首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In declining broadleaf forests in western Ukraine, several Phytophthora species including P. plurivora, P. bilorbang, P. polonica, P. gonapodyides and P. cactorum were recovered using soil baiting assays and identified using morphological and molecular methods. Pathogenicity tests of selected isolates were performed on black alder (Alnus glutinosa (L.) Gaerth.) and silver birch (Betula pendula Roth.) to assess susceptibility of these two tree species to the newly detected Phytophthora species. Phytophthora plurivora, P. bilorbang and P. polonica showed higher pathogenicity in both alder and birch compared to the other tested Phytophthora species.  相似文献   

2.
During the monitoring period of alder decline phenomenon in Slovakia, indicative symptoms of Phytophthora diseases were observed in riverside stands in Slovakia. The study aimed to test the presence and diversity of Phytophthora species in declining alder stands. The samples were collected from six stands situated by rivers/streams in the central and eastern parts of Slovakia. Phytophthora plurivora and P. cactorum were detected in soil, root and water samples. The most isolated species was P. plurivora. Both Phytophthora species have been recognized in the literature as the perpetrators of black alder dieback together with other species, such as P. alni or P. polonica. To our knowledge, this is the first report of P. plurivora and P. cactorum in riverside stands with the main share of black alder in Slovakia.  相似文献   

3.
Sweet chestnut (Castanea sativa) is an important tree species in the Marmara and Aegean regions of Turkey as these two regions produce the great majority of edible nuts, especially those used for marron glacé production. Chestnut forests and orchards in these regions showing severe dieback symptoms not associated with chestnut blight were investigated to determine the role of Phytophthora spp. in the decline syndrome. Soil samples were collected from around 108 symptomatic chestnut trees at 29 sites and Phytophthora spp. isolated using soil baiting technique and selective medium. Species isolated were identified by cultural characteristics and ITS sequencing. Phytophthora cambivora was the dominant species detected in 13 sites, followed by P. cinnamomi (5 sites), P. plurivora (3 sites) and P. cryptogea (1 site). Phytophthora x cambivora was present in both regions, while P. cinnamomi was found only in the Marmara region in coastal areas around Istanbul. When inoculated at the stem bases of 3‐year‐old chestnut saplings, P. cinnamomi produced significantly longer necrotic lesions (7.8–12.0 cm) than P. x cambivora (2.6–6.3 cm) by 12 days after inoculation. Phytophthora plurivora was the least aggressive species causing only small lesions. Phytophthora cryptogea, which represents the first record on chestnut in Turkey, produced intermediate sized lesions in between P. x cambivora and P. plurivora. These results indicate that P. x cambivora and in some areas P. cinnamomi play major roles in the observed dieback of sweet chestnut in western Turkey.  相似文献   

4.
Chestnut blight caused by Cryphonectria parasitica is a serious disease of Castanea sativa in the Black Sea region of Turkey. During disease surveys, dieback and decline symptoms were observed on trees without apparent blight and ink disease symptoms. Black necroses, similar to those caused by Phytophthora infections, were noted on some of the chestnut coppices and saplings in one nursery in Ordu and led to an investigation into this disease complex. Only symptomatic plants showing dieback symptoms were investigated. Soil samples together with fine roots were collected from two directions, north and north‐east, approximately 150 cm away from the main stems. Phytophthora spp. were baited with young chestnut leaves. Three Phytophthora spp., P. cambivora, P. cinnamomi and P. plurivora, were identified from 12 soil samples collected from 73 locations, while from the nurseries, only P. cinnamomi was obtained. Phytophthora cinnamomi was the most common species, obtained from seven locations in five provinces and from four nurseries having similar symptoms mentioned above in different locations. Phytophthora cambivora and P. plurivora were less frequently obtained, from three to two stands, respectively. Phytophthora cinnamomi and P. cambivora were the most aggressive species when inoculated at the stem base on 3‐year‐old chestnut saplings, killing six saplings of eight inoculated in 2 months. The three Phytophthora species were first recorded on chestnut in Black sea region of Turkey with the limited samples investigated in a large area about 150 000 ha chestnut forest.  相似文献   

5.
Decline diseases are typically caused by complex abiotic and biotic interactions and characterized by a suite of symptoms indicative of low plant vigour. Diseased trees are frequently infected by Phytophthora, but the complex interactions between pathogen, host and the heterogeneous forest environment mask a comprehensive understanding of the aetiology. In the present study, we surveyed European beech (Fagus sylvatica) stands in Swiss forests with recent increases in bleeding lesions for the presence of Phytophthora. We used a combined approach of analysing soil and bark samples from trees displaying bleeding lesions and trees free from bleeding lesions. Soil baiting revealed a higher prevalence of Phytophthora spp. around trees with bleeding lesions than around trees without bleeding lesions. For the bark samples from bleeding lesions, we used several detection methods. Phytophthora spp. were detected in 74% of the trees by an immunological on‐site diagnostic kit, in 64% by a specific PCR assay, and 38% by isolation on selective media. All samples tested were negative for P. ramorum using qPCR. Overall, nine Phytophthora species were identified by ITS sequencing, the most common of which were P. plurivora, P. gonapodyides, P. × cambivora and P. syringae. We identified distinct species in bleeding lesions and the rhizosphere of the same host tree which suggests a multispecies Phytophthora disease patterns in these declining beech. Among the recovered species, P. × cambivora and P. × serendipita were identified as hybrid genotypes with the former abundant in bleeding lesions.  相似文献   

6.
In recent years, Common ash (Fraxinus excelsior) throughout Europe has been severely impacted by a leaf and twig dieback caused by the hyphomycete Chalara fraxinea. The reasons for its current devastating outbreak, however, still remain unclear. Here, we report the presence of four Phytophthora taxa in declining ash stands in Poland and Denmark. Phytophthora cactorum, Phytophthora plurivora, Phytophthora taxon salixsoil and Phytophthora gonapodyides were isolated from rhizosphere soil samples and necrotic bark lesions on stems and roots of mature declining ash trees in four stands. The first three species proved to be aggressive to abscised roots, twigs and leaves of F. excelsior in inoculation experiments. Soil infestation tests also confirmed their pathogenicity towards fine and feeder roots of ash seedlings. Our results provide first evidence for an involvement of Phytophthora species as a contributing factor in current decline phenomena of F. excelsior across Europe. Specifically, they may act as a predisposing factor for trees subsequently infected by C. fraxinea. Phytophthora species from ash stands also proved to be aggressive towards a wide range of tree and shrub species commonly associated with F. excelsior in mixed stands. Although damage varied considerably depending on the Phytophthora species/isolate–host plant combination, these results show that many woody species may be a potential source for survival and inoculum build‐up of soilborne Phytophthora spp. in ash stands and forest ecosystems in general.  相似文献   

7.
During the past decade, and in particular after the wet year 2002 and the dry year 2003, an increasing number of trees and stands of European beech (Fagus sylvatica L.) in Bavaria were showing symptoms typical for Phytophthora diseases: increased transparency and crown dieback, small‐sized and often yellowish foliage, root and collar rot and aerial bleeding cankers up to stem heights of >20 m. Between 2003 and 2007 134 mature beech stands on a broad range of geological substrates were surveyed, and collar rot and aerial bleeding cankers were found in 116 (86.6%) stands. In most stands the majority of beech trees were declining and scattered or clustered mortality occurred. Bark and soil samples were taken from 314 trees in 112 stands, and 11 Phytophthora species were recovered from 253 trees (80.6%) in 104 stands (92.9%). The most frequent species were P. citricola, P. cambivora and P. cactorum. Primary Phytophthora lesions were soon infected by a series of secondary bark pathogens, including Nectria coccinea, and wood decay fungi. In addition, infected trees were often attacked by several bark and wood boring insects leading to rapid mortality. Bark necroses were examined for their probable age in order to determine whether the onset of the current Phytophthora epidemic was correlated to rainfall rates recorded at 22 Bavarian forest ecosystem monitoring stations. A small‐scale survey in nine Bavarian nurseries demonstrated regular infestations of all beech fields with the same range of Phytophthora species. The results indicate that (1) Phytophthora species are regularly associated with beech decline and may also be involved in the complex of ‘Beech Bark Disease’, (2) excessive rainfalls and droughts are triggering the disease, and (3) widespread Phytophthora infestations of nursery stock might endanger current and future silvicultural projects aiming on the replacement of non‐natural conifer stands by beech dominated mixed stands.  相似文献   

8.
Real‐time PCR assays based on the TaqMan system and using ITS sequences were developed for the identification of Phytophthora species, including P. cactorum, P. megasperma, P. plurivora, P. pseudosyringae and P. quercina, all of which are currently causing significant damage to roots of forest trees in both managed stands and natural ecosystems. Total genomic DNA was extracted from mycelia of aforementioned Phytophthora isolates. Species‐specific primers for P. cactorum, P. megasperma, P. plurivora, P. pseudosyringae and P. quercina were designed based on ITS sequences of rDNA. The amplification efficiency of target DNA varied from 93.1% (P. pseudosyringae) to 106.8% (P. quercina). The limit of the detection was calculated as 100 – 1,000 fg DNA, depending on the Phytophthora species. In mixed soil samples, all Phytophthora species were detected for Ct values shifted by 0.7 – 2.1 cycles. Based on these real‐time PCR assays we were able to identify the five Phytophthora species. These techniques will be of value in the identification of these pathogens, which may cause up to 80 – 90% fine root loss in oak stands.  相似文献   

9.
In Sweden, invasive Phytophthora pathogens have been recognized as a growing threat to urban and production forests, calling for an urgent update of regeneration strategies for infested areas. Stem inoculation tests were performed to test the relative susceptibility of common conifer and broadleaved tree species Pinus sylvestris, Picea abies, Larix x eurolepis, Betula pendula, Quercus robur, Fagus sylvatica, Populus trichocarpa and Tilia cordata to the root pathogens Phytophthora cactorum, P. cambivora and P. plurivora commonly isolated from Swedish soils. Results indicate that all the species tested were susceptible and formed lesions following stem inoculation with all three Phytophthora species, but to varying degrees. Of particular interest are the high levels of susceptibility in P. trichocarpa to all three Phytophthora species compared to other tested tree species.  相似文献   

10.
Since 2008, severe and widespread tree decline and mortality has been observed at the main growing Quercus ilex L. (holm oak) forest on Caprera Island, Italy. To clarify the symptomatology and aetiology of this phenomenon, field surveys and isolations from symptomatic trees were carried out in summer 2010. Affected trees exhibited crown thinning, branch dieback, sunken cankers, epicormic shoots, exudates on branches and trunk, root losses and sudden death symptoms. Four fungal species belonging to Botryosphaeriaceae family, namely Botryosphaeria dothidea, Diplodia corticola, D. seriata and Neofusicoccum parvum, were isolated from cankers on trunk and branches, whereas three species of Phytophthora, namely P. cinnamomi, P. cryptogea and P. gonapodyides, were isolated from fine roots and rhizosphere soil samples. Isolates were identified using both morphological analysis and DNA‐based techniques. Pathogenicity trials on holm oak seedlings showed that all the isolated species are pathogenic. D. corticola proved to be the most aggressive species. Our results provide the first evidence for a combined involvement of D. corticola and P. cinnamomi in the aetiology of holm oak decline in Italy and suggest that these pathogens are not only important contributing factors in the onset of long‐term tree decline, but also may cause the rapid devastation of extensive oak ecosystems.  相似文献   

11.
Described as one of the most destructive pathogens of agricultural crops and forest trees, Phytophthora is a genus of microorganisms containing over 100 known species. Phytophthora alni has caused collar and root disease in alders throughout Europe, and a subspecies has recently been isolated in North America. Reports of canopy dieback in red alder, Alnus rubra, prompted a survey of their overall health and to determine whether P. alni was present in western Oregon riparian ecosystems. Over 1100 Phytophthora isolates were recovered, representing 20 species and 2 taxa. Phytophthora‐type cankers were observed in many trees, and their incidence was positively correlated with canopy dieback. High levels of mortality for red alder were not observed, which suggests these Phytophthora species are not aggressive pathogens. To test this hypothesis, three stem wound inoculations and one root dip were conducted on red alder seedlings using 13 Phytophthora species recovered from the riparian survey. Ten of the 13 Phytophthora species produced significant lesions in at least one pathogenicity test. Phytophthora siskiyouensis produced the largest lesions on red alder from the two stem wound inoculation tests conducted under summer conditions, while P. taxon Pgchlamydo caused the largest lesions during the winter stem wound inoculation test. Phytophthora gonapodyides, P. taxon Pgchlamydo and P. siskiyouensis have previously been found associated with necrotic alder roots and bole cankers in the field, and with the pathogenicity results reported here, we have established these species as causes of Phytophthora root disease and Phytophthora bole canker of alder in Oregon. While none of the Phytophthora species were especially aggressive towards red alder in the pathogenicity tests, they did cause localized disease symptoms. By weakening the root systems or boles of alders, the Phytophthoras could be leaving alders more susceptible to other insects and pathogens.  相似文献   

12.
During the monitoring of the mycological complex on different forest tree species in the Biogradska Gora National Park in north‐east Montenegro, symptoms indicative of ash dieback caused by Hymenoscyphus fraxineus were observed on young Fraxinus excelsior trees in the protected virgin forest, including dieback of plants and branches, wilting of leaves and shoots leading to a “flag‐like” habitus, premature shedding of leaves and longitudinal bark necroses. Using standard isolation methods, slow‐growing cultures with numerous phialides, typical of the asexual phase of the ash dieback fungus, were obtained. In addition, petioles with numerous characteristic apothecia were also recorded. This is the first report of H. fraxineus on common ash in Montenegro. Possible pathways of introduction and implications of the findings are discussed.  相似文献   

13.
This study was initiated to investigate the possible role of Phytophthora species in white oak decline (Quercus alba) in southern Ohio at Scioto Trail State Forest. Surveys demonstrated the presence of four species of Phytophthora including one novel species. By far, the most common species was P. cinnamomi; P. citricola and P. cambivora were isolated infrequently. In few instances, P. cinnamomi was isolated from fine roots and necroses on larger roots. No special pattern of incidence was found, but P. cinnamomi was more commonly isolated from greater Integrated Moisture Index values suggesting moist lower bottomlands favour this Phytophthora species. When tree crown condition was examined relative to the presence of Phytophthora, no significant association was found. However, roots of declining P. cinnamomi‐infested trees had 2.5 times less fine roots than non‐infested and healthy trees, which was significantly different. The population densities of P. cinnamomi from declining trees were significantly greater than from healthy trees, suggesting increased pathogen activity that has the potential to cause dieback and decline and possibly the cause of a reduced fine root amount found on declining trees.  相似文献   

14.
Corymbia calophylla (marri), a keystone tree species in the global biodiversity hot spot of southwestern Australia, is suffering decline and mortality associated with a canker disease caused by the endemic fungus Quambalaria coyrecup. Phytophthora species are frequently isolated from the rhizosphere of C. calophylla, and a hypothesis is that Phytophthora root infection is predisposing C. calophylla to this endemic canker pathogen. Field surveys were conducted in both anthropogenically disturbed and undisturbed C. calophylla stands, from where a total of 100 rhizosphere soil samples, from both healthy and cankered trees, were collected. Phytophthora species were isolated from 26% of the samples collected, with Phytophthora incidence significantly higher on disturbed stands than in natural forests (73% and 27%, respectively). Five Phytophthora species were recovered, including P. cinnamomi, P. elongata, P. multivora, P. pseudocryptogea and P. versiformis. Under‐bark inoculations with the Phytophthora isolates caused significant lesion lengths in excised C. calophylla stems. Corymbia calophylla response to pot infestation trials in the glasshouse varied between Phytophthora species and isolates, with isolates of P. cinnamomi and P. multivora causing a significant reduction in seedling root volume and often leading to seedling death. This study demonstrates that root disease caused by Phytophthora species, especially P. cinnamomi and P. multivora, has the ability to adversely affect C. calophylla health. This study leads the way to do a dual inoculation trial with the canker pathogen Q. coyrecup, and different Phytophthora species to investigate if Phytophthora root infection predisposes C. calophylla to this canker disease.  相似文献   

15.
Pine plantations in Argentinian Patagonia cover ca. 95,000 ha in Chubut, Río Negro and Neuquén provinces. Exotic bark beetles (Orthotomicus laricis, Hylastes ater and Hylurgus ligniperda) commonly occur in freshly cut logs, stumps and slash. These beetles are vectors of “ophiostomatoid” fungi which include primary tree pathogens as well as important agents of blue stain. The aim of this study was to identify these beetle‐associated fungi. Sawing mills and pine plantations were surveyed three consecutive years. Fungal isolates from stained logs, processed wood and insect galleries were identified based on morphological and DNA sequence comparisons of ITS and β‐tubulin gene regions. Two Grosmannia, one Graphilbum and three Ophiostoma species were identified. Ophiostoma piliferum and O. peregrinum sp. nov. were the most frequently isolated taxa. O. peregrinum occurred in all provinces, colonizing different conifer species and, interestingly, also the native broadleaved species Nothofagus dombeyi. Pine plantation forestry in southern South America includes Argentina, Brazil, Chile, Paraguay and Uruguay. Emerging data from Argentina, Chile and Uruguay revealed some coincidences between these countries, but also several differences, probably, as a result of multiple introduction events.  相似文献   

16.
The fungus Sydowia polyspora is frequently isolated from conifers worldwide and is considered a pathogen on several hosts. Stone pine (Pinus pinea) is one of the most important forestry species throughout the Mediterranean basin due to the value of the edible pine nut. Stone pines showing tip dieback, needles with tan‐ to yellow‐coloured lesions and shoot death, observed in stands in Portugal, were sampled for analysis. Fungal colonies covered with cream‐coloured spore masses, were consistently obtained. Morphological and phylogenetic analyses of the ITS rDNA region enabled identification of these isolates as S. polyspora. Inoculation tests showed that the fungus caused lesions on excised P. pinea shoots. The symptoms observed might have a negative effect on pine nut production, and thus, evaluation of the impact of this disease is of relevance to future research. This paper is the first to report S. polyspora causing disease on P. pinea.  相似文献   

17.
Phytophthora agathidicida is the accepted causal agent of dieback in remnant stands of long‐lived indigenous New Zealand kauri (Agathis australis) and poses a significant threat to the long‐term survival of this species. Little is known about the effect of key soil physicochemical characteristics on the growth of P. agathidicida. In this study, we investigated the growth of P. agathidicida in soils collected from adjacent areas under original kauri forest, short rotation pine (Pinus radiata) plantation forest and grazed pastures. A growth response assay was used to quantify asexual (sporangia) and sexual (oospore) spore counts over 8 days in soils sampled from each land‐use. Significantly higher numbers of sporangia (p < 0.001) and oospores (p < 0.01) were found in pasture and pine forest soil within 2 days of the growth assay trials, suggesting these soils may favour asexual/sexual reproduction in the early stages of P. agathidicida establishment compared to kauri forest soils. Additionally, oospore production significantly increased over 8 days in pine forest soil, suggesting that with an increase in inoculum loads, these soils potentially act as pathogen reservoirs. The soil physicochemical properties (e.g., pH, C and N, phosphorus content and electrical conductivity) investigated in this study did not significantly correspond to spore count data between land‐uses, suggesting that differences in growth response are driven by other edaphic factors not explored in the present study.  相似文献   

18.
Root disease pathogens, including Armillaria, are a leading cause of growth loss and tree mortality in forest ecosystems of North America. Armillaria spp. have a wide host range and can cause significant reductions in tree growth that may lead to mortality. DNA sequence comparisons and phylogenetic studies have allowed a better understanding of Armillaria spp. taxonomic diversity. Genetic sequencing has facilitated the mapping of species distributions and host associations, providing insights into Armillaria ecology. These studies can help to inform forest management and are essential in the development of disease risk maps, leading to more effective management strategies for Armillaria root disease. Armillaria surveys were conducted on publicly owned lands in North Dakota, South Dakota, and Nebraska, U.S.A. Surveyed stands consisted of riparian forests ≥0.4 hectares in area. Armillaria was found at 78 of 101 sites. A total of 57 Armillaria isolates—associated with 12 host tree species—were used for DNA sequencing of the translation elongation factor‐1 alpha (tef1) gene. Armillaria gallica was the only species identified within the study sites. Results suggest that A. gallica is a common root pathogen of hardwood trees in riparian forests of the northern Great Plains with a wider host range and geographic distribution than previously recognized.  相似文献   

19.
Thirty‐two oak stands in southern Sweden, 27 with predominantly declining trees and five with a higher proportion of healthy trees were investigated regarding the presence of soilborne Phytophthora species. Phytophthora quercina, an oak‐specific fine root pathogen, was isolated from rhizosphere soil samples in 10 of the 27 declining stands. Additionally, P. cactorum and P. cambivora were recovered from one stand each. No Phytophthora species were isolated from the healthy oak stands. The soil conditions at the sites from which Phytophthora spp. were recovered ranged from mesic sediments to moraines, with clayey to silty textures and with soil pH (BaCl2) between 3.5 and 5.0. The results show that P. quercina is geographically widespread in oak stands in southern Sweden and indicate that this pathogen may be one of the factors involved in oak decline in Northern Europe as has already been shown for western, Central and parts of southern Europe.  相似文献   

20.
Five Phytophthora species were isolated from the rhizosphere of ash‐dominated areas of the Bia?owieza European lowland forest nature reserve area. Morphological and DNA analyses identified Phytophthora fragariaefolia, P. plurivora, P. cactorum, P. lacustris and P. pseudosyringae. This is the first record of P. fragariaefolia in ash forests and demonstrates that several species in the potentially highly damaging Phytophthora genus are present within a near‐pristine ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号