首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrigan LJ, Winfield IJ, Hoelzel AR, Lucas MC. Dietary plasticity in Arctic charr (Salvelinus alpinus) in response to long‐term environmental change.
Ecology of Freshwater Fish 2011: 20: 5–13. © 2010 John Wiley & Sons A/S Abstract –  In the face of widespread environmental change impacts, there is a need to better understand mechanisms promoting flexibility and resilience of ecosystem components to such change to inform strategies for conservation. Glacial relict species are especially vulnerable to such changes. We investigated the behavioural responses of a native, glacial relict species, Arctic charr (Salvelinus alpinus) to long‐term environmental changes. It was hypothesised that changes in feeding behaviour would occur as a key intermediary to reduction in habitat availability (through climate change and eutrophication) or competitive interactions [with introduced roach (Rutilus rutilus)]. Stomach content analysis was used to assess the diet of 199 charr caught from Windermere, United Kingdom, in the months of March, June, September and November 2003–2007. The results were compared to data from 1940 to 1951 prior to the environmental changes and revealed a marked increase in the contribution of benthic invertebrates in the present diet. Stable isotope analysis confirms the results of the stomach analysis, suggesting that the charr have switched their diet from zooplanktivory towards benthivory. We discuss the possibility that habitat modification and roach population expansion in Windermere have contributed to changes in charr diet. Complementary studies suggest that this diet shift is more likely to be a response to the increasing roach population than to habitat modification; however, further study in Windermere would be required to elucidate the exact mechanism. Long‐term data sets such as these provide information that is useful for determining the directivity of ecological change and the capability of species to respond to change.  相似文献   

2.
Introduced fishes may have major impacts on community structure and ecosystem function due to competitive and predatory interactions with native species. For example, introduced lake trout (Salvelinus namaycush) has been shown to replace native salmonids and induce major trophic cascades in some North American lakes, but few studies have investigated trophic interactions between lake trout and closely related native Arctic charr (S. alpinus) outside the natural distribution of the former species. We used stomach content and stable isotope analyses to investigate trophic interactions between introduced lake trout and native Arctic charr in large subarctic Lake Inarijärvi in northern Finland. Both salmonids had predominantly piscivorous diets at >280 mm total length and were mainly caught from the deep profundal zone. However, lake trout had a more generalist diet and showed higher reliance on littoral prey fish than Arctic charr, whose diet consisted mainly of pelagic planktivorous coregonids. According to length at age and condition data, lake trout showed slightly faster growth but lower condition than Arctic charr. The results indicate that introduced lake trout may to some extent compete with and prey upon native Arctic charr, but currently have only a minor if any impact on native fishes and food web structure in Inarijärvi. Future monitoring is essential to observe potential changes in trophic interactions between lake trout and Arctic charr in Inarijärvi, as well as in other European lakes where the two salmonids currently coexist.  相似文献   

3.
Lakes in Arctic and subarctic regions display extreme levels of seasonal variation in light, temperature and ice cover. Comparatively little is known regarding the effects of such seasonal variation on the diet and resource use of fish species inhabiting these systems. Variation in the diet of European whitefish Coregonus lavaretus (L.) during periods of ice cover in this region is often regarded as ‘common knowledge’; however, this aspect of the species' ecology has not been examined empirically. Here, we outline the differences in invertebrate community structure, fish activity, and resource use of monomorphic whitefish populations between summer (August–September) and winter (February–March) in three subarctic lakes in Finnish Lapland. Benthic macroinvertebrate densities did not exhibit measurable differences between summer and winter. Zooplankton diversity and abundance, and activity levels of all fish species (measured as catch per unit effort) were lower in winter. The summer diet of C. lavaretus was typical of a generalist utilising a variety of prey sources. In winter, its dietary niche was significantly reduced, and the diet was dominated by chironomid larvae in all study sites. Pelagic productivity decreases during winter, and fish species inhabiting these systems are therefore restricted to feeding on benthic prey. Sampling time has strong effect on our understanding of resource utilisation by whitefish in subarctic lakes and should be taken into account in future studies of these systems.  相似文献   

4.
The dietary methionine requirement of juvenile Arctic charr Salvelinus alpinus (L.) was assessed by feeding diets supplemented with graded levels of DL-methionine (9, 12, 15, 18, 21, and 24 g kg−1dietary protein) for 16 weeks at 12°C. All diets contained 400 g kg−1 protein, 170 g kg−1 lipid, 66 g kg−1 ash and an estimated 17.5 MJ digestible energy (DE) kg−1. When live-weight gain was examined using quadratic regression, the estimate of methionine requirement for optimal growth was 17.6 g kg−1 of dietary protein (DP) or 7 g kg−1 of the diet. Requirements estimated on the basis of carcass protein and energy gains were 18.8 and 17.9 g kg−1 DP, respectively. Plasma methionine concentrations and ocular focal length variability measurements did not provide a sensitive measure of requirement, because each responded in a linear fashion to increasing dietary methionine levels. Based on the prevalence of cataracts, the methionine level required to prevent lens pathology (26.7 g kg−1 DP) appears to be higher than that required for maximum growth.  相似文献   

5.
Gallagher CP, Dick TA. Trophic structure of a landlocked Arctic char Salvelinus alpinus population from southern Baffin Island, Canada. Ecology of Freshwater Fish 2010: 19: 39–50. © 2009 John Wiley & Sons A/S
Abstract –  Stable isotopes, diet and parasites were used to investigate the trophic structure of landlocked Arctic char ( Salvelinus alpinus ) from a small Canadian Arctic lake. Two trophic levels of char were identified. The lower trophic level comprised smaller char that consumed mainly invertebrates and harboured low numbers of the cestode plerocercoid Diphyllobothrium spp. while the higher trophic level char were larger, mainly piscivorous and had high numbers of plerocercoids. Procercoids of Diphyllobothrium spp. in copepods are eaten by char where the parasite then differentiates into a plerocercoid. Plerocercoids from smaller fish are transmitted to larger fish by piscivory where they encyst again as plerocercoids until the fish is eaten by a gull. These plerocercoids are a good indicator of trophic level as their numbers accumulate over time in larger fish. The three variables together provided a better resolution of trophic structure than applied separately. For example, plerocercoid numbers plus diet were better predictors of trophic status than stable isotopes in 4–7 year olds, but for char ≥8 years all three variables were complementary. Some char (≥10 years old) were placed in the lower trophic level based on their stable isotope values and had low Diphyllobothrium spp. abundance but were piscivorous and/or cannibalistic. The absence of sexually mature char in the higher trophic group was associated with high numbers of Diphyllobothrium spp. plerocercoids.  相似文献   

6.
Intraspecific phenotypic diversity is the raw material for evolution, so understanding its origin and maintenance is critically important for conservation of biodiversity. Intraspecific diversity in a trait or a suite of traits can result from genetic diversity and/or phenotypic plasticity. The two are, however, not independent as plasticity has been shown to evolve. In this study, we evaluated the importance of phenotypic plasticity in generating morphological diversity in populations of small benthic Arctic charr in Iceland, using a rearing experiment with contrasting modes of feeding. We also examined the association between phenotypic plasticity in offspring groups generated by the contrasting feeding modes and important ecological variables characterising the natural habitats of the respective populations. Although the level of plasticity could not be related to any of the ecological measurements, clear differences in morphological reaction norms among populations suggest that plasticity is an important aspect of morphological diversity of the charr. It is not clear whether that plasticity is adaptive, but it is notable that reaction norms in all populations have similar reaction to the treatments.  相似文献   

7.
Abstract  – Brown trout ( Salmo trutta L.) and Arctic charr ( Salvelinus alpinus (L.)) use whitefish ( Coregonus lavaretus (L.)) as their main prey in the subarctic Lake Muddusjärvi. Brown trout dwelled in littoral and pelagic habitat, whereas Arctic charr lived only in epibenthic habitat. Both species shifted to whitefish predation at a length of 20–30 cm. At this size, brown trout fed on larger whitefish than Arctic charr. Whitefish occur in three sympatric forms, differing in their habitat, ecology and morphology. Both the predators preyed primarily upon the small-sized, densely rakered whitefish form (DR), which was the most numerous whitefish form in the lake. DR used both epibenthic and pelagic habitat, whereas two sparsely rakered whitefish forms dwelled (LSR and SSR) only in epibenthic habitat: LSR in littoral and SSR in profundal areas. Sparsely rakered whitefish forms had minor importance in predator diet.  相似文献   

8.
The non‐native rainbow trout (Oncorhynchus mykiss) has been introduced worldwide for angling purposes and has established self‐reproducing populations in many parts of the world. Introduced rainbow trout often have negative effects on the native salmonid species, ranging from decrease abundance, growth and survival, to their local extinction. Assessing the effects of introduced rainbow trout on the native species is thus crucial to better set up conservation programmes. In this study, we investigated the effects of non‐native rainbow trout on the diet of native marble trout (Salmo marmoratus) living in the Idrijca River (Slovenia). An impassable waterfall separates the stream in two sectors only a few hundred metres apart: a downstream sector (treatment) in which marble trout live in sympatry (MTs) with rainbow trout (RTs) and an upstream sector (control) in which marble trout live in allopatry (MTa). Specifically, we investigated using stable isotopes the effects of rainbow trout on dietary niche, diet composition, body condition, and lipid content of marble trout. We found dietary niche expansion and niche shift in marble trout living in sympatry with rainbow trout. Compared to MTa, MTs had higher piscivory rate and showed higher body condition and prereproduction lipid content. Our results indicate that the presence of rainbow trout did not have negative effects on marble trout diet and condition and that changes in dietary niche of marble trout are likely to be an adaptive response to the presence of rainbow trout, and further research is needed to better understand.  相似文献   

9.
Young Arctic charr, Salvelinus alpinus (L.), mean weight 2.56 ± 0.02 g, were fed nine isoenergetic (?16.6 MJ digestible energy (DE) kg?1) practical diets formulated to supply digestible crude protein (DCP) at 40g kg?1 increments from 230 to 550g kg?1, for 84 days. Mean weight gain (MWG) and specific growth rate (SGR) were determined every 14 days while carcass composition was determined at the start and end of the experiment. Growth responses attained the highest values in the fish fed the diet with 350 g kg?1 DCP. Carcass moisture gain, protein gain and apparent net lipid accumulation increased as DCP levels increased to a maximum at 350 g kg?1 after which there were no differences among treatments. Total carcass lipid and lipid gain decreased as dietary DCP increased up to 470 g kg?1 with no differences thereafter. Apparent net protein accretion decreased with increasing DCP levels up to 350 g kg?1 after which there were few differences among treaments. Protein requirements were estimated by fitting MWG and SGR data to broken line regression, quadratic and saturation kinetics models. Results from these analyses suggest that dietary DCP should be provided at between 340 and 392 g kg?1 (equivalent to ?370 and 420g kg?1 crude protein) for optimal growth of young Arctic charr reared in similar conditions.  相似文献   

10.
The food resource partitioning of Arctic charr (Salvelinus alpinus L.) and three-spined stickleback (Gasterosteus aculeatus L.) were investigated in the littoral zone of lake Takvatn in northern Norway in the ice-free period June–November. Charr and sticklebacks had different feeding habits. Sticklebacks ate several small benthic prey items that were never eaten by charr, and the sticklebacks' diet were dominated by the benthic microcrustaceans Chydoridae and Ostracoda, chironomid larvae and stickleback eggs. Small charr (<17 cm) consumed a wide spectrum of chironomid pupae, terrestrial insects and zooplankton. Intermediate (17–20 cm) and small charr had quite similar feeding habits, while large charr (>20 cm) frequently ate both benthos, pelagic and terrestrial food. The diet overlap between small charr and sticklebacks was never larger than 0.6 (Schoener's index). The segregation in feeding habits indicates that small charr and sticklebacks are segregated in microhabitat when they are both in the littoral zone.  相似文献   

11.
12.
Apparent digestibility coefficients (ADCs) for four protein‐rich alternative feed ingredients, intact baker's yeast (Saccharomyces cerevisiae), extracted baker's yeast (S. cerevisiae), zygomycetes (Rhizopus oryzae) and blue mussel (Mytilus edulis), were determined for Arctic charr (Salvelinus alpinus) and Eurasian perch (Perca fluviatilis). Diets contained 30% of test ingredients, and ADCs were compared to a reference diet containing fish meal. For Arctic charr, ADCs for dry matter (DM, 71–99%), sum of amino acids (SAA, 84–99%) and gross energy (70–99%) were significantly lower for intact S. cerevisiae than for extracted S. cerevisiae, R. oryzae and M. edulis. The ADCs for the indispensable amino acids (IAA) in Arctic charr varied between 84% and 99%. Significant differences were found in ADCs for IAA between the test ingredients for Arctic charr, with higher values for extracted S. cerevisiae and M. edulis. The ADCs in Eurasian perch varied between 83% and 95% for DM, 89% and 98% for CP, 92% and 100% for SAA, 81% and 96% for gross energy. No significant differences were found for ADCs between the test ingredients in Eurasian perch, indicating a species effect on digestibility. Furthermore, the absence of intact cell walls had a positive effect on digestibility of S. cerevisiae for Arctic charr.  相似文献   

13.
鸢乌贼在中国南海海域资源丰富,是灯光罩网渔船的主要捕捞对象之一.本研究对南沙群岛海域中型群和微型群鸢乌贼样品进行采集,利用传统胃含物分析法和碳、氮稳定同位素技术研究其摄食习性、营养级、营养生态位及与饵料生物的关系.结果显示,鸢乌贼以摄食鱼类、头足类和甲壳类为主,且在不同生长阶段,饵料组成有所差异;胴长小于100mm的微...  相似文献   

14.
Arctic charr (Salvelinus alpinus L.) were fed either a commercial diet or six experimental test diets containing coconut oil and different polyunsaturated fatty acids (PUFA) at a level of 1% by dry weight. Best growth rates were observed with the commercial diet, worst with diet containing coconut oil with no PUFA. An increase in hepatic lipid, hepatic sterol esters and muscular moisture content, and a decrease in muscular lipid was generally found in fish fed the test diets compared to those maintained on the commercial diet.Phosphatidylcholine was the dominant polar lipid (PL) class in all tissues examined. Extensive modification of dietary saturated fatty acids into 18:1 (n-9) was observed in tissue triacylglycerols (TAG) of fish fed test diets. No changes occurred with the commercial diet.Dietary PUFA were essentially incorporated unchanged into tissue TAG of all fish in the present study. PUFA composition of hepatic phospholipids was significantly influenced by that contained in the diets. However both 18:2 (n-6) and 18:3 (n-3) in the test diets were extensively elongated and desaturated prior to incorporation into PL. The (n-9) PUFA content was always higher in liver of fish fed the test diets. When 18:2 (n-6) and 18:3 (n-3) were supplied together, the level of (n-3) PUFA exceeded those of (n-6) PUFA. Muscle PL were less influenced by diet than liver. In muscle (n-3) PUFA were always the predominant PUFA irrespective of diet. Only low amounts of (n-9) PUFA were found. It is suggested that (n-3) PUFA are the prime essential fatty acids for Arctic charr, and that they are used in preference to (n-6) PUFA for elongation, desaturation and incorporation into PL. The results suggest that the quantitative requirement of Arctic charr for EFA is may be higher than that of other salmonids.  相似文献   

15.
Abstract— Fry of the Arctic charr, Salvelinus alpinus , were experimentally stocked into a small fish-free lake to test the hypothesis that the size-dependent habitat shift from the epibenthic to the pelagic habitat is genetically determined. The charr originated from a nearby lake inhabiting predatory brown trout Salmo trutta. The cohort of stocked charr was investigated for three years. The Arctic charr started to exploit the pelagic habitat in their first summer at a size of 7–9 cm in contrast to about 15 cm in the donor lake. In the next two summers, the pelagic fraction of the cohort increased. The main fraction lived in epibenthic areas, utilizing the same prey as pelagic charr. Water temperature moderated the habitat use of juveniles such that they avoided warm (>16°C) waters and resided in cool, deep areas. The result was consistent with the hypothesis of a tradeoff between feeding benefit and the predation risk producing spatial segregation of Arctic charr and demonstrated that the fish can facultatively respond to predation risk and adjust the size at which they migrate to the pelagic zone to feed on zooplankton.  相似文献   

16.
The primary aim of the present study was to evaluate the population level of adherent (autochthonous) aerobic and facultative anaerobic bacteria in the hindgut of healthy Arctic charr (Salvelinus alpinus L.) fed dextrin or inulin. This was assessed by the dilution plate technique, and visualized using both transmission and scanning electron microscopy. A population level of 4.8 × 105 adherent bacteria per gram wet mass was found in the hindgut of fish fed a casein‐based diet supplemented with 15% dextrin. However, substituting dextrin with 15% inulin reduced the bacterial population level in the hindgut (3.56 × 104). A total of 217 bacterial isolates were identified by key phenotypical and biochemical characteristics. In addition, 22 strains were also identified by partial sequencing of the 16S rRNA gene. The composition of bacteria colonizing the hindgut of Arctic charr fed dextrin was dominated by the genera Staphylococcus, Pseudomonas, Micrococcus, Psychrobacter glacincola and Streptococcus. However, bacteria colonizing the hindgut of fish fed inulin were dominated by Gram‐positive bacteria of the genera Staphylococcus, Streptococcus, Carnobacterium and Bacillus. While Carnobacterium divergens‐like strains were isolated from charr fed dextrin, Carnobacterium maltaromicus‐like strains were isolated from the hindgut of fish fed inulin. Electron microscopical analysis of hindgut regions confirmed traditional culture‐based microbial analysis as fewer bacterial cells were observed between microvilli and associated with the surfaces of enterocytes of fish fed inulin rather than dextrin.  相似文献   

17.
Abstract– Habitat use and population dynamics in brown trout Salmo trutta and Arctic charr Salvelinus alpinus were studied in an oligotrophic lake over a period of 10 years. Previous studies showed that the species segregated by habitat during summer. While brown trout occupied the surface water down to a depth of 10 m, Arctic charr were found deeper with a maximum occurrence at depth 10–15 m. Following the removal of a large number of intermediate sized fish in 1988–89, habitat segregation between the species broke down and Arctic charr were found in upper waters, while brown trout descended to deeper waters. The following year, both species were most frequently found in surface waters at depths of 0–5 m. During the last four years, the species reestablished their original habitat segregation despite another removal experiment of intermediate-sized fish in 1992–1994. The removal of fish resulted in an increased proportion of large (≥ 25 cm) fish in both species. Furthermore, the charr stock responded by reduced abundance and increased size-at-age. The results revealed plasticity and strong resistance to harvest populations of brown trout and Arctic charr. This is probably due to internal mechanisms of intraspecific competition within each population, which result in differential mortality among size classes.  相似文献   

18.
Abstract – The complexity of substrate covering spawning grounds of Coregonus lavaretus is assumed to have a role in the protection of incubating ova from predation. It is believed that the Loch Lomond population of C. lavaretus is adversely affected by invasive ruffe (Gymnocephalus cernuus) predation on eggs. To discover the protective ability of substrate commonly found on whitefish spawning grounds, predation experiments of ruffe on artificial eggs were conducted. These were presented to ruffe over different substrates: sand, gravel, pebbles and cobbles. It was found that the greatest protection was provided by pebbles and gravel. Eggs are exposed on sand, but are protected by small gaps between pebbles and gravel, while in cobbles the gaps between substrate particles are large enough to sometimes allow ruffe to foraging within the substrate. Using these results, a comparison between the potential protective ability of substrates of spawning grounds in four Scottish whitefish sites was attempted.  相似文献   

19.
20.
Possible effects of short‐term starvation on flesh quality in Arctic charr were studied in spring (March) and summer (August). Groups of juvenile Arctic charr (mean weight March 536 g ± 24; August 461 g ± 15 SEM) were starved for 1, 2 and 4 weeks (March) and 1, 2 and 3 (August). After each starvation period, the fish were slaughtered, and flesh samples collected in order to investigate quality and textural properties in the different experimental groups. Starvation had a positive effect on flesh quality giving firmer texture and lower gaping scores. Starved fish had lower cathepsin activity at slaughter, and a similar difference was seen one‐week post mortem. The results showed that the effect of starvation period was seasonally dependent. Starvation had a larger effect in summer, where a three‐week starvation resulted in firmer texture, whereas this was not seen during spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号