首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Cover crop and nitrogen(N) fertilization may maintain soil organic matter under bioenergy perennial grass where removal of aboveground biomass for feedstock to produce cellulosic ethanol can reduce soil quality. We evaluated the effects of cover crops and N fertilization rates on soil organic carbon(C)(SOC), total N(STN), ammonium N(NH_4-N), and nitrate N(NO_3-N) contents at the0–5, 5–15, and 15–30 cm depths under perennial bioenergy grass from 2010 to 2014 in the southeastern USA. Treatments included unbalanced combinations of perennial bioenergy grass, energy cane(Saccharum spontaneum L.) or elephant grass(Pennisetum purpureum Schumach.), cover crop, crimson clover(Trifolium incarnatum L.), and N fertilization rates(0, 100, and 200 kg N ha~(-1)). Cover crop biomass and C and N contents were greater in the treatment of energy cane with cover crop and 100 kg N ha~(-1) than in the treatment of energy cane and elephant grass. The SOC and STN contents at 0–5 and 5–15 cm were 9%–20% greater in the treatments of elephant grass with cover crop and with or without 100 kg N ha~(-1)than in most of the other treatments. The soil NO_3-N content at 0–5 cm was 31%–45% greater in the treatment of energy cane with cover crop and 100 kg N ha~(-1)than in most of the other treatments.The SOC sequestration increased from 0.1 to 1.0 Mg C ha~(-1)year~(-1)and the STN sequestration from 0.03 to 0.11 Mg N ha~(-1)year~(-1)from 2010 to 2014 for various treatments and depths. In contrast, the soil NH_4-N and NO_3-N contents varied among treatments,depths, and years. Soil C and N storages can be enriched and residual NO_3-N content can be reduced by using elephant grass with cover crop and with or without N fertilization at a moderate rate.  相似文献   

2.
Currently, the biomass of an invasive and obnoxious weed, kunai grass (Imperata cylindrica), is uncontrollably burnt in Papua New Guinea in subsistence farming systems resulting in unwarranted negative environmental consequences. We explored the possibility of sustainable utilization of biochar produced from the weed biomass along with a standard feedstock‐rice husk (Oryza sativa). Biochars were produced with lab‐scale pyrolysis at 550°C, characterized for chemical properties and plant nutrient composition. Further, agronomic efficacy of soil incorporation of biochars (5 t ha?1) or co‐applied with mineral fertilizers (100, 11, and 62 kg ha?1 N, P, K, respectively) was tested for sweet potato (Ipomoea batatas L. Lam) in a field experiment. The two biochars differed significantly (P < 5%) with respect to recovery from the feedstocks, chemical characters and nutrient composition. Kunai grass biochar was poorer in nutrients (< 1%) with distinctly alkaline pH and higher electrical conductivity. Biochar amendment to soil showed significant (P < 5%) improvement of soil moisture, while co‐application of biochars along with mineral fertilizers showed soil moisture decrease. Biochar amendment improved the growth parameters and total tuber yield of sweet potato by about 20%, while co‐application with mineral fertilizers augmented total tuber yield by 100% and above‐ground biomass yields by > 75%. Besides, improving agronomic performance of sweet potato crop, co‐application of biochars with mineral fertilizers enhanced uptake of N, P, K, Ca, Mg, and S. Production and utilization of biochar in sweet‐potato production could offer an efficient means of disposing biomass of kunai grass with concomitant productivity improvement in Papua New Guinea.  相似文献   

3.
Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and related improvements of soil functioning depend on biochar production conditions. Systematic evaluation of corresponding biochar characteristics is needed for more targeted and efficient biochar application strategies. Herein, we systematically review the effects of biochar pyrolysis temperature (175–950°C) and feedstock (corn stover, switchgrass and wood) on selected biochar characteristics (carbon content, H/C ratio, nitrogen content, pH, specific surface area, ash content and pore volume). These specific characteristics were selected as being pertinent to soil organic carbon sequestration and soil health improvement. Despite numerous studies on these topics, few have numerically quantified the effects of pyrolysis temperature. Our results show that high pyrolysis temperature (>500°C) increased carbon content and pore volume for wood biochar compared with low pyrolysis temperature (≤500°C). The high pyrolysis temperature decreased the H/C ratio and nitrogen content but increased pH, specific surface area and ash content regardless of feedstock. Compared with corn stover biochar and switchgrass biochar, wood biochar had higher carbon content and larger specific surface area but lower nitrogen and ash contents regardless of pyrolysis temperature. The higher biochar carbon content might be derived from higher lignin and cellulose contents of wood feedstock. Wood feedstock had 76%–109% more lignin and 27%–47% more cellulose than corn stover and switchgrass. Corn stover biochar had higher pH, and switchgrass biochar had larger pore volume than wood biochar. Our study indicates that the targeted production of biochar with specific characteristics can be facilitated by the selection of pyrolysis temperature and feedstock type. For amending soil with biochar, more operationally defined biochar production conditions and feedstock selection might be a way forward to wider acceptance and better predictability of biochar performance under field conditions.  相似文献   

4.
Abstract

Poor soil structure is the main cause of soil degradation; however, biochar the solid carbon-rich production of pyrolysis biomass could improve the soil structure. Biochar from the feed stock sawdust (SD) and corn cobs (CC) was pyrolyzed at 450?°C. Wheat was grown as a test crop and treatments were control, NPK, SDB1% (sawdust biochar), CCB1% (corn cobs biochar), SDB0.5%+CCB0.5%, SDB1%?+?½ NPK, CCB1%?+?½ NPK. The higher growth, higher grain and dry matter yield were displayed by biochar?+?NPK. The lowest pH, the higher organic matter, available P and available K were observed in SDB0.5%+CCB0.5%. However, the highest total N (1.43?g kg?1) was by NPK treatment. The biochar increased plant available water contents, water contents at field capacity and permanent wilting point, soil porosity and decreased bulk density. The highest stable aggregates were in SDB0.5%+CCB0.5%. Biochar application was found as a useful practice for soil sustainability  相似文献   

5.
The aim of this research was to investigate the effect of biochar amendment on soil acidity and other physico‐chemical properties of soil in Southern Ethiopia using a field experiment of three treatments: (1) biochar made of corn cobs, (2) biochar made of chopped Lantana camara stem, and (3) biochar made of Eucalyptus globulus feedstock and a control, in which neither of the biochar was used. Each treatment had three levels of 6, 12 and 18 t ha−1. The experiment was setup with RCBD in a factorial arrangement with three replications. In this regard, a total of 36 plots (each 2 × 2 m size) were applied with three replications to the depth of 0–15cm. From these 36 plots, composite soil samples were collected to the depth of 0–30 cm and analyzed for bulk density, total porosity, pH, soil organic carbon, total nitrogen, available phosphorus, potassium, and exchangeable acidity using standard procedures before and after biochar application. Two‐way ANOVA was also used to analyze the impact of the biochars on soil acidity and other properties. For the treatments that had significant effects, a mean separation was made using Least Significance Difference (LSD) test. The results showed the application of biochar significantly reduced, soil bulk density and exchangeable acidity when compared with a control (p < 0.05). Moreover, the total soil porosity, soil pH, total nitrogen, soil organic carbon, available phosphorus, and potassium were significantly increased in the soil. From among applied biochar treatments, Lantana camara applied at the level of 18 t ha−1 had a higher impact in changing soil physico‐chemical properties. In general, the study suggests that the soil acidity can be reduced by applying biochar as it can amend other soil physico‐chemical properties.  相似文献   

6.
ABSTRACT

Interest is rising in amending agricultural soils with carbon-rich materials such as charcoal to improve soil fertility. The objectives of this field study were to evaluate sugar maple hardwood charcoal (biochar) as a soil amendment. The design of the experiment was split-plot with five replications, repeated over two growing seasons with sweet corn (Zea mays L.) production. Main plots were allocated to five application amounts of biochar including 0%, 2%, 4%, 6%, and 8% by weight (0, 40, 80, 120, and 160 Mg ha?1, respectively). Sub-plots consisted of applications of 0 or 56 kg nitrogen ha?1 as calcium ammonium nitrate. Soil pH increased from pH 5.8 to 6.7 with biochar additions. The percent base saturation was increased due to the retention of calcium, magnesium, and potassium. Soil phosphate availability increased. Sweet corn yield in the biochar-amended plots was depressed except with the 2% application. The result of the study revealed that no more than 2% application of sugar maple hardwood biochar should be applied for sweet corn growth.  相似文献   

7.
In the context of sustainable soil-quality management and mitigating global warming, the impacts of incorporating raw or field-burned adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) and wheat (Triticum aestivum L.) straw residues on carbon dioxide (CO2) and nitrous oxide (N2O) emission rates from soil were assessed in an Andosol field in northern Japan. Losses of carbon (C) and nitrogen (N) in residue biomass during field burning were much greater from adzuki bean residue (98.6% of C and 98.1% of N) than from wheat straw (85.3% and 75.3%, respectively). Although we noted considerable inputs of carbon (499 ± 119 kg C ha–1) and nitrogen (5.97 ± 0.76 kg N ha–1) from burned wheat straw into the soil, neither CO2 nor N2O emission rates from soil (over 210 d) increased significantly after the incorporation of field-burned wheat straw. Thus, the field-burned wheat straw contained organic carbon fractions that were more resistant to decomposition in soil in comparison with the unburned wheat straw. Our results and previously reported rates of CO2, methane (CH4) and N2O emission during wheat straw burning showed that CO2-equivalent greenhouse gas emissions under raw residue incorporation were similar to or slightly higher than those under burned residue incorporation when emission rates were assessed during residue burning and after subsequent soil incorporation.  相似文献   

8.
Biochar was prepared using a low temperature pyrolysis method from nine plant materials including non‐leguminous straw from canola, wheat, corn, rice and rice hull and leguminous straw from soybean, peanut, faba bean and mung bean. Soil pH increased during incubation of the soil with all nine biochar samples added at 10 g/kg. The biochar from legume materials resulted in greater increases in soil pH than from non‐legume materials. The addition of biochar also increased exchangeable base cations, effective cation exchange capacity, and base saturation, whereas soil exchangeable Al and exchangeable acidity decreased as expected. The liming effects of the biochar samples on soil acidity correlated with alkalinity with a close linear correlation between soil pH and biochar alkalinity (R2 = 0.95). Therefore, biochar alkalinity is a key factor in controlling the liming effect on acid soils. The incorporation of biochar from crop residues, especially from leguminous plants, can both correct soil acidity and improve soil fertility.  相似文献   

9.
Abstract

Soil organic carbon (SOC) plays a key role in crop productivity and soil quality. Conservation agriculture has a positive effect on SOC accumulation in the surface soil horizons, but little information is available regarding the effect of the removal of crop residues by burning. This study aimed to assess the impact of different types of crop residue management practices on the total C distribution and natural abundance of 13C (‰, δ13C). Two volcanic soils, located in the Mediterranean temperate zone of Southern Chile, were studied: an Ultisol (Collipulli Series, CPL) and an Andisol (Santa Bárbara Series, SBA). Both soils had been cultivated under direct-drilling and a typical annual crop rotation system for a long period of time. Two different types of crop residue management practices were imposed in both soils: (i) crop residue burning (CPL-B; SBA-B) and (ii) crop residue retention over the soil (CPL-R; SBA-R), corresponding to treatments B and R, respectively. Soil profile distribution of the C content and natural abundance of 13C were analysed for bulk soils (down to 100 cm depth) and three particle-size fractions of the soils (down to 20 cm of soil depth): (a) ≤ 53 µm, (b) 53-212 µm and (c) ≥ 212 µm. It was found that the effect of crop residue management can be observed in the variations of C content and δ13C in the soil profile in both volcanic soils. Crop residue burning (B treatment) increased the C content in bulk soil and the particle-size fractions. On the other hand, soil organic matter of crop residue retention (R treatment) showed higher natural abundance of 13C (δ13C) compared with residue burning (B treatment) in the two volcanic soils. R treatment enriched the particle-size fractions (except ≥ 212 µm fraction of CPL soil) with 13C. Factors that could account for these findings are also discussed here.  相似文献   

10.
Biochar is a carbon (C)-rich material produced from biomass by anoxic or oxygen-limited thermal treatment known as pyrolysis. Despite substantial gaseous losses of C during pyrolysis, incorporating biochar in soil has been suggested as an effective long-term option to sequester CO2 for climate change mitigation, due to the intrinsic stability of biochar C. However, no universally applicable approach that combines biochar quality and pyrolysis yield into an overall metric of C sequestration efficiency has been suggested yet. To ensure safe environmental use of biochar in agricultural soils, the International Biochar Initiative and the European Biochar Certificate have developed guidelines on biochar quality. In both guidelines, the hydrogen-to-organic C (H/Corg) ratio is an important quality criterion widely used as a proxy of biochar stability, which has been recognized also in the new EU regulation 2021/2088. Here, we evaluate the biochar C sequestration efficiency from published data that comply with the biochar quality criteria in the above guidelines, which may regulate future large-scale field application in practice. The sequestration efficiency is calculated from the fraction of biochar C remaining in soil after 100 years (Fperm) and the C-yield of various feedstocks pyrolyzed at different temperatures. Both parameters are expressed as a function of H/Corg. Combining these two metrics is relevant for assessing the mitigation potential of the biochar economy. We find that the C sequestration efficiency for stable biochar is in the range of 25%–50% of feedstock C. It depends on the type of feedstock and is in general a non-linear function of H/Corg. We suggest that for plant-based feedstock, biochar production that achieves H/Corg of 0.38–0.44, corresponding to pyrolysis temperatures of 500–550°C, is the most efficient in terms of soil carbon sequestration. Such biochars reveal an average sequestration efficiency of 41.4% (±4.5%) over 100 years.  相似文献   

11.
生物质炭作为一种富碳多孔材料,具有固碳、减污和培肥等多重功效。基于当前限氧高温热裂解制炭技术及炭改性方法,该研究以亚热带地区常见的荔枝木为原材料、选取铁铝土制成泥浆,通过泥浆包覆和淬灭实现生物质“自限氧”和“水”淬灭,探讨铁铝土泥浆在荔枝木炭化过程中的作用及其对炭质的影响机理。结果表明:铁铝土泥浆包覆和淬灭制得的荔枝木炭的碳含量和碳固存率最高,分别为83.5%和83.9%,较无包覆水淬灭炭品的碳含量和碳固存率提高了16.7和37.8个百分点。扫描电镜-能谱分析的结果表明,铁铝土泥浆包覆和淬灭生成的炭品的碳骨架结构规整且其表面有铁铝矿物负载。一方面,泥浆通过涂层包覆形成了包覆壳,以物理阻隔作用截留了碳(防止炭化物中的碳在持续燃烧中生成COX);另一方面,铁铝矿物在高温热裂解过程中与炭化物结合,形成了矿质(Fe/Al)-碳质复合体,实现了碳固存。研究可为生物质炭的制备提供新的便捷、廉价的技术思路,以生物质就地炭化和应用的碳负排放方案助力碳中和。  相似文献   

12.
Management of wheat (Triticum aestivum L.) residues for corn (Zea mays L.) planting is an important issue in southern parts of Iran where these two irrigated crops are consecutively grown. Concerns have been raised in recent years over the burning of the crop residues by farmers in these areas. A 2-year (2001–2002) field experiment was conducted as a randomized complete block design with three replications. The treatments consisted of irrigated corn planted, after burning wheat residues followed by conventional tillage (CT), after residue removal followed by CT, after soil incorporation of 0, 25, 50, 75, and 100% of residue followed by chisel plow, disk harrow, and row crop planter equipped with row cleaner. The CT operations consisted of mollboard plowing followed by two times disk harrowing. Treatments had significant effects on corn grain yield, biological yield, and leaf area index. The highest grain yield (15.73 t ha−1) and grains per ear (709.3) were obtained when 25–50% of wheat residues were soil incorporated and the seeds were sown with planter equipped with row cleaner in both years as compared with conventional tillage practices. It is recommended that complete residue removal or burning should be avoided; hence for successful corn production after wheat, residue management techniques that reduce residue level in the row area should be implemented.  相似文献   

13.
为明确施用生物炭对砒砂岩与沙复配土壤水分保持及肥力提升的影响,采用盆栽试验,研究了不同生物炭施用量(0,10,20,30,50g/kg(以风干土计))对砒砂岩与沙复配土壤理化性状及玉米生长的影响。结果表明:在种植玉米一季后,施用生物炭可显著降低复配土壤容重,尤其当生物炭施用量达到30g/kg时,土壤容重可降低至1.37g/cm3,但当生物炭施用量增加到50g/kg时,土壤容重又出现增加的趋势;土壤田间持水量随生物炭施用量的增加呈显著增加趋势,但当施用量增加到50g/kg时又会出现下降趋势;土壤pH、全盐量随生物炭添加量的增加显著增加,尤其当生物炭添加量为50g/kg时,土壤pH可达8.80,全盐量可达2.51g/kg;土壤有机质、有效磷、速效钾含量也随生物炭施用量的增加而显著增加,但有效磷在生物炭施用量增加至50g/kg时出现下降趋势。进一步分析不同生物炭处理对玉米生物量的影响,发现玉米根干重、地上部分干重、百粒重、单株产量均随生物炭施用量的增加呈显著增加趋势,但当生物炭施用量增加到50g/kg时,上述各指标反而显著降低。生物炭对于砒砂岩与沙复配土壤理化性状、水分保持、肥力提升、作物生长及产量等诸多方面都有明显改善效果,在施用过程中需要注意使用量,在本试验条件下,生物炭推荐施用量为30g/kg干土。  相似文献   

14.
The degradation of soil fertility and quality due to rapid industrialization and human activities has stimulated interest in the rehabilitation of low-fertility soils to sustainably improve crop yield. In this regard, biochar has emerged as an effective multi-beneficial additive that can be used as a medium for the amelioration of soil properties and plant growth. The current review highlights the methods and conditions for biochar production and the effects of pyrolysis temperature, feedstock type, and retention time on the physicochemical properties of biochar. We also discuss the impact of biochar as a soil amendment with respect to enhancing soil physical (e.g., surface area, porosity, ion exchange, and water-holding capacity) and chemical (e.g., pH, nutrient exchange,functional groups, and carbon sequestration) properties, improving the soil microbiome for increased plant nutrient uptake and growth, reducing greenhouse gas emissions, minimizing infectious diseases in plants, and facilitating the remediation of heavy metal-contaminated soils. The possible mechanisms for biochar-induced amelioration of soil and plant characteristics are also described, and we consider the challenges associated with biochar utilization. The findings discussed in this review support the feasibility of expending the application of biochar to improve degraded soils in industrial and saline-alkali regions, thereby increasing the usable amount of cultivated soil. Future research should include long-term field experiments and studies on biochar production and environmental risk management to optimize biochar performance for specific soil remediation purposes.  相似文献   

15.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

16.
Studies have reported that biochar is a sustainable amendment that improves the chemical and physical properties of soil.In this study,an incubation experiment was conducted to investigate the effects of different application rates of biochar on the cracking pattern and shrinkage characteristics of lime concretion black soil after three wetting and drying cycles.Biochar derived from the corn straw and peanut shell mixture was applied to the soil at rates of 0,50,100,and 150 g kg~(-1)dry weight,representing the treatments T_(0),T_(50),T_(100),and T_(150),respectively.During the wetting and drying cycles,the cracking pattern and shrinkage characteristics of the unamended and amended soil samples were recorded.Application of biochar significantly increased soil organic carbon content in the samples.During soil desiccation,biochar significantly reduced the rate of water loss.Cracks propagated slowly and stopped due to the relatively higher water content in the soil applied with biochar.The cracking area density(ρ_c),equivalent width,fractal dimension,and cracking connectivity index decreased during the drying process with increasing application rate of biochar.Theρ_(c )value of the T_(50),T_(100),and T_(150) treatments decreased by 33.6%,52.1%,and 56.9%,respectively,after three wetting and drying cycles,whereas the T_(0) treatment exhibited a marginal change.The coefficient of linear extensibility,an index used to describe onedimentional shrinkage,of the unamended soil sample(T_(0))was approximately 0.23.Application of 100 and 150 g kg~(-1)biochar to the soil significantly reduced the shrinkage capacity by 41.45%and 45.54%,respectively.The slope of the shrinkage characteristics curve,which indicates the ralationship between soil void ratio and moisture ratio,decreased with increase in the application rate of biochar.Furthermore,compared with the T_(0) treatment,the proportional shrinkage zone of the shrinkage characteristic curve of the T_(50),T_(100),and T_(150) treatments decreased by 5.8%,13.1%,and 12.1%,respectively.Differences were not observed in the moisture ratio at the maximum curvature of the shrinkage characteristic curve among the treatments.The results indicate that biochar can alter the cracking pattern and shrinkage characteristics of lime concretion black soil.However,the effects of biochar on the shrinkage of lime concretion black soil are dependent on the number of wetting and drying cycles.  相似文献   

17.
Application of biochar to soil has increased considerably during recent years because of its effectiveness as a soil amendment causing beneficial effects on soil health. However, the effects have been reported to vary and depend upon types of feedstock and pyrolysis conditions during biochar production. Therefore, characterization of biochar is extremely important for its efficient utilization as a soil amendment. In the present study, biochar was prepared from agro-industrial by-products (rice husk and sugarcane bagasse) and weeds (Parthenium and Lantana) under similar pyrolysis conditions. Lantana biochar (LBC) showed the highest pH (10.4) while the lowest value (8.5) being recorded in rice husk biochar (RHBC). The energy-dispersive X-ray spectroscopy (EDS) analysis indicated that LBC and Parthenium biochar (PBC) were superior with respect to potassium (K) content than sugarcane bagasse biochar (SBBC) and RHBC. The Fourier-Transform Infrared Spectroscopy (FTIR) study exhibited the existence of different functional groups in biochar. All the biochar treated soils showed significantly higher microbial activities with different degrees. Application of LBC and PBC at 4.50 g kg?1 soil significantly increased K availability in soil. Lantana biochar and PBC amended the soil at 9 g kg?1 significantly increased the soil pH thus makes these biochar as potential liming materials.  相似文献   

18.
With advances in biogas technology, lignocellulosic material may be increasingly included in feedstock due to the abundance of raw materials. The main goal of this study was to evaluate fertilizing and soil amendment effects of digestates based on lignin-rich feedstock. The digestates originated from reactors fed with manure co-digested with Salix, wheat straw or sugarcane bagasse, respectively. In pot experiments with three different soils, Italian ryegrass and reed canary grass were grown with 120 kg ha?1 total nitrogen or 150 kg ha?1 available nitrogen, respectively, given as either mineral fertilizer or digestate. Soil chemical and physical characteristics were determined after ended experiments. Additionally, an incubation study was carried out to estimate N mineralization from one digestate over time. Digestate addition resulted in similar yields compared to mineral fertilizer, varying from 0.5 (loam) to 1 kg dry matter m?2 (silt) for Italian ryegrass and 1.2 (loam) to 2.3 kg m?2 (silt) for reed canary grass. Digestates contributed to a favourable pH for plant growth, reduced bulk density in the loam and improved water retention characteristics in the sand. Biogas digestates based on lignin-rich feedstock appear promising as fertilizers and for soil amelioration but results have to be verified in field experiments.  相似文献   

19.
稻壳基生物炭对生菜Cd吸收及土壤养分的影响   总被引:14,自引:1,他引:14  
探讨稻壳基生物炭对Cd污染土壤上叶菜吸收Cd和土壤Cd形态的影响作用,明确稻壳基生物炭对土壤Cd污染的调控效应,可为合理利用稻壳基生物炭降低叶菜Cd含量提供参考。采用盆栽试验,研究了稻壳基生物炭在不同用量水平下对2茬生菜地上部Cd含量、土壤养分含量及Cd赋存形态的影响。结果表明,在5~25 g-kg-1用量范围内,稻壳基生物炭显著降低了2茬生菜地上部和根系Cd含量,且在最大用量25 g-kg-1时效果最好,地上部Cd含量分别比未施稻壳基生物炭的对照处理降低了19.6%和45.8%,根系Cd含量分别降低了36.8%和28.0%。在25 g-kg-1用量水平下,稻壳基生物炭对土壤p H、有效磷、速效钾及有机质含量提升效果明显,但显著降低了土壤碱解氮含量。施加稻壳基生物炭对土壤有效态Cd含量及Cd化学形态也有不同影响。随着稻壳基生物炭用量的增加,土壤NH4OAc提取态Cd含量和弱酸提取态Cd含量显著降低,在用量为25 g-kg-1时,分别比对照降低17.9%和10.4%,可还原态Cd含量无显著变化,可氧化态Cd含量呈减低趋势,残渣态Cd含量增加17.6%。因此推测,提升土壤p H、降低土壤有效态Cd含量、增加残渣态Cd含量可能是稻壳基生物炭降低生菜体内Cd含量的主要原因。稻壳基生物炭可以作为土壤改良剂,抑制Cd污染土壤上叶菜对Cd的吸收,改善土壤养分状况。  相似文献   

20.
在甘肃省河西地区内陆灌区连作8a的制种玉米田上,采用田间试验方法,研究了改土型专用肥与制种玉米田物理性质和玉米经济性状及效益间的关系。结果表明,影响玉米产量的因素依次是:CO(NH2)2>(NH4)2HPO4>PVA和ZnSO4.7H2O;因素间最佳组合是:PVA 30kg/hm2,CO(NH2)2 736kg/hm2,(NH4)2HPO4420kg/hm2,ZnSO4.7H2O 52kg/hm2。随着改土型专用肥施用量的增加,玉米田总孔隙度、毛管孔隙度、非毛管孔隙度、团聚体在增大,而容重在降低。改土型专用肥施用量增加后,玉米植物学性状、经济性状、产量在增加,但单位(1kg)改土型专用肥的增产量则随着改土型专用肥施肥量的增加而递减,出现报酬递减律。随着改土型专用肥施用量的增加,玉米边际产量、边际利润在递减,改土型专用肥施用量在1 350kg/hm2的基础上,再增加337.50kg/hm2,收益出现负值。经济效益最佳施肥量为1 350.01kg/hm2,玉米理论产量为6 700.99kg/hm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号