共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
为提高芝麻联合收获机械化水平、减少芝麻收获的损失率,对适收期芝麻茎秆和蒴果开展力学特性试验分析,测定茎秆和蒴果的含水率,探究茎秆的剪切特性及不同节位蒴果与茎秆连接处的拉伸特性。试验结果表明:收获期时茎秆的平均含水率为36.8%,蒴果的平均含水率为14.5%;剪切试验中,茎秆的最大剪切力为567.87N,抗剪强度最大为5.16MPa;拉伸试验中,上部节位蒴果的成熟度比下部节位蒴果的成熟度低,含水率高,抗拉强度较大,芝麻蒴果与茎秆连接处的最大拉伸力为18.5N,连接处的抗拉强度最大为4.79MPa。 相似文献
6.
7.
番茄钵苗茎秆力学特性试验研究 总被引:1,自引:0,他引:1
研究番茄钵苗茎秆力学特性及其变化规律可为番茄钵苗移栽机夹茎式自动取苗机构的设计提供重要依据。为此,利用DF-9000型动静态电子万能材料试验机对适栽期番茄钵苗茎秆进行拉伸、弯曲试验,利用TA.XT plus型质构仪对适栽期番茄钵苗茎秆进行了压缩性能试验,获得其在试验条件下的应力-应变曲线,并进行分析。试验结果表明:相同加载速度下,平均抗拉断力大小随夹持茎秆位置的升高而减小;相同取样部位条件下,随着加载速度的增大,所用的弯曲载荷力增大;相同加载速度下,番茄钵苗茎秆最大压缩力随取样高度的增加而减小,茎秆根部最大压缩力值最大;相同取样部位在一定压缩位移条件下,随着加载速度的增大,压缩载荷随之增大。研究结果可为番茄钵苗夹茎式自动取苗机构设计提供重要的理论依据。 相似文献
8.
谷子茎秆切割力学特性试验与分析 总被引:3,自引:0,他引:3
为减小谷子茎秆切割力、降低切割功耗,设计了茎秆往复式切割试验台,对谷子茎秆进行不同收获时间、茎秆部位、切割器组合形式、切割倾角、刀片斜角、平均切割速度和茎秆喂入速度的单因素切割试验,并在单因素试验基础上对平均切割速度、切割倾角和刀片斜角3个因素进行响应面试验。单因素试验结果表明:收获期茎秆极限切应力、单位面积切割功耗随含水率的增大而减小;基部起茎秆极限切应力、单位面积切割功耗总体上随茎秆高度的增加而减小,茎秆茎节极限切应力、单位面积切割功耗较茎秆节间大;茎秆双支撑切割形式较单支撑切割形式极限切应力、单位面积切割功耗小;切割倾角0°~20°时,茎秆极限切应力、单位面积切割功耗随切割倾角的增大先减小后增大;刀片斜角0°~48°时,茎秆极限切应力随刀片斜角的增大而减小,而单位面积切割功耗先减小后增大;平均切割速度0. 5~1. 5 m/s时,茎秆极限切应力、单位面积切割功耗随平均切割速度的增大呈先减小后平稳变化的趋势;茎秆喂入速度对切割力学特性无显著影响。响应面试验结果表明:试验因素对茎秆极限切应力、单位面积切割功耗影响的主次顺序为平均切割速度、刀片斜角、切割倾角,且最优切割参数为:平均切割速度1. 19 m/s、切割倾角7. 2°、刀片斜角36. 4°,最优参数下茎秆极限切应力和单位面积切割功耗分别为2. 88 MPa、22. 38 m J/mm~2,验证试验值与预测值相对误差不超过3. 5%。刀片斜角对比试验表明:刀片斜角36. 4°较30°(标准Ⅱ型动刀)切割谷子茎秆时,茎秆极限切应力、单位面积切割功耗分别减小了6. 6%、3. 9%。 相似文献
9.
10.
11.
12.
为了研究大豆茎秆力学性能与大豆倒伏现象的相关性及对大豆的优种筛选进行评价,通过对大豆茎秆的轴向压缩试验,测定了3个品种、不同含水率和不同距地高度的最大承载力、最大应力、弹性模量和惯性矩.结果表明:干大豆茎秆的最大承载力、最大应力和弹性模量明显高于湿大豆茎秆;沿茎秆高度方向,最大承载力和惯性矩基本呈线性下降趋势,最大值在距地高度5cm以下;而最大应力基本上不变,弹性模量变化小,最大值在距地8~30cm处,最小值均在大豆茎秆顶端.不同品种间茎秆平均最大承载力、最大应力的差异明显:品种3的茎秆两者最小,品种2的茎秆两者最大.不同品种间的平均弹性模量和惯性矩也有差异:品种3的两者最小,品种1的两者最大. 相似文献
13.
14.
对油用牡丹茎秆的穿刺力学特性进行研究,旨在为油用牡丹果荚的高效采收提供依据。以洛阳地区采摘的丹凤白品种的油用牡丹为研究对象,利用质构仪测定油用牡丹茎秆强度,分析茎秆穿刺力、直径、相对含水率等物理特性参数,以及茎秆纤维素、半纤维素、木质素等化学组分的含量。以穿刺力为试验指标,探究穿刺位置、相对含水率、穿刺速度对茎秆穿刺力的影响。结果表明:随茎秆直径的增加,茎秆的穿刺力明显增大;随相对含水率的提高,穿刺力逐渐下降;穿刺力与穿刺速度呈正相关。在茎秆的化学组分中,木质素含量的平均值最高(24.980%),其次为纤维素含量(17.269%),最后为半纤维素含量(16.935%);相对含水率对穿刺力有显著影响,而穿刺位置和穿刺速度对穿刺力影响不显著。研究结果可为油用牡丹茎秆穿刺力学特性研究提供参考。 相似文献
15.
16.
燕麦茎秆的机械力学特性是燕麦生长、收获、脱粒和清选工艺与装备设计的基础,也是作为一种高分子资源深加工改性的基础。考察了不同节间的燕麦茎秆理化组分和微观结构特点;试验分析了燕麦茎秆在静态加载条件下的剪切和压缩特性,结果表明含水率显著影响其剪切和压缩力学参数;利用动态力学分析仪,重点研究了不同含水率燕麦茎秆的动态机械力学特性,结果表明燕麦茎秆具有粘弹特性,含水率在15.14%时,应变最小,为0.0052。随着含水率的增加,茎秆弹性降低,粘性增加;试验获得的蠕变-恢复和应力松弛曲线分别引入Burgers模型和五元素广义Maxwell模型进行拟合,决定系数均达到0.99以上。其中,随着含水率的增加,弹性模量和平衡弹性模量呈下降趋势,应力松弛时间增大。燕麦茎秆的组分结构分析与力学特性变化规律研究,可以为燕麦收获、茎秆收集和加工机械的研制提供试验基础。 相似文献
17.
针对谷茎气动分离的特点,本文仅就短茎秆在低速气流作用下的受力进行了测定与分析,并定量描述了各影响因素间的相互关系,为谷物气流清选装置的设计提供了依据。 相似文献
18.
农作物茎秆力学试验的研究综述 总被引:3,自引:0,他引:3
从拉伸、压缩、弯曲、剪切试验的不同试验类型入手,对农作物茎秆力学试验的国内外研究现状进行了综述。提出应注重试验方法的研究,逐渐实现茎秆力学测定的分类标准化,加大对果蔬高木质化茎秆与果梗力学的研究力度,并不断深化茎秆力学的建模研究。 相似文献
19.
为研究蓖麻力学条件,对蓖麻的果—柄接点、茎—柄接点和茎秆不同生长部位的抗拉特性、抗弯特性进行力学测试。结果表明:成熟期果—柄抗拉力和抗拉强度分别为3.31~6.74 N、3.48~8.31 MPa,收获期果—柄抗拉力和抗拉强度分别为1.90~4.15 N、2.42~5.28 MPa;茎—柄抗拉力和抗拉强度分别为15.78~37.07 N、19.70~3466 MPa;茎秆的抗拉力、弹性模量和抗拉强度分别为56.99~130.42 N、160.99~203.80 MPa、2850~65.21 MPa,茎秆的抗弯力、弯曲截面模量和抗弯强度分别为15.20~91.04 N、31.53~173.07 MPa、19.27~21.04 MPa。分析试验结果可知,果—柄连结强度与茎—柄连结强度、茎秆抗拉强度及抗弯强度之间存在显著性差异,证明在采摘过程中蓖麻果—柄接点更易分离,其次是茎—柄接点,通过合理设计采摘部件工作参数,可以实现只采收蓖麻蒴果,而较少破坏茎秆。 相似文献
20.
以成熟期的甜高粱茎秆为试验对象,以节间、加载速度、标距为试验因素,弯曲强度、弹性模量和最大载荷为试验指标,利用万能试验机对茎秆的2、3、4、5节进行弯曲特性试验研究。结果表明:甜高粱秸秆有节时,最大载荷为358.20N,最大抗弯强度为3.27MPa,最大弹性模量为12.60kPa;无节时最大载荷为167.70N,最大抗弯强度为2.73MPa,最大弹性模量为8kPa;甜高粱茎秆发生弯折会伴有一定的开裂现象,有节试样的开裂程度大于无节试样;节间与最大载荷和抗弯强度呈负相关,与弯曲弹性模不相关;各因素对甜高粱秸秆弯曲特性影响的主次顺序为标距、节间、加载速度。 相似文献