共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
基于无人机高光谱遥感的水稻氮营养诊断方法 总被引:1,自引:0,他引:1
氮亏缺量能够直接反映作物氮营养缺失程度,快速、大面积获取水稻氮亏缺量信息对实现水稻精准施肥具有重要意义。而现有的研究大都集中于利用无人机遥感监测水稻氮营养情况,对氮亏缺量本身的研究较少。本研究基于无人机高光谱遥感获取冠层光谱数据、通过田间采样获取水稻农学数据,研究东北地区水稻临界氮浓度曲线构建方法,在此基础上确定水稻氮亏缺量;以氮亏缺量约等于0状态下光谱为标准光谱,分别对光谱反射率进行比值、差值、归一化差值变换,通过竞争性自适应重加权采样法对原始光谱反射率与变换后光谱反射率进行特征波长提取,并以二者提取的特征波长为输入变量,氮亏缺量为输出变量,分别构建基于多元线性回归、极限学习机与蝙蝠算法优化极限学习机3种算法的水稻氮亏缺量反演模型。结果表明:基于田间数据构建东北地区水稻临界氮浓度曲线方程系数a、b分别为2.026与-0.460 3,和以往研究基本一致;相比其余变换方法,对水稻冠层光谱进行归一化差值变换与特征波长提取显著提高了冠层光谱反射率与水稻氮亏缺量的相关性,也提高了后续反演模型的反演结果;以归一化差值光谱为输入的蝙蝠算法优化极限学习机反演模型预测效果显著优于其余模型,验证集R 相似文献
3.
基于无人机高光谱影像的冬小麦全蚀病监测模型研究 总被引:2,自引:0,他引:2
冬小麦全蚀病是导致小麦大幅减产甚至绝收的土传检疫性病害。快速、无损地监测冬小麦全蚀病空间分布对其防治具有重要意义。以无人机搭载成像高光谱仪为遥感平台,利用成像高光谱影像结合地面病害调查数据,在田块尺度对冬小麦全蚀病病情指数分布进行空间填图。利用地物光谱仪(ASD)同步获取的高光谱数据评价UHD185光谱数据质量,综合运用统计分析以及遥感反演填图技术,计算光谱指数(Difference spectral index,DSI)、比值光谱指数(Ratio spectral index,RSI)及归一化差值光谱指数(Normalized difference spectral index,NDSI)与病情指数(DI)构建决定系数等势图,筛选最优光谱指数与DI构建线性回归模型,并利用3个光谱指数构建偏最小二乘回归预测模型,以对比模型预测精度与稳健性。最后用独立数据对模型进行检验。结果表明,冬小麦冠层的ASD光谱数据与UHD185光谱数据相关性显著,决定系数R~2达0.97以上,3类光谱指数与DI构建偏最小二乘回归模型,得到模型验证结果(R~2=0.629 2,R_(MSE)=10.2%,M_(AE)=16.6%),其中DSI(R_(818),R_(534))对模型贡献度最高,利用DSI(R_(818),R_(534))与DI构建线性回归模型为y=-6.490 1x+1.461 3(R~2=0.860 5,R_(MSE)=7.3%,M_(AE)=19.1%),且通过独立样本的模型验证精度(R~2=0.76,R_(MSE)=14.9%,M_(AE)=11.7%,n=20)。最后使用该模型对冬小麦进行病情指数反演,制作了冬小麦全蚀病病害空间分布图,本研究结果为无人机高光谱遥感在冬小麦全蚀病的精准监测方面提供了技术支撑,并对未来卫星遥感探索冬小麦全蚀病大面积监测提供了理论基础。 相似文献
4.
5.
基于光谱指数的绿洲农田土壤含水率无人机高光谱检测 总被引:1,自引:0,他引:1
土壤含水率(Soil moisture content,SMC)是发展精细灌溉农业的重要参数,因此对其进行精确估测十分必要。选取新疆阜康绿洲小块农田为研究对象,基于无人机(Unmanned aerial vehicle,UAV)平台搭载的高光谱传感器获取的影像数据,基于Savitzky-Golay(SG)平滑后的一阶微分(First derivative,FD)、吸光度(Absorbance,Abs),连续统去除(Continuum removal,CR)3种不同预处理方法,共获取了SG、SG-FD、CR、Abs及Abs-FD共计5种预处理后的高光谱影像,探索不同预处理下的差值指数(Difference index,DI)、比值指数(Ratio index,RI)、归一化指数(Normalization index,NDI)及垂直植被指数(Perpendicular vegetation index,PVI)与SMC的关系,并在遴选出最优指数及预处理方案的基础上构建干旱区绿洲农田SMC高光谱定量估算模型。结果表明:预处理在不同程度上提高了光谱指数与SMC的相关性,其中基于Abs-SG预处理的PVI_((R644,R651))表现最优,相关系数为0.788,据此构建的三次拟合函数表现最优。基于不同预处理方案下多变量SMC估算模型效果在消噪的基础上,更为深度地挖掘了光谱信息,减少了单一光谱指数造成的误差,提升了模型的定量估测效果。Abs模型预测精度亦最为突出,其建模集R_c~2和RMSE为0.80、2.42%,验证集R_p~2与RMSE为0.91、1.71%,RPD为2.41。本研究构建的SMC估算模型减少了单一变量模型的误差;在规避过拟合现象的同时,提升了模型的定量估测效果,为土壤水分状况天地空一体化遥感监测提供了崭新的视角和方案。 相似文献
6.
为快速、精准地对农作物信息进行分类和提取,笔者以某研究区农作物作为研究对象,对农作物分类展开研究。利用SVM和RF分类方法,对降维和一阶导数处理后的无人机高光谱遥感影像中的农作物进行分类,并比较了SVM和RF分类结果的精准性。研究结果表明,通过对高光谱影像农作物进行分类,利用RF分类法获得的分类结果精度较高,可以实现对农作物的有效提取,能够为我国农作物生长情况监测、产量估计和病虫害防治提供参考。 相似文献
7.
8.
基于无人机高光谱长势指标的冬小麦长势监测 总被引:5,自引:0,他引:5
为快速准确监测作物长势,以冬小麦为研究对象,获取了不同生育期的无人机高光谱影像。利用无人机高光谱数据构建光谱指数,并分析4个生育期的指数与生物量、叶面积指数以及由生物量和叶面积2个生理参数构建的长势监测指标(Growth monitoring indicator,GMI)的相关性;建立与GMI相关性较强的4个光谱指数的单指数回归模型,利用多元线性回归、偏最小二乘和随机森林3种机器学习方法分别建立冬小麦各生育期的GMI反演模型;将最佳模型应用于无人机高光谱影像,得到冬小麦长势监测图。结果表明:各生育期光谱指数与冬小麦GMI相关性较高,大部分指数都达到了显著水平,其中NDVI、SR、MSR和NDVI×SR与GMI的相关性高于生物量、叶面积指数与GMI的相关性;拔节期、挑旗期、开花期、灌浆期、全生育期,表现最好的回归模型对应光谱指数分别是NDVI×SR、NDVI、SR、NDVI和NDVI×SR;对比3种方法构建的GMI反演模型,开花期模型MLR-GMI效果最佳,此时期的模型建模R~2、RMSE和NRMSE分别是0. 716 4、0. 096 3、15. 90%。 相似文献
9.
无人机设备具备便捷、能够低空飞行等特征,在农业领域中得到了广泛应用。利用旋翼无人机搭载各类高光谱遥感设备,能通过反射光谱探测各类农作物信息。笔者阐述了旋翼无人机与高光谱遥感技术,深入分析了旋翼无人机与高光谱遥感技术的应用,在此基础上提出了基于旋翼无人机的农业低空高光谱遥感技术。 相似文献
10.
为探讨应用无人机多光谱技术估算矮林芳樟(Cinnamomum camphora(Linn.)Presl)光合参数的有效分析模型和方法,本研究以矮林芳樟为研究对象,通过无人机搭载的多光谱相机获取其冠层六波段光谱反射率,同步测量其净光合速率(Pn)、胞间二氧化碳浓度(Ci)、气孔导度(Gs)和蒸腾速率(Tr)4种光合参数,采用最佳指数因子(OIF)筛选光谱反射率和植被指数的组合作为自变量,分别采用偏最小二乘法(Partial least squares method, PLS)、反向传播神经网络(Back propagation neural network,BPNN)和随机森林(Random forest, RF)构建自变量与光合参数的估算模型,并分析比较各估算模型的精度。结果显示:矮林芳樟光合参数与叶片红边波段2(中心波长750 nm)和近红外波段(中心波长840 nm)反射率有密切关系;红边波段2、增强型植被指数2(EVI2)、红边叶绿素指数(CIrededge)组合的OIF值最大,为0.012 6,可作为模型自变量的最佳组合;Pn、Ci、Gs、Tr 4种光合参... 相似文献
11.
12.
树种信息对林业资源监测和管理具有重要意义,及时准确地掌握树种及长势状况是防护林工程建设与效益评价的基础。为研究利用无人机高光谱数据进行防护林树种分类的效果,选取典型区域使用Matrice600型六旋翼无人机搭载Rikola高光谱成像仪获取高光谱影像,基于支持向量机-递归特征消除算法(SVM-RFE)选取原始波段最佳组合,再结合纹理特征、植被指数和数理统计特征,使用随机森林算法对所有特征进行重要性评估并与分类精度相结合进行特征优化,进而构建高光谱影像全波段、原始波段最佳组合、全部特征变量、基于随机森林(RF)特征优化后特征变量4种分类方案,分别采用最大似然法(MLC)、支持向量机(SVM)、随机森林对防护林优势树种进行分类。结果表明:所提出的基于交叉验证的SVM-RFE算法选出的原始波段组合能更好地还原原始光谱特征;通过RF算法的特征重要性分析与分类精度相结合的方法可以有效选出重要特征,当使用全部特征的85%(包括17个光谱特征、3个纹理特征、5个植被指数和3个数理统计特征)进行分类时,总体精度最高为9593%(Kappa系数为0.9475);所有特征中植被指数特征最重要,3种分类方法中RF算法分类总体精度(OA)最高。 相似文献
13.
为研究水稻叶片叶绿素相对含量(SPAD)在3种水分处理和5种施氮处理下的变化规律,探讨无人机多光谱遥感技术反演水稻SPAD的可行性,本研究利用大疆精灵4多光谱无人机,采集了水稻拔节孕穗期、抽穗开花期和乳熟期的冠层多光谱遥感影像,并同步测定水稻SPAD值,基于25个光谱变量(5个波段反射率和20个植被指数),采用多元线性逐步回归、岭回归和套索回归3种方法构建了水稻SPAD的反演模型。结果表明:水稻3个生育期的SPAD最佳反演模型均是采用套索回归方法构建的,其中乳熟期建立的SPAD最佳反演模型在3个生育期中的反演精度最高,决定系数为0.782,均方根误差为1.217 7,相对误差为6.611 3%。因此,该研究可对水稻叶片SPAD进行遥感监测,并为水稻精准灌溉和施肥提供科学依据和数据支撑。 相似文献
14.
在监测和管理林业资源的过程中准确的树种信息能够发挥非常重要的作用,及时了解树种及其生产情况能够帮助相关人员更好地开展林业建设。为了探索在树种分类识别中无人机高光谱影像的应用,笔者结合研究实例,探讨树种分类识别中应用无人机高光谱影像的方法和结果。仿真结果表明:与仅利用光谱特征分类相比,在分类特征中融入数理统计特征、植被指数特征以及纹理特征,能够极大地提升单个树种的分类精度;相比于SVM和MLC分类器,RF分类器拥有更好的分类效果和更高的分类精度,能够有效地适用于研究区树种分类;在树种分类识别中应用无人机高光谱影像,能够取得非常准确的识别结果。 相似文献
15.
16.
基于无人机高光谱遥感数据的冬小麦产量估算 总被引:4,自引:0,他引:4
为了准确和高效地预测作物产量,以冬小麦为研究对象,利用无人机遥感平台搭载高光谱相机,获取了冬小麦各生育期的无人机影像。根据高光谱具有较多的光谱信息且存在特有的红边区域的特点,选取了9种植被指数和5种红边参数。首先,分析植被指数和红边参数与产量的相关性,优选5种植被指数和2种红边参数用于构建产量估算模型;然后,构建了不同生育期的3种产量估算模型:单参数线性回归模型、基于植被指数并使用偏最小二乘回归方法模型、基于植被指数结合红边参数并使用偏最小二乘回归方法模型;最后利用3种模型分别估算冬小麦产量。结果表明:4个生育期内,大部分植被指数和红边参数与产量呈现极显著相关性;拔节期、挑旗期、开花期与灌浆期构建的单参数线性回归模型中表现最佳的参数分别为REP、Dr/Drmin、GNDVI与GNDVI;利用偏最小二乘回归方法提高了产量估算精度,以植被指数结合红边参数为因子构建的模型提高了产量估算效果(优于以植被指数为因子构建的产量模型)。本研究可为无人机高光谱估算作物产量提供参考。 相似文献
17.
氮素胁迫下水稻高光谱特征研究 总被引:1,自引:0,他引:1
氮素是水稻生长发育的一种大量必需元素,需及时准确地监控水稻的氮营养状况。水稻的合理施肥对增产、优化品质、降低水污染具有重要意义。水稻营养状况遥感诊断技术具有简单、无损、快速等特点而得到各国专家的广泛研究和应用。本实验以方正水稻阳光4号品种为例,通过大田实验,利用高光谱遥感技术,采集6个施氮水平的水稻冠层水稻冠层图像,测定水稻冠层光谱反射率。结果表明:水稻冠层反射率与不同氮素含量有明显的相关性,从曲线图中可以定性区分出严重缺氮、正常施氮及过量施氮。下一步将结合光谱曲线找出诊断水稻氮素营养水平的敏感波段,为日后水稻冠层氮素营养诊断模型奠定基础。 相似文献
18.
19.
低空高光谱遥感技术是一种新型技术,其可以搭载在旋翼无人机平台之上,被广泛应用于农业领域中,以实现对大面积农作物光谱信息进行精确和实时的快速检测。但由于其建立的统计模型主要是将地物光谱信息和卫星遥感影像数据直接结合,导致模型的精度容易受到一些外在因素的影响,如时间、地点、对象、图谱的特异性等,使其在现代化农业发展中还难以实现有效推广。基于此,笔者围绕低空高光谱遥感技术在农业方面的应用展开研究。研究结果表明,运用无人机低空高光谱遥感技术,能够更为方便和快捷地收集农作物信息数据,掌握各种农作物的生长情况,能够减少实际成本,有效克服传统航天技术存在的相应问题,极大地促进了现代农业的发展。 相似文献
20.
高光谱技术能够将光谱技术与成像技术结合从而获得连续的窄波段信息内容,其在植被特征监测中具有重要作用。该技术不仅能够准确区分植物类别,而且在精准利用下能够对植物叶绿素含量进行估算,故其在遥感监测及局部监测上具有广阔的发展空间。笔者从高光谱技术特征入手,阐述了高光谱技术在植被特征监测中的优势,并对高光谱技术在植被特征监测中的应用进行了探究。 相似文献