首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The principal objective of this research project is to study the breakdown mechanism of Jack pine (Pinus banksiana) earlywood (EW) and latewood (LW) in thermomechanical pulping by means of microscopic observations. Characteristics such as fiber splitting, shortening, delamination (internal fibrillation), external fibrillation, etc. are evaluated. Physical changes in the EW and LW fibers are qualified and quantified with the aid of light microscopy as well as scanning electron microscopy. The impacts of the observed changes on pulp and paper properties are assessed to establish possible interrelation between the fiber characteristics and paper properties.  相似文献   

2.
Summary Measurements of the air pressure required to initially displace a saturating liquid and allow a slow continuous stream of air bubbles to pass through wood cross sections of different thickness, together with the equilibrium surface tension of the saturating liquid, make it possible to calculate the maximum effective opening radii. Previous measurements were made for wood as a whole over complete annual rings. Measurements reported here were made separately for earlywood and latewood. Extrapolating plots of the maximum effective opening radius-cross section thickness, for thicknesses below the maximum fiber length, to zero thickness gave maximum lumen radii of 16 m for the earlywood and 10.3 m for the latewood. The values are only slightly greater than the calculated average values. Extrapolating the plots in the opposite direction to zero opening radius gave approximate maximum lumen or fiber lengths for the earlywood of 6 mm and for the latewood of 5 mm. The maximum effective opening radii for cross sections thicker than the maximum fiber length give maximum effective communicating pore radii. These values continue to decrease, with increasing thickness of the cross sections due to the decreasing probability of the largest openings falling in any one series path through the structures. The maximum effective pit pore radius for passage through fifty pits in series was 0.8 m for the earlywood and 0.28 m for the latewood.Paper No. 3787 of the Journal Series of North Carolina State University Agricultural Experiment Station, Releigh, N. C.  相似文献   

3.
  • ? Each annual ring in pines consists of earlywood and latewood with considerable difference in density and width. To get a better determination of the genetic regulation of total wood density in Scots pine (Pinus sylvestris L.), density and width of those ring sections were measured in annual ring numbers 12 to 21 of Scots pines in a full-sib progeny test. Tree height and stem diameter were also measured.
  • ? Heritabilities for the annual ring sections increased with age for earlywood density from 0.08 to approximately 0.25; latewood density showed similar reductions. Heritability over all 10 annual rings was 0.25 for earlywood density, 0.22 for latewood density, 0.29 for height and 0.10 for stem diameter. Genetic correlations between earlywood and latewood density and growth traits were negative, while they were strongly positive between densities of adjacent annual rings (0.70–1.0).
  • ? Despite the higher heritability of earlywood density, the strong positive genetic correlation between those traits indicates little benefit from focusing solely on earlywood density when selecting for wood density. Analysing earlywood and latewood separately does not benefit from including the width of the corresponding ring section as a covariate. Juvenile wood may possibly turn into mature wood 15–20 y from the pith.
  •   相似文献   

    4.
    The interactions of alkaline copper quat (ACQ) components with the earlywood and latewood tissues of southern pine were investigated. There was a highly significant redistribution of the copper amine component from the earlywood to the latewood during post-treatment fixation at 50°C, which was mainly attributed to diffusion of copper amine from the earlywood into the latewood. A small amount of copper amine redistributed between the tissues and toward the wood surfaces during drying following fixation. The redistribution within the wood was similar whether the preservative penetrated longitudinally, tangentially, or radially into the wood during pressure treatment. This redistribution resulted in lower solubility of copper, and this effect contributes to the overall copper fixation in ACQ-treated wood. The quat component did not significantly diffuse after treatment, and its concentration remained much higher in the earlywood compared to the latewood.  相似文献   

    5.
    This paper presents a method which makes it possible to measure elastic properties of a small group of tracheids in the transverse plane. The method is based on tensile tests under microscope that are performed with the assistance of an image analysis system. The calculation of the strain field is based on a global comparison of the grey levels between each deformed image and the initial image. All tests were carried out within one annual ring of spruce: • radial and tangential Young's modulus and Poisson's ratio can be measured in earlywood with a good accuracy, • radial Young's modulus and Poisson's ratio of tracheids in latewood can be estimated with good confidence, • two tests of very thin samples allowed the evaluation of the tangential elastic modulus in latewood. The small size of the sample together with the local measurement of the strain field permitted us to perform several measurements along one single annual ring. Consequently, it was possible to reveal a good relationship between the mechanical properties and the local density determined by microdensitometry. Received 27 October 1997  相似文献   

    6.

    Key message

    Below-crown hydraulic resistance, a proxy for below-ground hydraulic resistance, increased during drought in Scots pine, but larger increases were not associated to drought-induced defoliation. Accounting for variable below-ground hydraulic conductance in response to drought may be needed for accurate predictions of forest water fluxes and drought responses in xeric forests.

    Context

    Hydraulic deterioration is an important trigger of drought-induced tree mortality. However, the role of below-ground hydraulic constraints remains largely unknown.

    Aims

    We investigated the association between drought-induced defoliation and seasonal dynamics of below-crown hydraulic resistance (a proxy for below-ground hydraulic resistance), associated to variations in water supply and demand in a field population of Scots pine (Pinus sylvestris L.)

    Methods

    Below-crown hydraulic resistance (rbc) of defoliated and non-defoliated pines was obtained from the relationship between maximum leaf-specific sap flow rates and maximum stem pressure difference estimated from xylem radius variations. The percent contribution of rbc to whole-tree hydraulic resistance (%rbc) was calculated by comparing stem water potential variations with the water potential difference between the leaves and the soil.

    Results

    rbc and %rbc increased with drought in both defoliated and non-defoliated pines. However, non-defoliated trees showed larger increases in rbc between spring and summer. The difference between defoliation classes is unexplained by differences in root embolism, and it is possibly related to seasonal changes in other properties of the roots and the soil-root interface.

    Conclusion

    Our results highlight the importance of increasing below-ground hydraulic constraints during summer drought but do not clearly link drought-induced defoliation with severe below-ground hydraulic impairment in Scots pine.
      相似文献   

    7.
    This study focused on the distribution of wood components along a cross section of a spruce stem. Thin samples of earlywood and latewood were analysed by special micro-scale analytical techniques. Heartwood contained significantly more lignin and less cellulose than sapwood. The total content of hemicelluloses was the same along the radial direction, but the distribution of sugar units differed. The amounts of arabinoglucuronoxylan and pectins were larger in the heartwood. The transition zone between heartwood and sapwood had a specific composition, with less lignin and lipophilic extractives than heartwood and sapwood. For earlywood and latewood, significant differences were found in the distribution of sugar units in hemicelluloses. Latewood contained clearly more galactoglucomannan than earlywood, and conversely less pectins. The lipophilic extractives were also less concentrated in the latewood.Abbreviations EW or E earlywood - LW or L latewood - HW heartwood - SW sapwood - TZ transition zone wood - A.R. annual ring - AcBr Acetyl bromide - Ara arabinose - Xyl xylose - Gal galactose - Glc glucose - Man mannose - Rha rhamnose - GlcA glucuronic acid - MGlcA 4-O-methyl-glucuronic acid - GalA galacturonic acid - o.d. oven dry  相似文献   

    8.
    We studied the influence of two irradiances on cold acclimation and recovery of photosynthesis in Scots pine (Pinus sylvestris L.) seedlings to assess mechanisms for quenching the excess energy captured by the photosynthetic apparatus. A shift in temperature from 20 to 5 degrees C caused a greater decrease in photosynthetic activity, measured by chlorophyll fluorescence and oxygen evolution, in plants exposed to moderate light (350 micromol m(-2) s(-1)) than in shaded plants (50 micromol m(-2) s(-1)). In response to the temperature shift, maximal photochemical efficiency of photosystem II (PSII), measured as the ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) of dark-adapted samples, decreased to 70% in exposed seedlings, whereas shaded seedlings maintained Fv/Fm close to initial values. After a further temperature decrease to -5 degrees C, only 8% of initial Fv/Fm remained in exposed plants, whereas shaded plants retained 40% of initial Fv/Fm. Seven days after transfer from -5 to 20 degrees C, recovery of photochemical efficiency was more complete in the shaded plants than in the exposed plants (87 and 65% of the initial Fv/Fm value, respectively). In response to cold stress, the estimated functional absorption cross section per remaining PSII reaction center increased at both irradiances, but the increase was more pronounced in exposed seedlings. Estimates of energy partitioning in the needles showed a much higher dissipative component in the exposed seedlings at low temperatures, pointing to stronger development of non-photochemical quenching at moderate irradiances. The de-epoxidation state of the xanthophyll cycle pigments increased in exposed seedlings at 5 degrees C, contributing to the quenching capacity, whereas significant de-epoxidation in the shaded plants was observed only when temperatures decreased to -5 degrees C. Thermoluminescence (TL) measurements of PSII revealed that charge recombinations between the second oxidation state of Mn-cluster S2 and the semireduced secondary electron acceptor quinone Q(B)- (S2Q(B)-) were shifted to lower temperatures in cold-acclimated seedlings compared with control seedlings and this effect depended on irradiance. Concomitant with this, cold-acclimated seedlings demonstrated a significant shift in the S2 recombination with primary acceptor Q(A)- (S2Q(A)-) characteristic TL emission peak to higher temperatures, thus narrowing the redox potential gap between S2Q(B)- and S2Q(A)-, which might result in increased probability for non-radiative radical pair recombination between the PSII reaction center chlorophyll a (P680+) and Q(A)- (P680+)Q(A)-) (reaction center quenching) in cold-acclimated seedlings. In Scots pine seedlings, mechanisms of quenching excess light energy in winter therefore involve light-dependent regulation of reaction center content and both reaction center-based and antenna-based quenching of excess light energy, enabling them to withstand high excitation pressure under northern winter conditions.  相似文献   

    9.
    We investigated the cellular responses of stem tissues of mature Scots pine (Pinus sylvestris L.) trees to inoculations with two fungal pathogens. The bark beetle vectored fungus, Leptographium wingfieldii Morelet, induced longer lesions in the bark, stronger swelling of polyphenolic parenchyma cells, more polyphenol accumulation and increased ray parenchyma activity compared with the root rot fungus, Heterobasidion annosum (Fr.) Bref., or mechanical wounding. Axial resin ducts in the xylem are a general feature of the preformed defenses of Scots pine, but there was no clear induction of additional traumatic axial resin ducts in response to wounding or fungal infection. The anatomical responses of Scots pine to pathogen infection were localized to the infection site and were attenuated away from bark lesions. The responses observed in Scots pine were compared with published studies on Norway spruce (Picea abies (L.) Karst.) for which anatomically based defense responses have been well characterized.  相似文献   

    10.
    The growth patterns of annually resolved tree rings are good indicators of local environmental changes, making dendrochronology a valuable tool in air pollution research. In the present study, tree-ring analysis was used to assess the effects of 16 years (1991–2007) of chronic nitrogen (N) deposition, and 10 years (1991–2001) of reduced nitrogen input, on the radial growth of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) growing in the experimental area of Lake Gårdsjön, southwest Sweden. In addition to the ambient input of c. 15 kg N ha?1 year?1, dissolved NH4NO3 was experimentally added to a 0.52-ha watershed at a rate of c. 40 kg ha?1 year?1. Atmospheric N depositions were reduced by means of a below-canopy plastic roof, which covered a 0.63-ha catchment adjacent to the fertilized site. The paired design of the experiment allowed tree growth in the N-treated sites to be compared with the growth at a reference plot receiving ambient N deposition. Nitrogen fertilization had a negative impact on pine growth, while no changes were observed in spruce. Similarly, the reduction in N and other acidifying compounds resulted in a tendency towards improved radial growth of pine, but it did not significantly affect the spruce growth. These results suggest that spruce is less susceptible to changes in the acidification and N status of the forest ecosystem than pine, at least in the Gårdsjön area.  相似文献   

    11.
    Fluctuations in nitrate reductase activity (NRA), nitrate, nitrite, protein and total nitrogen content of bare-root Scots pine seedlings (Pinus sylvestris L.) raised outdoors were investigated during the first growing season. Nitrate reductase activity was higher in roots than in needles, whereas NO(3) (-) content was higher in needles than in roots and increased in both from June to October. Nitrate reductase activity in roots correlated more closely with NO(3) (-) N in the soil than did NO(3) (-) in the roots. In autumn, there was a closer correlation between foliar NRA and NO(3) (-) in the needles than with NO(3) (-)-N in the soil. Nitrite was not detected in the seedlings during the growing season. Total nitrogen content decreased toward the autumn, whereas protein content initially decreased but increased again in autumn. Acrylic netting placed above the seedlings increased both air and soil temperatures and apparently accelerated the use of nitrate.  相似文献   

    12.
    We studied the effects of broad-spectrum light quality on the interaction between the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch and Scots pine (Pinus sylvestris L.) seedlings and hypocotyl cuttings cultured in vitro. The light sources were cool white (CW), warm white (WW) and red-rich daylight (RD) fluorescent lamps. Inoculation with P. tinctorius enhanced adventitious root formation of the cuttings in all light treatments. Rooting of the inoculated cuttings was highest in WW light (89%), followed by CW (73%) and RD light (66%). During 6 weeks of in vitro culture, rooted cuttings formed only a few lateral roots. The fungus grew over lateral roots, but the Hartig net was absent in all light treatments. In non-inoculated cuttings, neither root formation nor subsequent root growth was affected by light quality. In the seedling experiment, inoculation in the WW treatment resulted in a significantly (P < 0.05) greater number of lateral roots than inoculation in the RD treatment. The percentage of lateral roots covered with fungal hyphae was also highest in WW light (62%), followed by CW (50%) and RD (27%) light. A similar pattern was observed in the intensity of Hartig net formation. We conclude that effects of broad-spectrum light quality on the ectomycorrhizal fungus-root interaction are dependent on the developmental stage of the root.  相似文献   

    13.
    Stem respiration in 20-year-old Scots pine (Pinus sylvestris L.) trees was examined following 5 years of exposure to ambient conditions (CON), elevated atmospheric carbon dioxide concentration ([CO2]) (ambient + 350 micromol mol(-1), (EC)), elevated temperature (ambient + 2-6 degrees C, (ET)) or a combination of elevated [CO2] and elevated temperature (ECT). Stem respiration varied seasonally regardless of the treatment and displayed a similar trend to temperature, with maximum rates occurring around Day 190 in summer and minimum rates in winter. Respiration normalized to 15 degrees C (R15) was higher in the growing season than in the non-growing season, whereas the temperature coefficient (Q10) was lower in the growing season. Annually averaged R15 was 0.36, 0.43, 0.40 and 0.44 micromol m(-2) s(-1) under CON, EC, ET and ECT conditions, respectively, whereas the corresponding values for total stem respiration were 6.55, 7.69, 7.50 and 7.90 mol m(-2) year(-1). The EC, ET and ECT treatments increased R15 by 18, 11 and 22%, respectively, relative to CON, and increased the modeled annual total stem respiration by 18, 15 and 21%. The increase in modeled annual stem respiration under EC and ECT conditions was caused mainly by higher maintenance respiration (22 and 25%, respectively, whereas the increase in growth respiration was 9 and 12%). Growth respiration was unaltered by ET. The treatments did not significantly affect the respiratory response to stem temperature; the mean Q10 value was 2.04, 2.10, 1.99 and 2.12 in the CON, EC, ET and ECT treatments, respectively. It is suggested that the increase in stem respiration was partly a result of the increased growth rate. We conclude that elevated [CO2] increased the maintenance component of respiration more than the growth component.  相似文献   

    14.
    We previously traced 10B-enriched boric acid from shoots to roots to demonstrate the translocation of boron (B) in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings. To gain a more detailed understanding of B translocation, we sought: (1) to demonstrate B retranslocation directly, by showing that foliar-applied 10B is located in the new growth after dormancy; and (2) to assess whether shoot-applied B affects growth in the long term. We applied 10B-enriched boric acid to needles of Scots pine and Norway spruce seedlings. After a dormancy period and 9 weeks of growth, small but significant increases in the 10B isotope were found in the new stem and needles of both species. In Scots pine, the total B concentration of the new stem was also increased. Both species contained polyols, particularly pinitol and inositol. Boron-polyol complexes may provide a mechanism for mobilizing B in these species. To determine the long-term effects of applied B, seedlings were grown for two growing seasons after the application of 10B to shoots. In Norway spruce, the proportion of 10B in the root systems and current needles of the harvest year was slightly higher than in the controls, and in Scots pine root systems, marginally so. The B treatment had no effect on growth of Norway spruce seedlings. In Scots pine seedlings, the B treatment caused a 33% increase in total dry mass and significantly increased the number of side branches.  相似文献   

    15.
    This research investigates wood defects, particularly the formation of surface cracks, during the production of thermally modified wood and its exposure to cyclic moisture changes. Boards of Norway spruce and Scots pine originating from different steps within the production of ThermoWood® were collected and wood defects were investigated at macroscopic and microscopic scale. Subsequently, the wood was exposed to capillary wetting cycles to record its sensitivity towards cracking. After the modification process, typical anatomical defects of conventional kiln-drying became more frequent and severe, with the magnitude being to some extent depending on the presence of defects in the raw material. At microscopic scale, damages to ray parenchyma and epithelial cells as well as longitudinal cracks within the cell walls of earlywood tracheids were evident in thermally modified wood. Despite a lower water uptake and higher dimensional stability, thermally modified wood was more sensitive to surface cracking during wetting cycles than unmodified wood, i.e. at the outside face of outer boards (near bark). For limiting surface cracking of thermally modified wood during service life, the use of high-quality raw material, the exposure of the inside face of the boards (near pith) and the application of a surface coating are considered beneficial.  相似文献   

    16.
    We studied the ability of the ectomycorrhizal (ECM) fungi, Pisolithus tinctorius (Pers.) Coker and Couch and Paxillus involutus (Batsch) Fr. (Strain H), to produce indole-3-acetic acid (IAA) and to affect the formation and growth of roots on Scots pine (Pinus sylvestris L.) hypocotyl cuttings in vitro. Effects of indole-3-butyric acid (IBA) and the auxin transport inhibitor, 2,3,5-triiodobenzoic acid (TIBA), on rooting and the cutting-fungus interaction were also studied. Both fungi produced IAA in the absence of exogenous tryptophan, but the mycelium and culture filtrate of Pisolithus tinctorius contained higher concentrations of free and conjugated IAA than the mycelium and culture filtrate of Paxillus involutus. Inoculation with either fungus or short-term application of culture filtrate of either fungus to the base of hypocotyl cuttings enhanced root formation. Inoculation with either fungus was even more effective in enhancing root formation than treatment of the hypocotyl bases with IBA. Fungal IAA production was not directly correlated with root formation, because rooting was enhanced more by Paxillus involutus than by Pisolithus tinctorius. This suggests that, in addition to IAA, other fungal components play an important role in root formation. Treatment with 5 microM TIBA increased the rooting percentage of non-inoculated cuttings, as well as of cuttings inoculated with Pisolithus tinctorius, perhaps as a result of accumulation of IAA at the cutting base. However, the marked reduction in growth of Pisolithus tinctorius in the presence of TIBA suggests that the effects of TIBA on rooting are complicated and not solely related to IAA metabolism. The high IAA-producer, Pisolithus tinctorius, formed mycorrhizas, and the IBA treatment increased mycorrhizal frequency in this species, whereas TIBA decreased it. Paxillus involutus did not form mycorrhizas, indicating that a low concentration of IAA together with other fungal components were sufficient to stimulate formation and growth of the roots, but not the formation of ECM symbiosis.  相似文献   

    17.
    The response of free polyamines (putrescine, spermidine and spermine) in needles of Scots pine (Pinus sylvestris L.) to varying needle potassium concentrations was investigated in two potassium fertilization experiments on drained peatlands. A significant negative correlation was observed between putrescine and potassium concentrations in needles. Putrescine responded more sensitively to decreasing needle K concentrations during the growing season than during the winter. Putrescine accumulation started when needle potassium concentrations were above 5.5 mg g(dw) (-1) in summer and above 5.0 mg g(dw) (-1) in winter. A decrease in needle potassium concentrations below 4.3 mg g(dw) (-1) in summer and below 3.5 mg g(dw) (-1) in winter resulted in an exponential increase in putrescine concentrations. Putrescine accumulation was initiated well above the needle potassium concentrations generally considered indicative of deficiency. The exponential increase in putrescine concentrations in winter occurred within the range of needle potassium concentrations that has been identified as indicating severe potassium deficiency.  相似文献   

    18.
    19.
    The aim of this study was to investigate the differences in infections caused by Agrobacterium tumefaciens in a conifer, Scots pine (Pinus sylvestris), and in a non-host deciduous species, silver birch (Betula pendula). All the Agrobacterium tumefaciens strains tested caused crown-gall formation in both tree species, but the infection rates varied remarkably. In Scots pine, the development of galls was rare, and slower than in silver birch. Inoculation into the base of the stem were the most successful in gall induction. Silver-birch galls were large, often surrounding the whole stem, in contrast to Scots pine galls, which were characterized by their small size and neck-like connection with the host plant. In silver birch, no other morphological changes could be seen. In Scots pine, abnormal phenotypes with proliferating short shoots above the galls were observed during the second and third growing season. The results indicate that, of the two non-host tree species, the deciduous one, silver birch, is more susceptible to an A. tumefaciens infection than the conifer, Scots pine. The matrix for A. tumefaciens infection in silver birch differs from that in Scots pine, since the terpene compounds of Scots pine seem either to kill the agrobacteria or to suppress their growth. The differences between the species could be partly caused by their difference in sensitivity to phytohormones. These features reflect evolutionary incompatibility between A. tumefaciens and a gymnosperm.  相似文献   

    20.
    Stand Density Control Diagram (SDCD) is a stand-level mathematical model, which describes the relationships between yield, density and mortality throughout all stages of stand development. The SDCD is primarily used to derive density control schedules by management objectives. The main objectives of the present study are to define a modified model of SDCD for application to Scots pine (Pinus sylvestris L.) and Austrian black pine (Pinus nigra Arn.) plantations in Bulgaria, to examine the fitness of the model with representative experimental data sets from plantations of both species and to present a way of direct application of the SDCDs for practical purposes. The constructed SDCDs characterize the spatial-temporal dynamics of the pine plantations in a broad range of densities, forest sites and growth stages from 4 to 26 (28) m of dominant height class. The full density lines were fixed with self-thinning exponents α = 1.69 and α = 1.75 for Scots pine and Austrian black pine, respectively, and the trajectories of natural thinning for 23 initial densities (444-40000/ha) were determined. A direct way for application of the SDCDs to the plantation management was designed to estimate the optimal initial densities for the maximum attainable final yield and large-size wood production by self-thinning stands.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号