were dependent on both dietary protein and lipid levels, while specific growth rate (SGR), hepatosomatic index and body moisture content were dependent on dietary lipid level. The WG and SGR increased with the increase in either dietary protein level (at the same lipid level) or lipid level (at the same protein level). The FI and FCR decreased with the increase in dietary protein level (at the same lipid level) or lipid level (at the same protein level). Protein sparing action occurred in case dietary lipid level increased. Fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid had the highest WG and SGR, but the lowest FI and FCR, among the diet treatments. There were no significant differences in the protein retention efficiency (PRE) and energy retention efficiency (ERE) among the diet treatments, although PRE and ERE were relatively high in fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid. At the end of the feeding trial, body protein content increased, while body lipid content decreased, with the increase in dietary protein content at the same lipid level. Our results suggest that dietary levels of 450 g kg−1 crude protein and 90 g kg−1 lipid are adequate to support fast growth of P. hypophthalmus reared in cages.  相似文献   

15.
The present study was conducted to investigate the effect of dietary cadmium (Cd) level on the growth, body composition and several enzymatic activities of juvenile yellow catfish, Pelteobagrus fulvidraco. The experimental diets were formulated with CdCl2·2.5H2O at levels of 0, 0.01, 0.1 and 1.0 g kg?1 diet, resulting in four dietary Cd levels of 0.25 (control), 4.92, 48.57 and 474.7 mg Cd kg?1 diet respectively. They were fed to juvenile yellow catfish (mean initial weight: 3.26±0.07 g, mean±SD) for 4 weeks. Weight gain, specific growth rate, feed intake and protein efficiency ratio tended to decline with increasing dietary Cd levels (P<0.05). In contrast, the feed conversion ratio was the lowest when the dietary Cd level was 0.25 mg Cd kg?1 diet. Dietary Cd levels significantly influenced body composition and Cd accumulation. Whole body and vertebrae Cd content generally increased as the dietary Cd levels increased (P<0.05). However, muscle Cd content was detected only in fish fed the diets containing the highest Cd level of the diet (P>0.05). Hepatic alkaline phosphatase, glutathione peroxidase and lactate dehydrogenase activities increased (P<0.05) with increasing dietary Cd level. Succinate dehydrogenase was very variant and not related to dietary treatments. Malic dehydrogenase activity showed no significant differences among the treatments (P>0.05). The present study provided for the first time the toxic assessment of dietborne Cd in yellow catfish, based on growth performance and the changes in hepatic enzymatic activities for the fish species.  相似文献   

16.
以初始体重为(34.15±0.33)g的鲈鱼Lateolabrax japonicus为研究对象,鱼粉和酪蛋白作为蛋白源,设计并制成蛋白质梯度分别为35%、40%、45%、50%、55%的5组配合饲料,进行为期56 d的生长试验,探讨配合饲料中不同蛋白质水平对鲈鱼生长、体组成及蛋白酶活力的影响。结果表明,各组鲈鱼存活率为91.7%-96.7%,无显著差异(P0.05);随着饲料蛋白质水平的提高,鲈鱼的特定生长率逐渐升高,当饲料蛋白质水平达到45%时趋于稳定,且饲料蛋白45%、50%、55%组试验的特定生长率显著高于35%组(P0.05);蛋白质沉积率呈先上升后下降的趋势,当饲料蛋白质水平达到45%时达到最大值;饲料蛋白质水平对鲈鱼鱼体水分含量无显著性影响(P0.05),鲈鱼鱼体粗蛋白含量随着饲料蛋白水平提高而增加,粗灰分、粗脂肪含量则呈减少趋势;随饲料蛋白质水平提高,胃蛋白酶和胰蛋白酶的活性呈升高趋势,肝脏组织中谷草转氨酶的活性呈现升高趋势,而谷丙转氨酶的活性没有显著性变化(P0.05)。饲料中蛋白水平为45.00%-45.89%,其生长及蛋白沉积率最高。  相似文献   

17.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

18.
Oriental river prawn (Macrobrachium nipponense) has been widely cultured in Asian countries. However, its nutritional studies are very limited. In the present 8‐week study, we investigated the effects of dietary protein to energy ratio (P/E ratio) on the growth, feed utilization and body composition in juvenile M. nipponense (initial weight 0.302 ±0.03 g). Two‐factor experiment was designed and nine semi‐purified diets were formulated to contain three lipid levels (20, 80 and 140 g kg?1) and three protein levels (330, 380 and 430 g kg?1), producing P/E ratios from 16.5 to 23.4 mg KJ?1 protein. The results indicated that the growth, survival rate and protein efficiency were dose dependently improved by the increased dietary lipid, but not dietary protein content. Increased dietary lipid content and/or protein content increased lipid accumulation in whole body, hepatopancreas and muscle, but did not change the feed intake and hepatopancreas weight. In conclusion, our present study indicated that M. nipponense is a species with relatively high‐energy requirement. It could utilize dietary lipid content up to 140 g kg?1, while the dietary protein with more than 330 g kg?1 would not promote growth and protein efficiency. Taken together, 330 g kg?1 dietary protein and 140 g kg?1 dietary lipid level with P/E ratio 16.49 could be optimum for M. nipponense.  相似文献   

19.
Four isonitrogenous [30% crude protein (CP)] diets containing different gross energy levels (13.39, 16.74, 20.50 and 23.85 kJ g−1) were evaluated to determine the optimum energy for the Malawian tilapia Oreochromis shiranus. Each tank (120 L) was stocked with 18 juvenile tilapia (average weight 7.32±0.25 g) and they were fed the experimental diets for 10 weeks. The final average weight of the fish was approximately twofold higher (range: 12.64–16.77 g) than the initial weight. The dietary energy significantly (P<0.05) influenced growth. The average weight of fish fed dietary energy level 20.50 kJ g−1 was significantly higher (P<0.05) than the weight of the fish fed any of the other experimental diets. There was no significant difference in growth of fish fed 13.39 and 16.74 kJ g−1 energy levels, but 23.85 kJ g−1 produced the lowest growth rates. There were no significant differences (P>0.05) between feed intake across the treatments. Feed conversion ratio (range: 2.2–3.0) and protein efficiency ratio (range: 1.10–1.50) among the dietary treatment groups were in agreement with trends for weight gain. Dietary energy level significantly (P<0.05) influenced the body composition of O. shiranus. Whole‐body moisture (range: 64.27–67.15%) and ash (range: 13.21–14.73%) decreased in all treatments. Whole‐body protein (range: 63.57–66.16%) increased only in groups fed on the diet containing 20.50 kJ g−1. Whole‐body fat (range: 13.58–17.27%) and gross energy (range: 28.411–33.210 kJ g−1) increased significantly (P<0.05). Fish survival was 100% in all treatments. The results demonstrated that to maximize growth at a temperature of 23°C, O. shiranus should be fed diets containing 20.50 kJ g−1 gross energy.  相似文献   

20.
A study was undertaken to determine the effect of dietary lipid level on growth, feed efficiency and body chemical composition of juvenile grass carp. Seven isonitrogenous diets (400 g kg?1 crude protein) containing seven dietary lipid level (0, 20, 40, 60, 80, 100 and 120 g kg?1 dry matter) were fed to triplicate groups of 40 fish with initial weight 6.52 g, for 70 days. No obvious and assured essential fatty acid deficiency symptom appeared in fish fed the lipid‐free diet. Excess dietary lipid level (100 and 120 g kg?1) resulted in decreased feed intake. The best growth performance and feed utilization was observed in fish fed 20–40 g kg?1 dietary lipid. The fish fed a lipid‐free diet had the lowest protein efficiency and protein retention. Growth performance and feed utilization increased with the increasing dietary lipid levels up to 40 g kg?1 dietary lipid. Higher dietary level (above 40 g kg?1) made growth performance and feed utilization decrease and no protein sparing effect was observed. Lipid retention decreased as dietary lipid level increased. Mesenteric fat index (MFI) increased, hepatosomatic index (HSI) decreased with dietary lipid level. The increased MFI and simultaneous decrease lipid retention can be explained by differences in growth. The effect of dietary lipid levels on the chemical composition of tissues was significant only for whole body and muscle. The excess lipid content of liver in all groups was regarded as a slight symptom of fatty liver, which was partly identified by microscopic structural study and lower plasma lipid indexes, comparing to the initial plasma data. In conclusion, grass carp is a fish with low energy requirement and excess dietary lipid level should be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号