首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Despite the importance of mucilage for soil–plant relations, little is known about the effect of soil drying on mucilage exudation. We introduce a method to collect mucilage from maize growing in wet and dry soils. Mucilage was collected from brace roots. The amount of mucilage exuded did not change with soil water content and transpiration rate. Mucilage exuded in dry soils had a higher degree of hydrophobicity, suggesting that the wetting properties of mucilage change in response to soil drying.  相似文献   

2.
Root mucilage may play a prominent role in understanding root water uptake and, thus, there is revived interest in studying the function of root mucilage. However, mucilage research is hampered by the tedious procedures of mucilage collection. We developed a mucilage separator which utilizes low centrifugal forces (570 rpm) to separate the mucilage from seminal roots without the need of handling individual seeds or removing the germinated seeds from the tray/mesh to a centrifuge tube. For the different plant species, between 1 and 3.7 mL tray?1 of hydrated mucilage could be produced, with 6 trays being handled successively within 45 min. For Triticum aestivum, which showed a dry matter content of 0.5%, this was equivalent to 98.6 mg mucilage dry matter. The lowest total production was found for Zea mays with just 34 mg dry matter. The amounts of mucilage produced normalized to root tip agree well with literature data. The mucilage obtained by the new method was used to measure its effect on repellency of soil as this property directly relates to the phenomenon of lower rhizosphere soil water content during rewetting. It could be shown that repellency of the rhizosphere is affected by the quantity as well as by species‐dependent quality of mucilage in the rhizosphere. Among the species tested (Lupinus albus, Vicia faba, Zea mays, Triticum aestivum), the largest differences were observed between the two legumes. For Zea mays seminal root mucilage obtained with the new system was compared to mucilage of air born brace roots. The differences between these two mucilages, representing different root orders, indicate clearly that there is still a need for methods which enable the investigation of roots from older plants.  相似文献   

3.
Increasing grazing intensities of sheep and goats can lead to an increasing degradation of grasslands. We investigated four plots of different grazing intensities (heavily grazed, winter‐grazed, ungrazed since 1999, and ungrazed since 1979) in Inner Mongolia, PR China, in order to study the effects of trampling‐induced mechanical stresses on soil hydraulic properties. Soil water transport and effective evapotranspiration under “heavily grazed” and “ungrazed since 1979” were modeled using the HYDRUS‐1D model. Model calibration was conducted using data collected from field studies. The field data indicate that grazing decreases soil C content and hydrophobicity. Pore volume is reduced, and water‐retention characteristics are modified, the saturated hydraulic conductivity decreases, and its anisotropy (vertical vs. horizontal conductivity) is influenced. Modeling results revealed higher evapotranspiration on the ungrazed site (ungrazed since 1979) compared to the grazed site (heavily grazed) due to wetter soil conditions, more dense vegetation, litter cover, and decreased runoff and drainage, respectively. Grazing modified the partitioning of evapotranspiration with lower transpiration and higher evaporation at the grazed site owing to reduced root water uptake due to reduced evaporation and a patchy soil cover.  相似文献   

4.
Take home message Mucilage secreted by roots and EPS produced by microorganisms alter the physical properties of the soil solution and impact the water dynamics in the rhizosphere. The high viscosity of mucilage and EPS is responsible for the formation of thin filaments and interconnected thin lamellae that span throughout the soil matrix maintaining the continuity of the liquid phase across the pore space even during severe drying. The impact of these mechanisms on plant and microorganisms needs to be explored.  相似文献   

5.
Solute transport from the bulk soil to the root surface is, apart from changes in soil moisture and plant nutrient uptake, a prerequisite for changes in soil osmotic potential (Ψo). According to the convection‐diffusion equation, solute transport depends on a number of parameters (soil moisture–release curve, hydraulic conductivity, tortuosity factor) which are functions of soil texture. It was thus hypothesized that soil texture should have an effect on the formation of Ψo gradients between bulk soil and the root surface. The knowledge about such gradients is important to evaluate water availability in the soil‐plant‐atmosphere continuum (SPAC). A linear compartment system with maize grown under controlled conditions in two texture treatments (T1, pure sand; T2, 80% sand, 20% silt) under low and high initial application of salts (S1, S2) was used to measure the development of Ψo gradients between bulk soil and the root surface by microscale soil‐solution sampling and TDR sensors. The differences in soil texture had a strong impact on the formation of Ψo gradients between bulk soil and the root surface at high and low initial salt application rate. At high initial salt application, a maximum osmotic‐potential gradient (ΔΨo) of –340 kPa was observed for the texture treatment T2 compared to ΔΨo of –180 in T1. The steeper gradients in osmotic potential in treatment T2 compared to T1 corresponded to higher cumulative water consumption in this treatment which can partly be explained by higher soil hydraulic conductivity in the range of soil matric potentials covered during the duration of the experiments. Differences between texture treatments in Ψo at the root surface did not result in differences in plant‐water relations measured as gas‐exchange parameters (transpiration rate, water‐use efficiency) and leaf osmotic potential. If soil osmotic and matric potential are regarded as additive in calculating the driving force for water movement from the soil into the root, the observed differences in water flux between treatments cannot be explained.  相似文献   

6.
To investigate the effect of plants on soil water repellency (SWR), two column experiments with wheat (Triticum aestivum) and alfalfa (Medicago sativa) with a growing period of three months had been carried out under constant and near‐natural climatic conditions. Model soils with defined wettability were created by mixing a natural sandy loam subsoil with different proportions of a wettable and a hydrophobized pure quartz sand, resulting in a wettable model soil and three model soils with increasing level of subcritical SWR (initial contact angle CA > 0° and < 90°). Results showed a significant decrease of the mean CA after the experiments compared to the initial CA while the mean CA was constant for plant free columns used as a reference. CA as a function of depth in some cases showed a depth dependent variation with decreased CA at the bottom or as well at top and bottom. The deviation from the initial CA was most pronounced for wheat under constant climatic conditions. Changes in CA could be related to changes in pH, i.e., CA was decreased and pH increased. Subcritical WR at the beginning of the growth period affected significantly the moisture content profiles during the entire growing season as well as plant dry mass production. We expect that plant root exudates of plants widely used for foot production cause directly or indirectly pH‐related modifications of the WR level in the root zone dependent on plant species and the ambient climatic conditions.  相似文献   

7.
Knowledge of hydraulic functions is required for various hydrological and plant‐physiological studies. The evaporation method is frequently used for the simultaneous determination of hydraulic functions of unsaturated soil samples, i.e., the water‐retention curve and hydraulic‐conductivity function. All methodic variants of the evaporation method suffer from the limitation that the hydraulic functions can only be determined to a mean tension of ≈ 60 kPa. This is caused by the limited measurement range of the tensiometers of typically 80 kPa on the dry end. We present a new, cost‐ and time‐saving approach which overcomes this restriction. Using the air‐entry pressure of the tensiometer's porous ceramic cup as additional defined tension value allows the quantification of hydraulic functions up to close to the wilting point. The procedure is described, uncertainties are discussed, and measured as well as simulated test results are presented for soil samples of various origins, different textures (sand, loam, silt, clay, and peat) and variable dry bulk density. The experimental setup followed the system HYPROP which is a commercial device with vertically aligned tensiometers that is optimized to perform evaporation measurements. During the experiment leaked water from the tensiometer interior wets the surrounding soil of the tensiometer cup and can lead to a tension retardation as shown by simulation results. This effect is negligible when the tensiometers are embedded vertically. For coarsely textured soils and horizontal tensiometer alignment, however, the retardation must be considered for data evaluation.  相似文献   

8.
Vegetation restoration efforts (planting trees and grass) have been effective in controlling soil erosion on the Loess Plateau (NW China). Shifts in land cover result in modifications of soil properties. Yet, whether the hydraulic properties have also been improved by vegetation restoration is still not clear. The objective of this paper was to understand how vegetation restoration alters soil structure and related soil hydraulic properties such as permeability and soil water storage capacity. Three adjacent sites with similar soil texture, soil type, and topography, but different land cover (black locust forest, grassland, and cropland) were selected in a typical small catchment in the middle reaches of the Yellow River (Loess Plateau). Seasonal variation of soil hydraulic properties in topsoil and subsoil were examined. Our study revealed that land‐use type had a significant impact on field‐saturated, near‐saturated hydraulic conductivity, and soil water characteristics. Specifically, conversion from cropland to grass or forests promotes infiltration capacity as a result of increased saturated hydraulic conductivity, air capacity, and macroporosity. Moreover, conversion from cropland to forest tends to promote the creation of mesopores, which increase soil water‐storage capacity. Tillage of cropland created temporarily well‐structured topsoil but compacted subsoil as indicated by low subsoil saturated hydraulic conductivity, air capacity, and plant‐available water capacity. No impact of land cover conversion on unsaturated hydraulic conductivities at suction > 300 cm was found indicating that changes in land cover do not affect functional meso‐ and microporosity. Our work demonstrates that changes in soil hydraulic properties resulting from soil conservation efforts need to be considered when soil conservation measures shall be implemented in water‐limited regions. For ensuring the sustainability of such measures, the impact of soil conversion on water resources and hydrological processes needs to be further investigated.  相似文献   

9.
Sarkar et al. (this issue) proposed a laboratory measurement method for obtaining the hydraulic conductivity of soil at near‐saturated moisture conditions, bridging the gap between measurements that can be obtained with the evaporation method in the medium dry region, and measurements of the saturated conductivity by traditional methods. The method is based on a tension infiltration on a limited part of the surface of a soil sample and drainage of the sample at the same tension, leading to a divergent flow field. Despite equal tensions at top and bottom of the sample (“unit gradient”), the water flux in the sample is smaller than the corresponding value of the soil hydraulic conductivity at the applied tension. From numerical analysis of the flow problem, they concluded that unsaturated conductivity can be obtained with an accuracy of 10% for all texture classes of the USDA soil texture triangle. In this paper, we test the methodology for three different soil types using an appropriate apparatus. The results match well with independent saturated conductivity measurements on the wet side, and with unsaturated conductivity measurements in the medium moisture range that were obtained with the evaporation method.  相似文献   

10.
Simplified algebraic equations are derived to calculate directly the Brooks and Corey model parameters using data obtained from one‐step outflow experiments and saturated hydraulic conductivity. The suggested method has been demonstrated only for horticultural substrates and is verified experimentally for four substrates with satisfactory agreement of the results.  相似文献   

11.
Plant fine roots are subject to continual turnover, i.e., old roots die during the plant life cycle and are quickly replaced by new roots. New roots grow partly into undepleted soil areas and can take up nutrients at a higher rate than old roots. This is one possible advantage of root turnover. It has been shown that root turnover of several plant species increases when P and/or K supply is limited, indicating an efficiency mechanism. The objective of this study was to assess the maximum benefit for nutrient uptake by root turnover and to determine which soil or plant properties influence this process. Based on a data set of field‐grown faba beans, a sensitivity analysis with a transport and uptake model was performed, i.e., several input parameters were systematically varied to assess their importance for nutrient uptake of a root system with and without fine‐root turnover. The calculations were based on the assumptions that all new roots grow into undepleted soil areas and that no inter‐root competition occurs. Model calculations indicated that a root system with a high but realistic turnover rate can take up twice the amount of P or K compared to a stable root system without any turnover. This benefit on uptake is higher at low concentrations of these nutrients in soil solution, low soil water content, or high maximum inflow. However, measured uptake under poor conditions of nutrient supply is often higher than calculated uptake, even when root turnover is taken into account. This indicates that root turnover might be an efficiency mechanism, but not the only one.  相似文献   

12.
The S‐theory for soil physical quality is introduced. It is shown how values of S can be determined from the water retention characteristic curve. It is also explained how, when experimental data are not available, pedotransfer functions can be used to obtain estimates of S. Although S was first introduced as an index of soil physical quality, it is being increasingly found that it is a useful numerical quantity that can be used in equations for prediction of a range of soil physical properties. Its use is illustrated with examples for hydraulic conductivity, friability, tillage, compaction, penetrometer resistance, plant‐available water, root growth and readily dispersible clay. The main merit of S derives from the fact that given values of S have the same meaning and consequences in different soils. It is described how S can be used to identify areas of land where physical degradation or amelioration are taking place, and to evaluate management practices that will give sustainable land use. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Knowledge of the soil hydraulic functions is required for various hydrological studies and for the simulation of water and solute fluxes in unsaturated soils. Sand/kaolin boxes are frequently used to determine these properties in the low‐tension range. For higher tensions the pressure plate extractor is mainly applied. The extended evaporation method allows a more efficient determination of the water‐retention curve in an adequate range. Besides this method enables to quantify simultaneously the unsaturated hydraulic‐conductivity function. The objective of this study was to compare the water‐retention curves obtained from the standard methods (STM) with those determined with the extended evaporation method (EEM). A set of 90 natural soil samples of different texture and origin was analyzed, and the agreement between the methods was statistically evaluated. The average water‐content deviation (AWCD) of all samples was 1.83 vol.%, and the root mean square error (RMSE) 2.08 vol.%. The deviation of soil water‐storage capacity in the pore‐size classes 0–6, 6–30, 30–500, 500–1500 kPa varied between minimum –0.17 and 0.25 vol.% and maximum –2.89 and 2.36 vol.%, and confirmed the good comparability among the adopted methods. Systematic deviations between the methods were not found.  相似文献   

15.
A principal challenge in erosion control is the integration of the many technical and non‐technical issues that affect the acceptance of soil conservation measures by land users. This first paper in a three‐part series considers the main criteria at farm level: biophysical efficiency; productivity and sustainability; and socio‐economic acceptability. A model is developed to integrate these various components into a decision‐making framework for soil conservation at the farm level. With the particular conditions of the Loess Plateau in China, land degradation comprises a number of key biophysical and socio‐economic variables. The model components therefore include available water storage capacity of the soil as an index of productivity, the organic matter and mineral soil balance to reflect the major changes to the soil when eroded, and cost‐benefit analysis to determine the economic wisdom of devoting household resources to land improvement. The model is calibrated using data from the Nihegou Catchment near Chunhua in the southern part of the Loess Plateau. Through simulation runs, this model enables a better understanding of erosion–productivity–time relationships. Although relatively simple, the model successfully encompasses the processes of greatest significance to agricultural development in this part of China. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Using the simulation model described in Part I, this paper examines the impact of erosion on soil productivity, how the impact varies according to initial soil conditions and organic matter management and the economic cost of erosion measured as net present value. The reference crop is winter wheat grown in Chunhua in the southern Loess Plateau. Biomass yield is plotted over 100 years for four erosion scenarios represented by 0, 9, 27 and 47 per cent slopes, three initial soil conditions indicated by 0·5, 1 and 2 per cent organic matter, and two management levels determined by high or low levels of reincorporation of organic residues. Calculations of soil productive half‐life (time to half initial yield) and whole‐life (to equilibrial yield) are presented. The principal findings are that decline in soil productivity is caused by both erosion and insufficient return of organic matter. By increasing organic matter input, erosion damage is offset and soil productive life prolonged, but this is a costly strategy. If yield decline caused by erosion is isolated, erosion control is more important on a high organic matter input system. A maximum soil productive half‐life of 600 years is achieved with no erosion, high initial organic matter and return of organic residues; minimum half‐life of 10 years is with high erosion, low initial organic matter and little return of residues. In between, there are complicated interactions that significantly affect the economic cost of erosion and hence the decisions farmers make in investing in conservation practices. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Accumulation of phosphorus (P) in agricultural topsoils can contribute to leaching of P which may cause eutrophication of surface waters. An understanding of P mobilization processes in the plough layer is needed to improve agricultural management strategies. We compare leaching of total dissolved and particulate P through the plough layer of a typical Danish sandy loam soil subjected to three different P fertilizer regimes in a long‐term field experiment established in 1975. The leaching experiment used intact soil columns (20 cm diameter, 20 cm high) during unsaturated conditions. The three soils had small to moderate labile P contents, expressed by water‐extractable P (3.6–10.7 mg/kg), Olsen P (11–28 mg/kg) and degree of P saturation (DPS) (25–34%). Mobilization of total dissolved P (TDP) increased significantly (P < 0.05) from the intact soil columns with increasing labile P, whereas the increase in particulate P (PP) with increasing labile P content was modest and statistically insignificant. We found concentrations up to 1.5 mg TP/L for the plough layer of this typical Danish sandy loam soil. This highlights that even a moderate labile P content can be a potential source of TDP from the plough layer, and that a lower concentration margin of optimum agronomic P levels should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号