首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A study was conducted to evaluate low‐protein traditional or alternative diets for pond‐raised hybrid catfish, Ictalurus punctatus × Ictalurus furcatus. Three 24% protein diets containing decreasing levels of soybean meal (30, 20, and 15%) and increasing levels of cottonseed meal and corn germ meal were compared with a 28% protein control diet. Hybrid catfish fingerlings (mean initial weight = 71 g/fish) were stocked into 20 earthen ponds (0.04 ha) at a density of 14,826 fish/ha with five ponds per dietary treatment. Fish were fed once daily to apparent satiation for a 191‐d growing season. There were no significant differences in total diet fed, net yield, weight gain, feed conversion ratio (FCR), survival, or fillet proximate nutrient composition among dietary treatments (P ≥ 0.10). However, regression analysis showed for fish fed 24% protein diets there was a linear increase in FCR as soybean meal levels decreased (P = 0.06). Compared with fish fed the 28% protein control diet, fish fed 24% protein diets had lower carcass and fillet yield. Results demonstrate a 24% protein alternative diet containing 20% soybean meal may be substituted for 28% protein diets for hybrid catfish during food fish production.  相似文献   

2.
A 117‐day feeding trial was conducted in ponds with juvenile Australian red claw crayfish (Cherax quadricarinatus) to evaluate the effects on growth, survival, body composition, and processing traits when fed diets containing three different protein levels (22%, 32%, and 42%), and the effects of feeding these diets on pond water quality. Juvenile crayfish (mean weight of 4.6±2.2 g) were randomly stocked into nine 0.02‐ha ponds at a rate of 500 per pond (25 000 ha?1), and each diet was fed to three ponds. There were two feedings per day, each consisting of one‐half of the total daily ration. At harvest, there were no significant differences (P>0.05) in the individual weight, percentage weight gain, or specific growth rate among treatments, which averaged 75.3 g, 1535%, and 2.38% day?1 respectively. Red claw fed the 42% crude protein diet had significantly higher (P<0.05) feed conversion ratio (7.34) compared with crayfish fed diets containing 22% (5.18) or 32% (5.13) crude protein, and had significantly lower percentage survival (46.1%) compared with red claw fed diets with 22% (61.1%) or 32% (58.2%) protein. Total yield was significantly lower (P<0.05) in red claw fed the 42% protein diet (640 kg ha?1) compared with red claw fed diets containing 22% (920 kg ha?1) or 32% (904 kg ha?1) protein. Mean total ammonia nitrogen (TAN) levels were significantly higher (P<0.05) in ponds with red claw fed the 42% protein diet (0.55 mg L?1) compared with ponds with red claw fed diets containing 22% (0.32 mg L?1) or 32% (0.38 mg L?1) protein. Mean total nitrite concentrations in ponds with red claw fed the 42% protein diet was significantly higher (0.05 mg L?1) compared with red claw fed diets containing 22% (0.01 mg L?1) or 32% (0.02 mg L?1) protein. These results indicate that a practical diet containing 22% (as fed basis) protein may be adequate for pond production of red claw when stocked at the density used in this study, and that a diet containing 42% protein adversely affected levels of TAN and nitrite, possibly reducing overall survival of red claw. Use of a diet with 22% protein may allow red claw producers to reduce diet costs and thereby increase profits.  相似文献   

3.
A 10‐week feeding experiment was conducted to determine the optimum dietary protein requirement of juvenile obscure puffer (Takifugu obscurus). Six isoenergetic (20 MJ kg?1 gross energy) diets were formulated to contain graded levels of 34%, 38%, 42%, 46%, 50% or 54% crude protein (as dry matter basis). The results showed final body weight, weight gain and specific growth rate (SGR) increased significantly with increasing protein levels up to 42% and then decreased thereafer. Second‐order polynomial regression analysis (y = ?0.0024x2 + 0.1788x ? 1.3196, R2 = 0.9032) indicated a maximum SGR at protein level of 37%. Feed conversion ratio (FCR) decreased with increasing levels of dietary protein up to 42% and increased thereafter. Second‐order polynomial regression analysis (y = 0.0054x2 ? 0.4351x + 10.391, R2 = 0.753) indicated a minimum FCR at protein level of 40%. Protein efficiency ratio (PER) of fish fed the 34%, 38% and 42% diets was significantly higher than that of fish fed the 46%, 50% and 54% diets, and broken‐line analysis indicated PER tended to decrease when dietary protein level was higher than 40%. Generally, whole body lipid content, total cholesterol, low‐density lipoprotein cholesterol and triacylglycerol decreased with increasing levels of dietary protein. Fish fed the 42% protein diet showed the highest essential amino acids (histidine, isoleucine, leucine, lysine and threonine) and non‐essential amino acids (aspartic acid and glutamic acid) in muscle. Based on the second‐degree polynomial regression analysis of SGR and FCR and broken‐line analysis of PER, the optimal dietary protein level of obscure puffer is estimated to be between 37% and 40% (% as dry matter basis).  相似文献   

4.
Abstract

This study evaluated the effects of dietary protein concentration (26, 28, and 32%) and an all-plant protein diet (28% protein) on growth, feed efficiency, processing yield, and body composition of channel catfish, Ictalurus punctatus raised from advanced fingerlings to large marketable size (about 800 to 900 g/fish) for two growing seasons. Fingerling channel catfish (average weight = 56 g/fish) were stocked into twenty 0.04-ha ponds at a density of 18,525 fish/ha. Fish were fed once daily to satiation during the two growing seasons and fed according to recommended winter feeding schedules during the winter. There were no differences in diet consumption, weight gain, feed conversion ratio, survival, processing yields (carcass, shank fillet, and nugget), or fillet composition (moisture, protein, fat, and ash) among fish fed the various diets. These results indicate that a 26% protein diet containing plant and animal proteins or a 28% all-plant protein diet is adequate for channel catfish raised in ponds from advanced fingerlings to large marketable size without adversely affecting weight gain, feed efficiency, processing yield, or body composition. Large marketable-size channel catfish appear to use diets less efficiently but give higher processing yields compared to small marketable-size fish.  相似文献   

5.
Triplicate groups of Indian catfish, Heteropneustes fossilis (Bloch), fingerlings (average wet weight 3.55 ± 0.03 g) were fed semi-purified diets containing six levels of biotin (0, 0.086, 0.26, 0.86, 2.5 and 4.3 mg kg−1 diet) for 15 weeks. After 42 days of feeding, fish fed the control (no biotin) diet had developed severe deficiency signs characterized by convulsions, heavy mortality, listlessness, poor feed conversion and feed intake, dark skin colour, tetanus and weight loss. None of these signs was seen in fish fed biotin-supplemented diets. Among all the biotin-supplemented diets, percentage weight gain was significantly highest for fish fed the diet supplemented with 0.26 mg of biotin kg−1 and significantly lowest for fish fed the diet supplemented with 0.086 mg of biotin kg−1. Feed conversion ratio (FCR) and protein efficiency ratio (PER) patterns were similar to that of percentage weight gain. The carcass protein and lipid contents were influenced by the dietary biotin up to fish fed 0.26 mg of biotin kg−1. Significantly higher body biotin content, liver pyruvate carboxylase and acetyl CoA carboxylase activities were observed in fish fed biotin-supplemented diets than in fish fed the control diet. Broken-line analyses showed that the optimum dietary requirement for biotin for maximal weight gain, body biotin content, liver pyruvate carboxylase and acetyl CoA carboxylase activities was about 0.25 mg kg−1. Associated liver pyruvate carboxylase and acetyl CoA carboxylase activities for normal growth ranged from 105 to 120 units mg−1 protein and from 9 to 11 units mg−1 protein respectively.  相似文献   

6.
The study was carried out with juvenile European catfish to evaluate the effects of commercial diets on growth, feed utilization and changes of selected morphometric traits of fish. Three diets containing different levels of crude protein and lipid: 37 and 12 %, 45 and 15 %, 45 and 20 %, respectively, were fed to triplicate groups of European catfish for 50 days. The fish were fed continuously (24 h day?1) by automatic belt feeders for fish with a clock drive. Biometric characteristics of fish included the determination of plasticity traits using modified Pravdin method. Fish growth rate and final body weight were statistically higher in variant 45/20 diet (specific growth rate of 2.6 % day?1). The intergroup significant differences were recorded for food conversion ratio (FCR) and protein efficiency ratio (PER), during the particular decades of the experiment. For the whole period of the growth test, no significant differences in FCR were observed, but the most favorable values of PER were obtained in variant 37/12. Protein retention in fish body ranged from 18.7 to 21.0 %, and fat retention was significantly more variable, ranged from 87.5 to 121.3 %. Fish survival rate recorded during the growth test was higher in all variants (above 95 %). Statistically significant increases in protein and lipid content were found in fish fed diets 45/15 and 45/20. The tested diets have no effect on changes in fish body proportions. The most effective in juvenile European catfish rearing was diet with 45 % of crude protein and 20 % of lipid.  相似文献   

7.
An 84‐day feeding trial was conducted to study the effect of different levels of dietary protein, 250 (P25), 300 (P30), 350 (P35), 400 (P40) and 450 g (P45) kg?1 dry matter (DM) on growth, feed intake, feed utilization and carcass composition of bagrid catfish Horabagrus brachysoma fingerlings. Triplicate groups of fingerlings with mean initial body weight of 2.2 g were fed the experimental diets twice daily, till satiation, in 150‐L tanks supplied with flow‐through freshwater. Daily dry matter intake by the fingerlings decreased significantly (P < 0.05) when fed P25 diet, containing 250 g protein kg?1. The highest body weight gain, specific growth rate (SGR) and protein efficiency ratio (PER), and the lowest feed conversion ratio (FCR) were observed in fish fed 350 g protein kg?1 diet. The fish fed with P45 diet had the lowest (P < 0.05) carcass lipid content. The polynomial regression analysis indicates that H. brachysoma fingerlings require 391 g dietary crude protein kg?1 diet.  相似文献   

8.
Growth, feed conversion, and nutrient retention efficiencies of African catfish fingerling, Clarias gariepinus (5.22 ± .07 cm; 8.22 ± 0.03 g), fed diets with varying levels of protein were assessed by feeding seven casein/gelatin based isocaloric (17.62 kJ/g GE) experimental diets with graded levels of dietary protein (20%, 25%, 30%, 35%, 40%, 45%, and 50% of the diet) to triplicate groups of fish to apparent satiation for eight weeks. Effects of feeding these diets on live weight gain (LWG%), feed conversion ratio (FCR), protein efficiency ratio (PER), protein retention efficiency (PRE%), and energy retention efficiency (ERE%) were assessed. Maximum LWG% (867%), PER (2.01), highest PRE (32%), ERE (69%), best FCR (1.39), and maximum body protein were recorded in fish fed diet containing 35% protein. On the basis of the second-degree polynomial regression analysis of the above response variables, it is recommended that the inclusion of protein in the range of 34.4%–39.6% is optimum for maximizing growth potential, feed conversion, and nutrient retention in African catfish fingerling, Clarias gariepinus.  相似文献   

9.
A 12-week feeding trial was conducted in aquaria with juvenile (8.9 g) blue catfish, Ictalurus furcatus (Lesueur), to examine effects of totally replacing fish meal with a high (65%) percentage of soy bean meal (SBM) in prepared diets. Five isonitrogenous (35% protein) and isocaloric (10.5 kJ digestible energy g?1 of diet) diets were formulated. Diet 1 was similar to a high-quality commercial channel catfish diet, containing 15% fish meal and 42% SBM. Diets 2-5 contained 0% fish meal and 70% SBM with various amounts (0.0%. 0.3%, 0.6% and 0.9%) of L-methionine added. After 12 weeks, individual weight, weight gain, survival, specific growth rate, feed conversion ratio, protein efficiency ratio and food intake were not significantly different (P > 0.05) among treatments and averaged 36 g, 302%, 100%, 1.6% day?1. 2.4,1.3, and 3.4% body weight, respectively. Whole-body compositions of fish were not significantly different (P > 0.05) among treatments and averaged 75%, 61% and 27% for percentage moisture, protein and fat, respectively. These data suggest that a diet with an all-plant protein source (SBM) can totally replace fish meal in a diet for blue catfish, without adverse affects on weight gain or body composition, when the dietary protein level is 35% and fish are fed to satiation.  相似文献   

10.
A comparative study was conducted on growth and protein requirements of channel catfish, Ictalurus punctatus, and blue catfish, Ictalurus furcatus. Four diets containing 24, 28, 32, or 36% protein were fed to both channel (initial weight 6.9 g/fish) and blue (6.6 g/fish) catfish for two growing seasons. There were significant interactions between dietary protein and fish species for weight gain and feed conversion ratio (FCR). No significant differences were observed in weight gain of channel catfish fed various protein diets, whereas higher protein diets (32 and 36%) resulted in better weight gain in blue catfish than lower protein diets (24 and 28%). No consistent differences were observed in the FCR of channel catfish fed various levels of dietary protein, whereas significantly higher FCRs were noted in blue catfish fed the 24 and 28% protein diets compared with fish fed 32 and 36% protein diets. Regardless of dietary protein levels, blue catfish had higher carcass, nugget, and total meat yield, and higher fillet moisture and protein, but lower fillet yield and fillet fat. Regardless of fish species, fish fed the 36% protein diet had higher carcass, fillet, and total meat yield than fish fed the 28 and 32% protein diets, which in turn had higher yields than fish fed the 24% protein diet. It appears that blue catfish can be successfully cultured by feeding a 32% protein diet.  相似文献   

11.
A growth study was conducted to determine the dietary niacin requirement of the Indian catfish, Heteropneustes fossilis (Bloch), fingerlings (Mean weight 9.41 ± 0.18 g). Semi‐purified diets with five levels (0, 5, 10, 20 and 40 mg kg?1 diet) of supplemental niacin were fed to H. fossilis for 15 weeks. Each diet was fed to three replicate groups of fish. Results indicated that the highest (P < 0.05) weight gain was for the fish fed the diet supplemented with 20 mg niacin kg?1, followed by fish fed the diets with 40, 10 and 5 mg niacin kg?1, and the lowest in fish fed the unsupplemented control diet. Patterns of specific growth rate (SGR) and protein efficiency ratio (PER) were similar to those of the weight gain. Survival of fish fed the control diet and niacin‐supplemented diet was 58% and 91–100% respectively. Niacin deficiency signs such as anaemia, anorexia, lethargy and skin haemorrhage were observed in fish fed the control diet. The haematocrit values (Ht) were higher (P < 0.05) in fish fed the diets supplemented with niacin than in fish fed the control diet. The hepatosomatic indexes (HSI) of fish fed with or without niacin‐supplemented diets were not significantly (P > 0.05) different from each other. Both body protein and lipid content were higher (P < 0.05) in fish fed the diet supplemented with 20 and 40 mg niacin kg?1, respectively, than those fish fed other diets. The niacin content in liver significantly (P < 0.05) reflected the supplementation level in the diet and ranged from 29.11 to 40.31 mg g?1 tissue. The associated liver niacin content for growth was about 47 μg g?1 tissue. Quadratic regression analysis showed that the dietary niacin requirement for maximal growth of H. fossilis under these experimental conditions was about 25 mg kg?1 diet.  相似文献   

12.
Juvenile channel catfish, Ictalurus punctatus (Rafinesque), blue catfish, I. furcatus (Lesueur), and their reciprocal Fl hybrids were fed practical diets containing 25% and 45% protein during a 10-week trial to determine the effects of genotype, dietary protein level and genotype X diet interactions on growth, feed conversion ratio (FCR), fillet proximate composition and resistance to the bacterium Edwardsiella ictaluri. Rankings of genotypes (best to worst) for absolute weight gain, percentage weight gain and FCR were: channel, channel female X blue male, blue, and blue female X channel male for the 25% protein diet; and channel, channel X blue, blue X channel, and blue for the 45% diet. Diet did not affect growth or FCR of channel catfish, but growth and FCR were better for blue catfish and both hybrids fed the 25% diet compared to those fed the 45% diet. Channel catfish additive genetic and maternal effects were favourable, and heterosis was negative for growth and FCR. After adjusting for effects of fish size, genotype had no effect on fillet composition. Fillet protein was higher for all genotypes, and fillet lipid was lower for blue catfish and hybrids fed the 45% diet than for fish fed the 25% diet. Genotype X diet interactions observed for growth, FCR and fillet lipid appeared to be a result of poor palatability of the 45% diet to blue catfish and hybrids. Survival (76-93%) and antibody levels (0.10-0.24 OD) after exposure to E. ictaluri at the end of the feeding trial were not affected by genotype or diet. Hybridization of blue catfish and channel catfish would not be an effective method for improving the traits measured for the fish strains and diets used in this study.  相似文献   

13.
Two experiments were conducted to evaluate various ingredient combinations in a 28% or 32% protein diet for optimum performance of channel catfish Ictalurus punctatus. All diets contained soybean meal and corn, but with or without cottonseed meal, wheat middlings or fish meal (FM). Channel catfish fingerlings were stocked into 0.04 ha earthen ponds at 18 530 fish ha?1. Fish were fed one of eight diets once daily to apparent satiation for two growing seasons. Results demonstrated that the dietary ingredient composition used had significant effects on fish performance, but magnitude of differences was relatively small. Overall, diets containing FM resulted in greater weight gain (Experiments 1 and 2) and lower feed conversion ratio (Experiment 1) than fish fed all‐plant diets. However, certain combinations of plant ingredients provided the similar fish growth as some diets containing FM. There were no significant differences in weight gain between fish fed soybean meal–corn or soybean meal–corn–wheat middlings‐based diets with cottonseed meal or FM. The use of wheat middlings in the diet had no significant effects on fish production characteristics.  相似文献   

14.
A feeding trial was performed to determine the effect of a commercial source of Yucca schidigera and Quillaja saponaria extracts (Nutrafito Plus®), in practical diets, on striped catfish Pangasianodon hypophthalmus growth, feed utilization, body composition, total ammonia‐nitrogen (TAN) excretion and haematological parameters. Four experimental diets were supplemented with Nutrafito Plus® at 0%, 0.01%, 0.02% and 0.03% (diets: control, N01, N02 and N03 respectively). Three replicate groups of striped catfish, with initial mean weight of 1.78 ± 0.05 g, were fed one of the four diets for 12 weeks. The specific growth rate (SGR) and final weight of fish fed diet N03 was significantly higher (P < 0.05) than fish fed the other dietary treatments. The growth performance of fish fed diets N01 and N02 were not significantly different compared to fish fed the control diet. Striped catfish fed diet N03 had improved feed conversion ratio (FCR), net protein utilization (NPU) and protein efficiency ratio (PER) than the control (< 0.05). The inclusion of the high dietary level of Yucca schidigera and Quillaja saponaria, diet N03, reduced TAN compared to all groups. Dietary inclusion of Yucca schidigera and Quillaja saponaria at all levels investigated did not affect the whole body proximate composition of the striped catfish (> 0.05). The packed cell volume (PCV) and haemoglobin level in fish fed diet N03 was significantly higher than in the fish fed the control diet. The present study demonstrates that dietary inclusion of Yucca schidigera and Quillaja saponaria induced positive effects on growth performance and haematological parameters and decreased TAN excretion in striped catfish.  相似文献   

15.
Abstract

A feeding trial was conducted to evaluate low-quality diets for growout of pond-raised channel catfish. Five practical diets containing various levels of protein (10-28%) of varying quality (with or without animal protein and/or soybean meal), and with or without certain nutrient supplements (vitamin, minerals, lysine, or fat) were fed to channel catfish, Ictalurus punctatusstocked in 0.04-ha earthen ponds at a rate of 17,290 fish/ha. The diets were as follows: (1) 28% protein, nutritionally complete control; (2) 28% protein without supplemental vitamins, minerals, or fat; (3) 18% protein + supplemental lysine, vitamins, and minerals, but without animal protein; (4) 10% protein without animal protein, soybean meal, or supplemental vitamins and minerals; and (5) 10% protein + supplemental lysine, vitamins, and minerals, but without animal protein or soybean meal. Each diet was fed once daily to apparent satiation to fish in five replicate ponds for a single growing season. Fish fed diets containing 18% or 28% protein without supplements had similar diet consumption rates and weight gain as those fed the 28% control diet, but the fish fed the control diet converted diet more efficiently. Fish fed the 10% protein diet without supplements consumed less diet, converted diet less efficiently, and gained less weight than fish fed diets containing higher levels of protein. The addition of supplements to the 10% protein diet increased weight gain and processing yield as compared to fish fed the 10% protein diet without supplements. Body fattiness increased, fillet protein decreased, and carcass, fillet and nugget yields decreased as dietary protein decreased. The data show that pond-raised channel catfish can be grown effectively on a diet containing 18% protein that is of relatively low quality, but fattiness is increased and processing yield is decreased. However, because of the negative aspects of this diet, we would not recommend it for general use in commercial catfish culture. It could be used where fattiness and processing yield are not of consequence, such as recreational ponds. For that matter, the 10% diet without supplements could be used as well in these situations if maximum growth is not desired.  相似文献   

16.
A study was conducted in earthen ponds to investigate the effects of available lysine (AL) concentrations in 28 and 32% protein diets on production and processing characteristics, proximate composition, and lysine concentrations in the fillet of channel catfish, Ictalurus punctatus. Diets were formulated to contain 28% protein with 1.22 and 1.43% AL, and 32% protein with 1.43 and 1.63% AL, which were equivalent to 4.37, 5.1, 4.46, and 5.1% AL of protein, respectively. Fingerlings with a mean initial weight of 32 g/fish were stocked into 20 ponds (0.04 ha) at 19,760 fish/ha. Fish were fed once daily to apparent satiation for 181 days. No significant differences were observed for total diet fed, net yield, weight gain, survival, or fillet proximate composition among dietary treatments. However, the 28% protein with low AL diet (1.22% AL of diet or 4.37% AL of protein) resulted in significantly lower carcass and fillet yield and fillet lysine level compared with fish fed the 28% protein diet with 1.43% AL (5.1% AL of protein) and 32% protein diets with 1.43 and 1.63% AL (4.47 and 5.1% AL of protein). Results suggest 1.43% AL of diet is adequate for both 28 and 32% protein diets for optimum growth, processing yield, and lysine retention in fillets for pond-raised channel catfish.  相似文献   

17.
An 8-week growth trial was conducted to assess the effect of dietary protein on growth, feed utilization, protein retention efficiency, and body composition of young Heteropneustes fossilis (10.02 ± 0.09 g; 9.93 ± 0.07 cm). Isocaloric (4.15 kcal g−1, GE) diets with varying levels of protein (25, 30, 35, 40, 45, and 50% of the diet) were fed near to satiation to triplicate groups of fish. Optimum dietary protein was determined by analyzing live weight gain (LWG%), feed conversion ratio (FCR), protein efficiency ratio (PER), specific growth rate (SGR%), and protein retention efficiency (PRE%) data. Maximum LWG% (167), best FCR (1.42), PER (1.75), SGR (1.76), and PRE (31.7%) were evident in fish fed 40% protein diet (Diet 4). Body protein data also supported the above level. However, second-degree polynomial regression analysis of the above data indicated that inclusion of dietary protein in the range of 40–43% is optimum for the growth of young H. fossilis.  相似文献   

18.
The present study was based on a 2 × 4 factorial design with two levels of dietary protein (33% or 37% CP) and four phytase levels (0.0, 750, 1,000, and 1,250 FTU/kg diet). African catfish, Clarias gariepinus (B.) (10.7 ± 0.4 g), were distributed into earthen ponds (100 m2 surface area per each) at a density of 4.5 fish per m2. Fish were fed on the experimental diets up to satiation twice a day for 3 months. Another experiment with the same treatments was conducted in 45-L tanks for 2 months to evaluate nutrient retention and digestibility. The growth and production of African catfish fed phytase-enriched diets were higher than those fed the control diet. The highest fish performance and production was observed with fish fed 37% CP enriched with a 1,200 FTU/kg diet of phytase. Feed intake was significantly affected by supplemental phytase alone, where it increased significantly as dietary phytase increased at both protein levels, resulting in similar FCR values (1.31–1.46). Additionally, the maximum values of protein efficiency ratio, protein retention, and phosphorus retention were obtained at 33% CP with phytase levels of 750–1,000 FTU/kg diet. It is also noticed that organic matter, protein, and phosphorus were more digestible in fish fed a 37% CP diet with high phytase levels. These results suggest that the optimum performance and production of African catfish were observed at a 37.0% CP diet enriched with a phytase level of 1,200 FTU/kg diet.  相似文献   

19.
Asian catfish, Clarias batrachus, were fed semi-purified basaldiets containing 0, 0.1, 0.5, 1, 3 and 5 mg biotin kg–1diet for 60 days. Fish fed the control diet (no biotin) showed(P < 0.05) higher mortality, lower weight gain, specificgrowth rate (SGR), feed efficiency ratio (FER) and protein efficiencyratio (PER) than in fish fed diets supplemented with biotin. The highestweight gain, SGR, FER and PER were noticed in fish fed 1 mg biotinkg–1, followed by 0.5, 5, 3 and 0.1 mg biotinkg–1, except for PER (followed by 0.5, 5, 0.1 and 3 mgbiotin kg–1). Quadratic analysis showed that the optimumdietary biotin requirements for maximal weight gain, PER and PER were2.49, 2.54 and 2.52 mg kg–1, respectively. Liver biotinconcentrations were influenced by levels of biotin in the diet.Concentration of liver biotin increased as level of dietarysupplementation increased and no biotin was detected in the liver of thecontrol fish. Liver pyruvate carboxylase and acetyl CoA carboxylaseactivities were higher in fish fed biotin-supplemented diets than incontrols. Biotin concentrations, pyruvate carboxylase and acetyl CoAcarboxylase activities in liver associated with normal growth rangedfrom 10.59 to 10.66 g g–1, 147.97 to 148.18 units mgprotein–1 and 12.76 to 12.78 units mg protein–1, respectively. Biotin deficiency symptoms such as anorexia, darkskin colour and convulsions were observed in fish fed the control diet.The optimum dietary biotin requirement for maximal growth of C.batrachus is about 2.49 mg kg–1 diet.  相似文献   

20.
This study was performed to evaluate the effect of replacing fish meal with local by‐products on Clarias gariepinus growth performance, feed utilization and body composition. A control diet contained 50% of fish meal. In four other diets, fish meal was partially replaced by vegetable and animal protein blend composed of sunflower oil cake, soybean oil cake, groundnut oil cake, bean meal, chicken viscera and blood meal. The study was conducted in a recirculating water system at a mean temperature of 23.6°C. The five test diets were compared with a commercial diet developed for African catfish. All diets were balanced to be equal in gross energy (19 kJ g−1) and crude protein (40%). The experimental groups were fed in triplicate for 8 weeks, increasing fish weight from about 6.2 g at start to 52.3 g in the end. Best specific growth rate (SGR=3.4), feed efficiency (FE=1.3) and protein efficiency ratio (PER=3) were obtained with the control diet (diet 50% fish meal), although there were no significant differences between the group of fish fed the control diet and those fed diets based on groundnut oil cake or bean meal, whereas SGR (2.17), FE (0.85) and PER (1.95) were significantly (P<0.01) lower in fish fed diet containing sunflower oil cake. No significant differences (P<0.05) were found in fish fed commercial diet and diets containing bean meal or groundnut oil cake. Groundnut oil cake or bean meal can thus replace at least 50% of fish meal in the diet of Clarias fingerlings without amino acid supplementation. Because of its economic importance and its potential in animal nutrition sunflower oil cake is still an interesting feed ingredient, but its efficiency should be improved by various processing techniques. African catfish can utilize efficiently a diet with low percentage of animal protein without growth reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号