首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The provision of grass for early spring grazing in Ireland is critical for spring calving grass‐based milk production systems. This experiment investigated the effect of a range of autumn closing dates (CD), on herbage mass (kg DM ha?1), leaf area index (LAI) and tiller density (m?2) during winter and early spring. Thirty‐six grazing paddocks, closed from 23 September to 1 December 2007, were grouped to create five mean CD treatments – 29 September, 13 October, 27 October, 10 November, 24 November. Herbage mass, tiller density and LAI were measured every 3 weeks from 28 November 2007 to 20 February 2008; additionally, herbage mass was measured prior to initial spring grazing and tiller density was measured intermittently until September 2008. Delaying CD until November significantly (P < 0·05) reduced herbage mass (by approximately 500 kg DM ha?1) and LAI (by approximately 0·86 units) in mid‐February. On average, 35% of herbage mass present on swards on 20 February was grown between 28 November and 30 January. LAI was positively correlated with herbage mass (R2 = 0·78). Herbage mass increased by approximately 1000 kg DM ha?1 as spring grazing was delayed from February to April. Tiller density increased from November to February, although it did fluctuate, and it was greatest in April (9930 m?2). This experiment concludes that in the south of Ireland adequate herbage mass for grazing in early spring can be achieved by delaying closing to early mid‐October; swards required for grazing after mid‐March can be closed during November.  相似文献   

2.
A small‐plot experiment was conducted in south‐west Ireland to investigate (i) the effects of pre‐closing regrowth interval and closing date on dry‐matter (DM) yield and sward structural and composition characteristics, during the autumn–winter and spring opening periods, and (ii) subsequent carryover effects. The study used a randomized block design with a factorial arrangement of treatments (4 closing dates × 2 opening dates) with a split plot (two pre‐closing regrowth intervals). The long pre‐closing (LPC) interval began on 9 August, and the short pre‐closing interval (SPC) started on 15 September. The autumn closing dates were as follows: 1 October (CD1), 15 October (CD2), 1 November (CD3) and 14 November (CD4). Plots were defoliated again on 1 February (EOD) or 1 March (LOD). On the LPC treatment, herbage yield increased from CD1 (2463 kg DM ha?1) to CD3 (3185 kg DM ha?1). On the SPC treatment, herbage yield was similar for CD3 and CD4, indicating a ceiling in herbage accumulation. For each 1‐d delay in closing date between CD1 and CD4, the opening herbage yield was reduced by 10 kg DM ha?1. Herbage quality decreased as the closing date was delayed; DMD and CP decreased by 0·06 and 12 g kg DM?1, respectively, between CD1 and CD4. The EOD resulted in increased leaf and decreased dead proportions over the LOD treatments. A balance between autumn CD and spring OD needs to be achieved to ensure a sufficient supply of high‐quality grass in spring.  相似文献   

3.
The objective of this study, which was part of a larger grazing‐systems experiment, was to investigate the cumulative impact of three levels of grazing intensity on sward production, utilization and structural characteristics. Pastures were grazed by rotational stocking with Holstein–Friesian dairy cows from 10 February to 18 November 2009. Target post‐grazing heights were 4·5 to 5 cm (high; H), 4 to 4·5 cm (intermediate; I) and 3·5 to 4 cm (low; L). Detailed sward measurement were undertaken on 0·08 of each farmlet area. There were no significant treatment differences in herbage accumulated or in herbage harvested [mean 11·3 and 11·2 t dry matter (DM) ha?1 respectively]. Above the 3·5 cm horizon, H, I and L swards had 0·56, 0·62 and 0·67 of DM as leaf and 0·30, 0·23 and 0·21 of DM as stem respectively. As grazing severity increased, tiller density of grass species other than perennial ryegrass (PRG) decreased (from 3,350 to 2,780 and to 1771 tillers m?2 for H, I and L paddocks respectively) and the rejected area decreased (from 0·27 to 0·20 and to 0·10 for H, I and L paddocks respectively). These results indicate the importance of grazing management practice on sward structure and quality and endorse the concept of increased grazing severity as a strategy to maintain high‐quality grass throughout the grazing season. The findings are presented in the context of the need for intensive dairy production systems to provide greater quantities of high‐quality pasture over an extended grazing season, in response to policy changes with the abolition of EU milk quotas.  相似文献   

4.
Under Irish conditions, the digestibility in May of grass managed for silage production is sometimes lower than expected. In each of two successive years, replicate field plots were established to examine the effects of three defoliation heights (uncut or cut to a stubble height of 10 or 5 cm) applied in winter and/or spring on herbage yields harvested in May and again in July, and on chemical composition and conservation characteristics associated with first‐cut silage. Swards that were not defoliated in December or March had a dry‐matter (DM) yield and in vitro DM digestibility (DMD) in mid‐May of 6597 kg ha?1 and 736 g kg?1, respectively, in Year 1, and corresponding values of 7338 kg ha?1 and 771 g kg?1 in Year 2. Defoliating swards to 5 cm in December reduced (P < 0·001) May DM yields compared to swards that were not defoliated in both December and March, while herbage DMD in May increased (P < 0·001) when defoliated in December or March. There were no clear effects of defoliation height or its timing on herbage ensilability or resultant conservation efficiency characteristics. The effects of defoliation on July yield were the reverse of those observed for May, while the total yield of the December and March defoliations plus the two silage harvests increased as defoliation height was lowered in Year 2 only. It is concluded that defoliation in winter and/or spring can increase herbage digestibility but will likely reduce DM yields in May.  相似文献   

5.
The present study highlights the effects of sheep grazing and precipitation on herbage and animal performance in a grazed steppe of Inner Mongolia. Experimental data were collected during grazing periods of four consecutive years (2005–2008), and effects were analysed across a gradient of seven grazing intensities. Variation in annual precipitation, reflected by the effect of ‘year’, was the major factor affecting herbage; i.e., the production and nutritive value of herbage increased with increasing precipitation. Herbage parameters were also affected by grazing intensity, as herbage production (HP) and herbage nutritive yields decreased, while herbage nutritive values increased with increasing grazing intensity. The grazing‐induced decrease in herbage nutritive yields suggests that decreases in HP offset the positive effect of grazing on the nutritive value. Liveweight gain (LWG) was predominantly affected by grazing intensity, as LWG per sheep and per ha decreased and increased, respectively, with increasing grazing intensity. However, responses varied among years: LWG per sheep was maximized by light grazing in the drought year and by moderate grazing the wet year. Our results showed that herbage shortage at high grazing intensities reduces LWG per sheep and thus diminishes responses in LWG per ha. Nevertheless, the highest grazing intensity provides highest animal production per ha in the short term; however, this is not sustainable in the mid‐ and long term because decreasing HP induces degradation processes. Based on our results, a reduction in grazing intensity that still provides 78% of the maximum LWG per ha meets the requirements of a sustainable grazing management.  相似文献   

6.
The relative contribution of tillers present in April and those appearing in consecutive periods in spring was assessed for perennial ryegrass cultivars in the three maturity groups (early, intermediate‐ and late‐heading). Each group was represented by two diploid and one tetraploid cultivar each in plots in their third (2000) and fourth (2001) harvest years in three replicated blocks receiving an average of 325 kg N ha?1 and cut seven (in 2001) or eight (in 2000) times annually. ‘Main’ tillers and their daughters were marked with colour‐coded PVC‐covered wire loops in early April as were daughters which appeared in consecutive periods between harvests, the loop colour identifying the period of origin of the tiller. Tillers were harvested at cutting height (5 cm) before the plots were harvested and the herbage from tillers with the same colour code bulked per plot. Tillers were identified retrospectively as ‘reproductive’ if they had been decapitated at the previous harvest. Dry‐matter yield was higher in the early than late‐heading cultivars in April and early May but this was reversed in harvests in late May and June. The early heading group had a lower lamina content than the late‐heading group during reproduction growth, both due to the reproductive tillers (mainly those which overwintered) having a lower leaf content and to their being fewer and smaller vegetative tillers during the reproductive phase than for the late‐heading group. Turnover of tillers was high in spring due to decapitation of reproductive tillers and rapid post‐flowering tillering. This was particularly pronounced in the early heading group which also had slightly more tillers marked in April which were subsequently decapitated than in the other maturity groups, i.e. 0·56 compared with 0·44 for the late‐maturing group. Mean ratios of rate of death: rate of tillering for 3 years (1999–2001) for the early and late‐heading groups were 0·8 and 0·4, respectively, for April–May and 1·1 and 2·4, respectively, for June indicating the different patterns in tiller turnover for the two extreme maturity groups. Information on tiller origin and contribution to yield can be used to refine tiller‐based grass growth models.  相似文献   

7.
Three cultivars (two diploid and one tetraploid) in each of three maturity groups (early, intermediate and late) of perennial ryegrass were sown in 10 m2 plots, replicated four times, in Northern Ireland in June 1997 in a study of the effect of heading date on tiller development (including initiation to flower) and turnover of tillers produced at specific times in spring in 1998 and 1999. The plots were harvested seven times in each year. Annual dry‐matter production was similar for all groups in each year. In spring and early summer of both years, tiller density of the diploid cultivars was 1·5 times greater than that of the tetraploid cultivars and the mean tiller density over all swards in June was about 0·40 times greater than that in April. Maximum proportions of reproductive tillers in the early, intermediate and late maturity groups, determined from apical dissections, were found in early April, mid‐May and early June, respectively. Although a high proportion of tillers, which were present when annual observations commenced in spring, was decapitated at the first harvest in the early group, the previous population density was maintained by rapid production of new tillers during May, including those from suppressed tiller buds during reproduction. It is concluded that the relationship between heading date and rate of tiller turnover (including flowering) at specified times in spring is important in sward management throughout the early part of the growing season and should be taken into account in tiller‐based grass growth models.  相似文献   

8.
A cut plot experiment was undertaken at two sites in Ireland, one a free‐draining acid brown earth at Moorepark (MPK) and the other a fine loam soil with imperfect drainage at Johnstown Castle (JC). The effect of applying the nitrification inhibitor dicyandiamide (DCD) at 10 kg ha?1 in July, August and September or not applying DCD to plots receiving synthetic urine or zero urine on spring and annual herbage production was examined. In the experiment, each site received 350 kg nitrogen (N) fertilizer ha?1 year?1. The application of DCD in August at a rate of 10 kg ha?1 significantly increased spring and annual herbage production by 14 and 15%, respectively, at MPK, when applied following urine application in year 1. There was no effect of DCD applied in year 1 on herbage production at JC. The application of DCD in August resulted in lower soil total oxidized N (TON) content up to sampling day 56 post‐urine application, at MPK in year 1, retaining higher N content in the soil. There was no effect of DCD on any of the parameters measured in year 2 at MPK or at JC. Urine application did not increase spring herbage production at either site. Urine application significantly increased annual herbage production at MPK only in year 1. Urine application increased annual herbage N uptake, herbage crude protein (CP) content and soil mineral N at both sites in both years.  相似文献   

9.
Reduction of grazing intensity and the use of traditional instead of commercial breeds has frequently been recommended to meet biodiversity and production goals in sustainable grazing systems in Europe. To test the impact of such practices across a range of contrasting grassland types, integrated measurements of foraging behaviour, agronomic production and botanical, structural and invertebrate biodiversity were made over three years on four sites in the UK, Germany, France and Italy. The sites in the UK and Germany were mesotrophic grassland with high productivity and low to moderate initial levels of plant diversity, and were grazed by cattle. The French site was a semi‐natural, species‐rich grassland grazed by cattle. The Italian site contained a wider range in plant diversity, from species‐rich to mesotrophic grassland, and was grazed by sheep. The treatments were: MC, moderate grazing intensity with a commercial breed – this was designed to utilize herbage growth for optimum livestock production; LC, lenient grazing intensity with a commercial breed – this was designed to increase biodiversity by not fully utilizing herbage growth; and LT, lenient grazing intensity with a traditional breed – this was also designed to increase biodiversity. Neither fertilizers nor pesticides were applied. The nutritive value of the herbage and the performance of the livestock were measured. Mean stocking rates were proportionately 0·30–0·40 lower and mean sward heights and herbage mass on offer were 0·30–0·50 higher on the LC and LT treatments compared with the MC treatment. The proportion of live and dead material, and leaves and stems in the herbage, its chemical composition and nutritive value were little affected by the treatments. Individual livestock performance, measured as liveweight gain, showed no consistent response to treatment. In Germany, performance on the MC treatment was slightly lower than on the LC and LT treatments but no such difference was found on the sites in the other countries. Livestock breed did not have a strong effect on livestock performance. In the UK and France the traditional breeds had a lower performance but this was not the case in Germany or Italy. Livestock performance per ha of the LC and LT treatments was up to 0·40 lower than of the MC treatment. It is concluded that biodiversity‐targeted extensive grazing systems have potential to be integrated into intensive livestock production systems because the individual livestock performance reaches a similar level compared to a moderate grazing intensity. Traditional breeds did not have a production advantage over commercial breeds on extensively managed pastures.  相似文献   

10.
Four perennial ryegrass (Lolium perenne L.) cultivars were compared for differences in herbage production, nutritive value and herbage intake of dry matter (DM) during the summers of 2002 and 2003. Two paddocks were sown with pure stands of four cultivars in a randomized block design with three replicates. Each plot was subdivided into fourteen subplots (22 m × 6 m) which were grazed by one cow during 24 h. Twelve lactating dairy cows were assigned to one cultivar for a period of 2 weeks in a 4 × 4 Latin square experimental design; the experiment lasted 8 weeks in each year. Sward structure (sward surface height, DM yield, green leaf mass, bulk density and tiller density) and morphological characteristics were measured. The ash, neutral‐detergent fibre, acid‐detergent lignin, crude protein and water‐soluble carbohydrate concentrations, and in vitro digestibility of the herbage were measured. The sward was also examined for infestation by crown rust (Puccinia coronata f. sp. lolii). Herbage intake of dairy cows was estimated using the n‐alkane technique. Cultivar differences for all sward structural characteristics were found except for bulk density and tiller density in 2003. Cultivars differed for proportions of pseudostem, stem (in 2003 only) and dead material. The chemical composition of the herbage was different among cultivars, with the water‐soluble carbohydrate concentration showing large variation (>0·35). Cultivars differed in susceptibility to crown rust. Herbage intake differed among cultivars in 2002 (>2 kg DM) but not in 2003. Herbage intake was positively associated with sward height, DM yield and green leaf mass. Canopy morphology did not affect herbage intake. Crown rust affected herbage intake negatively. It was concluded that options for breeders to select for higher intake were limited. High‐yielding cultivars and cultivars highly resistant to crown rust were positively related with a high herbage intake.  相似文献   

11.
The effects of one severe winter‐grazing of lucerne were studied over 3 years in an experiment in the Ebro Valley, Spain. In this region the crop is harvested six to seven times per season and winter grazing is a traditional practice. On average, winter‐grazing reduced the yield at the first harvest in spring by 200 kg dry matter (DM) ha?1. This limited yield reduction of 0·06 was accompanied by an increase in the proportion of lucerne in the herbage DM from 0·54 to 0·62, a reduction in the proportion of weeds from 0·39 to 0·36, and a reduction in the proportion of dead material from 0·06 to 0·02. The crude protein concentration and the in vitro DM digestibility increased by 20 g kg?1 DM and 0·03, respectively. The traditional practice, i.e. of grazing lucerne with sheep once in the winter season, results in only a limited reduction in yield in the spring. In addition, the spring crop has a higher nutritive value.  相似文献   

12.
There is limited information on the effects of the increase in the density of shrubs on herbage production and nutritive value of natural grasslands in the Mediterranean region, currently facing major land use changes. Herbage production of drymatter (herbaceous fractions, of plant functional groups and by species), crude protein (CP), neutral‐detergent fibre (NDF), acid‐detergent fibre (ADF), acid‐detergent lignin (ADL) and hemicellulose concentrations and in vitro organic matter digestibility were determined at the time of peak of annual growth across four types of grassland vegetation each characterized by different shrub cover regimes. A sharp reduction in herbage production and a reduction in nutritive value were found as a result of the increase in shrub cover. These changes appeared to be closely related to the shift in plant functional groups detected as shrub density increased. Herbage production from grasses and legumes was found to be more sensitive to shrub cover changes than herbage production from forbs, whereas, as grassland types became denser, annual species were gradually replaced by perennials and C4 grasses by C3 ones. The impact of shrub encroachment on Mediterranean grasslands is discussed in relation to their use by livestock.  相似文献   

13.
Stress and recovery of hill pastures in the North Island of New Zealand   总被引:2,自引:0,他引:2  
Moisture and treading treatments were imposed on intact turves that were relocated to a glasshouse after being removed from three hill pastures of different soil fertility in the North Island of New Zealand. The experiment consisted of a 2‐month stress phase, where the treatments were wetting (W), wetting and treading (WT), drying (D) and control (C). In this phase, herbage accumulation rate, tiller density and leaf extension rate were lower on the D turves, and herbage accumulation rate and tiller density were lower on the WT turves than for the C turves. Herbage accumulation rate was higher on the W treatment than on the C treatment. In the 2‐month recovery phase, herbage accumulation rate and leaf extension rate on the D turves were higher than those of the C treatment. Herbage accumulation rate and tiller density took longer to recover on the WT turves but by the end of the recovery period tiller density on these turves exceeded that of the C turves and the original tiller densities on the WT turves. Changes (increase or decrease) in leaf extension rate were associated with the W treatment and tiller density with the WT treatment. Moisture was limiting on the D and C turves, but on the W and WT turves, where moisture was adequate for plant growth, nutrients were limiting, notably phosphorus on the W and WT turves and sulphur on the W turves. The D treatment turves recovered very quickly once the stress was removed but the WT turves were slower to recover. Under the experimental conditions applied, the hill pasture turves were more resilient to the drying treatment than the wetting and treading treatment.  相似文献   

14.
The impact of manipulating ruminal fill (RF) on intake rate of herbage and grazing dynamics was measured with three rumen‐cannulated beef heifers grazing Bermudagrass pastures individually. The treatments compared were removal of proportions of rumen contents of 0 (treatment RF0), 0·33 (treatment RF33), 0·66 (treatment RF66) and 1·00 (treatment RF100). Treatments were randomly applied in a 3 × 4 Youden‐square design. The rumens were emptied before and after planned grazing sessions (30 min) to set up the treatments, and to estimate intake rate and bite mass, respectively. Measurements were made of bite rate, bites per feeding station, feeding stations per minute, intake per feeding station, time per feeding station, eating and searching step rates and times. Apparent bite area and area grazed per feeding station were calculated. Ruminal fill affected short‐term intake rate and changed grazing dynamics. As RF increased, step rates, searching times, bite mass, apparent bite area, bites per feeding station, area grazed per feeding station, time per feeding station and intake per feeding station decreased (P < 0·01) while step times, eating step rates and bite depth increased (P < 0·01). The results of the present study indicate that RF is an important factor governing the intake characteristics and behaviour of grazing beef heifers.  相似文献   

15.
Perennial ryegrass (Lolium perenne L.) infected with a novel endophyte (AR37 or AR1), Wild‐type endophyte or no endophyte (Nil) was sown with white clover (Trifolium repens L.) in autumn 2005. The pastures were rotationally grazed by dairy cows from 2005–2009. Annual dry matter (DM) yield did not differ but AR37 pastures had a higher ryegrass tiller density, especially after the 2008 summer drought (+130%), and less white clover than did AR1 pastures. Concentrations of alkaloids produced by the Wild‐type association (lolitrem B, ergovaline) followed the same seasonal trends as did the AR37 alkaloids (epoxy‐janthitrems) but summer drought reduced concentrations of lolitrem B and epoxy‐janthitrems to less than half the mid‐summer (February) peak concentrations in the other years. Insect pests were monitored annually between 2006 and 2009. Tiller damage by Argentine stem weevil (Listronotus bonariensis (Kuschel)) was significantly reduced by all endophyte treatments. African black beetle (Heteronychus arator (F.)) populations in soil samples increased during the experiment with Nil > AR1 > Wild‐type = AR37. Root aphid (Aploneura lentisci (Pass.)) infestations followed the pattern AR1 > Nil > Wild‐type = AR37. A lower pest pressure from all insect pests in AR37 pastures is likely to have contributed to this treatment having the highest ryegrass tiller densities.  相似文献   

16.
A perennial ryegrass (Lolium perenne L.)‐dominated sward on a well‐drained soil (Experiment 1) and a creeping bent (Agrostis stolonifera L.)‐dominated sward on a poorly drained soil (Experiment 2) were subjected to four treading treatments: control (C, no damage), light damage (L), moderate damage (M) or severe damage (S) to quantify the effects on herbage dry‐matter (DM) production and tiller density. In Experiment 1, treading damage was imposed in spring. In Experiment 2, one‐third of the site was damaged in autumn, one‐third in spring and one‐third in both spring and autumn. Both sites were rotationally grazed after treading treatments. Pre‐grazing herbage mass was measured eight times in Experiment 1 and seven times in Experiment 2 on each plot, and tiller density was assessed four times in each experiment. In Experiment 1, pre‐grazing herbage mass was reduced by 30% in S plots at the first harvest after damage, but cumulative pre‐grazing herbage DM production was not different between treatments (12·7 t DM ha?1). In Experiment 2, annual cumulative pre‐grazing herbage mass was reduced by between 14 and 49%, depending on intensity of treading damage event and season when damage occurred. Tiller density was not affected by treatment in either experiment. A perennial ryegrass‐dominated sward on a well‐drained soil was resilient to heavy treading damage. A creeping bent‐dominated sward on poorly drained soil requires a more careful grazing management approach to avoid major losses in cumulative pre‐grazing herbage mass production during wet weather grazing events.  相似文献   

17.
This study investigated the effect of ewe prolificacy potential (PP; predicted number of lambs born ewe?1 year?1), stocking rate (SR; ewes/ha) and their interaction on herbage dry matter (DM) production, utilization, quality and sward morphology within a temperate grass‐based lamb production system. The study had a 2 × 3 factorial design, consisting of two ewe PP as dictated by sire breed (180 medium prolificacy potential (MP—Suffolk crossbred) and 180 high prolificacy potential ewes (HP—Belclare crossbred)) and three SR: low (LSR; 10 ewes/ha), medium (MSR; 12 ewes/ha) and high (HSR: 14 ewes/ha). Each treatment was managed in a rotational grazing system, with LSR, MSR and HSR treatments grazing to target post‐grazing sward heights (PGSH) of 4.55, 4.15 and 3.75 cm respectively. Herbage DM production (above target PGSH) and utilization were highest at the HSR, intermediate at the MSR and lowest at the LSR (p < .001). Ewe PP had no effect on herbage DM production, utilization, quality or sward morphology (p > .05). The proportion of leaf in the sward (above target PGSH) was 4% greater in MSR and HSR compared with LSR (p < .05). In conclusion, findings demonstrate the potential to support increased ewe PP through the selection of ewe genotypes of a genetically higher PP and lower mature live weight and increased SR within a temperate grass‐based lamb production system.  相似文献   

18.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

19.
Despite low net grass growth rates in Ireland between mid-November and February, tissue continuously turns over as new leaves are produced and older leaves senesce. The effects of closing swards from grazing on three dates in autumn (1 September, 20 September and 10 October) on tissue turnover in a perennial ryegrass sward during the winter were examined at two sites in the north-east and south of Ireland. Leaf extension and senescence rates were greater in the south than in the north-east, and were greatest on the earliest closing date at both sites. Leaf appearance and extension rates at both sites were closely correlated with accumulated daily air temperature above 6°C and mean soil temperature. Site-specific factors also influenced tissue flux, possibly including grazing intensity at closing and density of tillers of perennial ryegrass. Swards in the autumn with high herbage masses [>2000 kg dry matter (DM) ha−1 approximately] and high leaf area index (LAI; about 2·5 and above) had the greatest leaf senescence rates and the greatest declines in herbage mass during the winter. Leaf senescence rates per tiller in high LAI swards were correlated positively with amount of leaf per tiller and also the proportion of green leaf in the second youngest expanding leaf lost to senescence. As potentially a complex of interactive factors influences tissue flux in winter, it is proposed that the data from this study be used in conjunction with other data to construct a dynamic model to predict more reliably optimum closing date in autumn for herbage utilization in winter.  相似文献   

20.
Milk fatty acids (FA) were compared in mid‐lactation dairy cows in four feeding systems combining grazing management and supplementation. The four treatments were factorial combinations of compressed herbage grazed to 3·7 or 4·6 cm post‐grazing height, with or without concentrate feeding (3·6 kg cow?1 d?1). Milk yield and composition were measured for four groups of eight Friesian × Jersey dairy cows over 3 weeks in mid‐lactation for cows that had grazed treatments for 64 d from early spring. Milk yield was higher in cows fed concentrate plus herbage (23·9 kg d?1 cow?1) than cows fed herbage only (20·3 kg d?1 cow?1). Milk fat percentage was higher in cows fed herbage only (5·5%) than that fed herbage plus concentrate (5·1%). Milk protein percentage was higher in cows fed herbage plus concentrate (4·0%) than that fed herbage only (3·7%). The concentrations of conjugated linoleic acids c9, t11, C18:0, C18:1 t11 and C18:2 t9, c12 FA were lower where concentrate was fed. The concentrations of C18:1 t10, C18:1 t5, t8 and C18:2 c9, c12 FA were higher where concentrate was fed. The concentrations of C18:1 c6, C18:1 c9, C18:1 t9 and C18:3 c6,9,15 were unaffected by concentrate feeding. Post‐grazing herbage height had no significant effect on milk yield or concentration of milk FA. Provided dairy cows are harvesting leafy material of similar nutrient and FA concentration, post‐grazing herbage height does not appear to alter milk FA and the supply of high energy concentrates is more influential on milk FA profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号