首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
针对传统的目标检测方法依赖人工提取特征,存在检测效率低、鲁棒性差和实时性差等缺陷。本文根据刺梨果实在自然环境中的生长特点,采用带有残差模块的YOLO v3神经网络进行刺梨果实识别模型的训练,该网络通过提取不同卷积层的特征图,将深层特征图进行上采样后与浅层特征图进行多次融合,以提取图像的更深层次的特征信息。通过对该网络的相关参数进行优化和改进,并对未参与模型训练的70幅刺梨图像进行检测,实验表明,本文算法能够有效地对自然环境下的11类刺梨果实进行识别,各类识别平均准确率为88.5%,平均召回率为91.5%,F_1平均值为89.9%,识别速率约为20 f/s。本文算法在刺梨果实的识别上取得了理想的识别效果。  相似文献   

2.
在复杂自然环境下完成桑树枝干识别是实现桑叶采摘机智能化的关键部分,针对实际应用中光照条件变化多、桑叶遮挡和桑树分枝多等问题,提出一种基于深度学习的复杂自然环境下桑树枝干识别方法。首先,采用旋转、镜像翻转、色彩增强和同态滤波的图像处理方法扩展数据集,以提高模型的鲁棒性,通过Resnet50目标检测网络模型以及相机标定获得照片中所需的桑树枝干坐标,通过试验发现当学习率设置为0.001,迭代次数设置为600时模型的识别效果最优。该方法对于复杂自然环境中的不同光照条件具有良好的适应性,能够对存在多条分支以及被桑叶遮挡的桑树枝干进行识别并获取坐标信息,识别准确率达到87.42%,可以满足实际工作需求。  相似文献   

3.
基于多源图像融合的自然环境下番茄果实识别   总被引:1,自引:0,他引:1  
蔬果采摘机器人面对的自然场景复杂多变,为准确识别和分割目标果实,实现高成功率采收,提出基于多源图像融合的识别方法。首先,针对在不同自然场景下单图像通道信息不充分问题,提出融合RGB图像、深度图像和红外图像的多源信息融合方法,实现了机器人能够适应自然环境中不同光线条件的番茄果实。其次,针对传统机器学习训练样本标注低效问题,提出聚类方法对样本进行辅助快速标注,完成模型训练;最终,建立扩展Mask R-CNN深度学习算法模型,进行采摘机器人在线果实识别。实验结果表明,扩展Mask R-CNN算法模型在测试集中的检测准确率为98.3%、交并比为0.916,可以满足番茄果实识别要求;在不同光线条件下,与Otsu阈值分割算法相比,扩展Mask R-CNN算法模型能够区分粘连果实,分割结果清晰完整,具有更强的抗干扰能力。  相似文献   

4.
夜间自然环境下荔枝采摘机器人识别技术   总被引:5,自引:0,他引:5  
利用机器视觉实现自然环境下成熟荔枝的识别,对农业采摘机器人的研究与发展具有重要意义。本文首先设计了夜间图像采集的视觉系统,然后选取了白天和夜间两种自然环境下采集荔枝图像,分析了同一串荔枝在白天自然光照与夜间LED光照下的颜色数据,确定了YIQ颜色模型进行夜间荔枝果实识别的可行性。首先选择夜间荔枝图像的I分量图,利用Otsu算法分割图像去除背景,然后使用模糊C均值聚类算法分割果实和果梗图像,得到荔枝果实图像;再利用Hough圆拟合方法检测出图像中的各个荔枝果实。荔枝识别试验结果表明:夜间荔枝图像识别的正确率为95.3%,识别算法运行的平均时间为0.46 s。研究表明,该算法对夜间荔枝的识别有较好的准确性和实时性,为荔枝采摘机器人的视觉定位方法提供了技术支持。  相似文献   

5.
果实目标深度学习识别技术研究进展   总被引:1,自引:0,他引:1  
机器视觉技术是果实目标识别与定位研究的关键。传统的目标识别算法准确率较低、检测速度较慢,难以满足实际生产的需求。近年来,深度学习方法在果实目标识别与定位任务中表现出了优良的性能。本文从数据集制备与果实目标识别模型两方面进行综述,总结了数据集制备相关的有监督、半监督和无监督3种方法的特点,按照深度学习算法的发展历程,归纳了基于深度学习的果实目标检测和分割技术的常用方法及其实际应用,轻量化模型的研究进展及其应用情况,基于深度学习的果实目标识别技术面临的问题和挑战。最后指出基于深度学习的果实目标识别方法未来发展趋势为:通过弱监督学习来降低模型对数据标签的依赖性,提高轻量化模型的检测速度以实现果实目标的实时准确检测。  相似文献   

6.
深度学习是利用神经网络分析样本数据的内在特征和表达层次,学习具有多个抽象层次的数据表示的机器学习技术.本文概述了近年来深度学习技术在水果识别、农作物病害识别、农作物虫害识别、田间杂草识别、目标农作物定位等农作物检测识别领域内的研究进展,分析了目前深度学习技术存在的理论、建模、环境、成本及应用问题,提出了算法优化、应用多...  相似文献   

7.
自然环境下重叠果实图像识别算法与试验   总被引:7,自引:0,他引:7  
针对非结构化自然环境中光照变化和对象重叠特征等外界因素给图像处理带来的难题,提出了一种自然环境下重叠果实的图像识别与边界分割的组合优化算法。该组合优化算法首先对原始图像进行噪声滤波处理,然后利用Sobel算子以及改进算子的最大类方差法(OTSU)来辨识重叠果实目标;接着采用K-means算法对重叠目标的像素进行聚类得到单个目标位置,再结合边缘检测结果的连通域分析及区域生长获得单个目标边界的大致区域;最后利用基于限制区域的分水岭算法,得到目标的精确边界。为了验证所提算法的有效性和适应性,进行了试验研究。试验结果表明:所提出的组合优化算法不仅可以在自然环境下从重叠物体图像背景中识别出重叠目标,而且还可以从重叠目标中分割出单个目标的精确边界。  相似文献   

8.
水果识别是自动化采摘过程中的关键步骤,为了提高水果识别的准确性和实时性,利用深度学习方法,设计了一种水果采摘机器人视觉识别系统。首先,采用多种预处理方法对样本数据进行扩充,并对图像进行缩放和灰度化处理;然后,构建了一个多层卷积神经网络,通过多次训练得到网络最优超参数;最后,利用所构建的卷积神经网络对水果图像进行训练,同时采用多种训练策略得到最终的识别模型。实验结果表明:系统具有识别速度快、准确率高的特点,可以快速、准确地对水果图像进行识别,单张水果图像的识别速度只需0.2s,识别精度高达97%以上。该方法具有重要的理论和应用价值,可为水果的自动化识别提供有力手段。  相似文献   

9.
为实现加工车间刺梨果实的快速识别,提出一种基于改进的RetinaNet刺梨果实图像的识别方法。基于RetinaNet的模型,对RetinaNet框架中Focal loss的bias进行改进,使其能根据不同的情况控制bias的取值,再运用维度聚类算法找出Anchor的较好尺寸并匹配到相对应的特征层,对卷积神经网络结构进行优化。通过改进RetinaNet目标检测算法对7426幅刺梨果实图像进行检测识别,并与原始RetinaNet目标检测算法对比。试验结果表明:改进的RetinaNet网络模型识别方法对6类刺梨果实的识别率分别为99.47%、91.42%、96.92%、90.92%、96.89%和93.53%,平均识别率为94.86%;相对于原始RetinaNet目标检测算法,改进算法的识别准确率提高4.21%,单个刺梨果实检测时间由60.99 ms缩减到57.91 ms,检测时间缩短5.05%。本文改进算法对加工车间刺梨果实的识别具有较高的正确率和实用性。  相似文献   

10.
农作物病虫害对农业产量和品质影响巨大。数字图像处理技术在农作物病虫害识别中发挥重要作用。深度学习在该领域取得显著突破,效果优于传统方法。深度学习方法的特征提取能力更强,能准确捕捉细微特征,提高检测精度和可靠性。深度学习为农业提供了有力支持。本研究综述了基于深度学习的农作物病虫害检测研究,从分类网络、检测网络和分割网络3方面进行了概述,并对每种方法的优缺点进行了总结,同时比较了现有研究的性能。在此基础上,进一步探讨了基于深度学习的农作物病虫害检测算法在实际应用中面临的难题,并提出了相应的解决方案和研究思路。最后,对基于深度学习的农作物病虫害检测技术的未来趋势进行了分析和展望。  相似文献   

11.
在虫情监测和害虫防范治理过程中,准确识别害虫是有效解决农业领域虫害问题的重要前提。依靠专家知识和人工经验进行虫情诊断的方式效率较为低下,自动化和智能化水平较差,而采用深度学习、计算机视觉等智能化技术手段可以大幅度提升害虫识别过程的效率、准确度,并降低人工成本。概述了基于深度学习的害虫识别技术发展现状,分析深度学习技术在害虫图像识别领域的实现原理和优势,阐述国内外专家学者在基于深度学习的害虫识别技术领域的最新研究进展,提出该技术领域面临的挑战,并对发展方向进行预测。该文可为深入开展害虫识别和分类技术在智慧农业上的应用研究提供参考。   相似文献   

12.
监测与识别林下落果的数量和分布信息,是实现落果自动收获和果园智能化管理的重要基础.针对目前落果识别智能化程度较低等问题,提出一种基于深度学习的林下落果识别方法.首先,以不同类型、品种落果图像为基础,通过数据预处理、增强等方法建立林下落果图像数据集.其次,利用YOLO v3深度卷积神经网络优势特性,建立落果智能识别方法....  相似文献   

13.
为了解决采摘机器人识别目标果实难的问题,提出了一种基于机器视觉及深度学习的采摘机器人目标识别技术,可结合图像采集、图像处理、SSD深度学习算法,实现对橘柑的精准识别。试验结果表明:采摘机器人目标识别技术对橘柑具有较高的识别率,证实了该方法的可行性,对采摘机器人研究具有一定的参考价值。  相似文献   

14.
密集性穴盘苗缺苗穴位的检测,是机械化移栽及后续管理过程中的一项重要工作。为提高缺苗检测的准确率,提出了一种基于深度学习的密集性穴盘苗缺苗穴位的检测方法。检测时,对采集的图像进行穴盘区域自动剪裁,基于YOLOv4卷积网络,提取正常光照、较强光照、苗叶越界、蛭石泛青情况下的缺苗穴位特征进行训练。最后,在测试集上进行试验,结果表明:上述4种条件下缺苗穴位检测的准确率均值为95.2%。此外,与传统图像法相比,该检测方法提高了缺苗穴位在复杂条件下的检测适应性及准确率,能够为温室穴盘育苗模式下苗株个体的生长管理及后续的自动化作业提供依据。  相似文献   

15.
针对百香果采摘机器人在自然环境中作业时受复杂光线及遮挡影响,难以快速精确地检测及定位成熟百香果的问题,提出一种基于Stereo Camera-YOLOv5自然环境下成熟百香果检测及定位模型。针对自然环境下光线以及遮挡的影响,通过MSRCP算法、随机遮挡、数据增扩等图像处理算法对原始数据集进行优化。将优化的数据集输入到YOLOv5网络中训练出最优模型,在检测代码中嵌入双目立体视觉算法。该模型对自然环境下百香果进行检测及成熟度判断,将判断为成熟的百香果进行图像处理,并提取到中心点二维坐标。通过立体匹配及视差计算得到中心点的三维坐标。田间试验结果表明,该模型的目标检测准确率为97.8%,总体准确率为90.2%,平均运行时间为4.85 s。该系统鲁棒性强、实时性好,能够更好地实现自然环境下成熟百香果的检测及定位,为百香果采摘机器人后续工作奠定基础。  相似文献   

16.
为研究自然环境下柑橘的图像识别技术,实现柑橘的早期产量预测,提出一种改进的D-YOLOV3算法,实现自然环境下未成熟的绿色柑橘的识别与检测。研究构建绿色柑橘图像数据集,并对采集的图像进行预处理;改进算法采用DenseNet的密集连接机制替换YOLOV3网络中的特征提取网络Darknet53中的后三个下采样层,加强特征的传播,实现特征的复用。通过自制的数据集对D-YOLOV3算法进行测试,并分别对改进前后网络的识别性能、不同预处理方法和不同数据量图像对模型的影响进行试验。试验结果表明,改进的D-YOLOV3算法相对于传统YOLOV3算法精确率提高6.57%,召回率提高2.75%,F1分数提高4.41%,交并比提高6.13%,平均单张检测时间为0.28 s。通过不同果实数量图像对比试验验证了算法的可行性和准确性。研究结果表明,本文提出的D-YOLOV3算法对自然环境下未成熟的绿色柑橘识别具有较高的精准度,为柑橘的早期测产提供了技术支持。  相似文献   

17.
Hough圆变换算法可以解决成熟番茄果实识别问题,但计算量较大,且由于番茄非标准球形、多果重叠、茎叶遮挡等问题,识别准确率有待进一步提高,因此本文对其改进,设计一种实现番茄收获机器人视觉系统的成熟果实识别算法.首先对采集到的图像下采样,以减少计算量;然后进行基于颜色信息的背景分割,得到成熟番茄果实为目标的二值图像;并在...  相似文献   

18.
董戈 《农机化研究》2021,43(3):260-264
首先,介绍了水果收获机器人抓取系统的总体架构;然后,利用深度学习对水果目标识别进行了研究,实现了一套基于卷积神经网络的目标检测算法;接着,利用图像处理技术实现了对目标物体定位的功能,可以引导水果收获机器人完成对目标水果的采摘.实验结果表明:水果收获机器人抓取系统对水果坐标的计算误差较小,且具备较强的水果识别和定位能力.  相似文献   

19.
为实现自然环境下蔬菜幼苗精准快速识别,本文以豆角、花菜、白菜、茄子、辣椒、黄瓜等形态差异大、具有代表性的蔬菜幼苗为研究对象,提出一种基于轻量化二阶段检测模型的多类蔬菜幼苗检测方法。模型采用混合深度分离卷积作为前置基础网络对输入图像进行运算,以提高图像特征提取速度与效率;在此基础上,引入特征金字塔网络(Feature pyramid networks, FPN)单元融合特征提取网络不同层级特征信息,用于增强深度学习检测模型对多尺度目标的检测精度;然后,通过压缩检测头网络通道维数和全连接层数量,降低模型参数规模与计算复杂度;最后,将距离交并比(Distance-IoU, DIoU)损失作为目标边框回归损失函数,使预测框位置回归更加准确。试验结果表明,本文提出的深度学习推理模型对多类蔬菜幼苗的平均精度均值为97.47%,识别速度为19.07 f/s,模型占用存储空间为60 MB,对小目标作物以及叶片遮挡作物的平均精度均值达到88.55%,相比于Faster R-CNN、R-FCN模型具有良好的泛化性能和鲁棒性,可以为蔬菜田间农业智能装备精准作业所涉及的蔬菜幼苗检测识别问题提供新方案。  相似文献   

20.
为提高自动驾驶车辆对道路场景的识别效果,针对ReLU模型存在的神经元"坏死"问题,基于ReLU,结合Sigmoid模型提出了新的激活函数ReLU-Sigmoid。通过分析激活函数作用原理,给出激活函数设计要点并将Sigmoid和ReLU在x轴正、负半轴进行组合,优化了道路场景识别模型。在伯克利大学道路数据集上的实验表明,相比ReLU和LReLU模型,ReLU-Sigmoid模型有效提高了卷积神经网络对道路场景的识别准确率,从75.12%和67.15%提高到了83.70%,证明了算法可以提高深度学习模型对道路场景的识别性能并缓解神经元"坏死"现象,从而提高车辆对道路环境的感知能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号