首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
We studied the movement of brook trout (Salvelinus fontinalis) in four small streams in northern Colorado using mark-recapture methods and weirs. The recapture rates of marked adult trout were low for all streams, and large numbers of unmarked adult trout, apparently immigrants, were found each year. Significantly more trout, immigrated into sections that were experimentally modified by installing low log dams, which increased depth, pool volume and the amount of overhead cover. The number of immigrant and resident trout was significantly related to the amount of cover in the sections. Resident trout were larger than immigrants in all streams in the last year of sampling. Most mobile brook trout moved upstream during summer on the two streams where weirs were operated, and upstream migrants were significantly larger than downstream migrants on both streams. We suggest that a high degree of movement may be an adaptive response by brook trout to the heterogeneous nature of small mountain streams.  相似文献   

2.
Abstract Seasonal habitat use by over-yearling and under-yearling brook trout, Salvelinus fontinalis (Mitchill), was examined in a second-order stream in north-central Pennsylvania, USA. The habitat occupied by brook trout and available habitat were determined in a 0.5-km stream reach during the spring, summer and autumn of 1989 and the spring and summer of 1990. Cover, depth, substrate and velocity were quantified from over 2000 observations of individual brook trout. Habitat used by under-yearling brook trout was more uniform between seasons and years than that used by over-yearling brook trout. Over-yearling brook trout occupied areas with more cover and greater depth than did under-yearling brook trout, suggesting ontogenetic shifts in these variables. Differences for velocity and substrate were not as great as those for cover and depth. The selection of areas with low water velocities governed trout habitat use in spring, whereas cover and depth were the most important habitat variables in summer and autumn. Principal component analysis showed that available habitat and trout habitat centroids diverged most in spring, indicating that habitat selection by brook trout may be greatest at this time.  相似文献   

3.
Abstract Non‐native lake trout, Salvelinus namaycush (Walbaum), threaten native salmonid populations in the western United States. Effective management of lake trout requires understanding movements within connected lake and river systems. This study determined the seasonal movements of subadult lake trout in the Flathead River upstream of Flathead Lake, Montana, USA using radio telemetry. The spatiotemporal distribution of lake trout in the river was related to water temperature. Lake trout were detected in the river primarily during autumn, winter and spring, when water temperatures were cool. By contrast, fewer were detected when temperatures were warmest during summer and during high spring flows. Downriver movements to Flathead Lake occurred throughout autumn and winter when water temperature decreased below 5 °C, and in late spring as water temperature rose towards 15 °C and river discharge declined following spring runoff. Upriver movements occurred primarily in October, which coincided with migrations of prey fishes. These results suggest that lake trout are capable of moving throughout connected river and lake systems (up to 230 km) and that warm water temperatures function as an impediment to occupancy of the river during summer. Controlling source populations and maintaining natural water temperatures may be effective management strategies for reducing the spread of non‐native lake trout.  相似文献   

4.
Abstract – Atlantic salmon (Salmo salar) was once native to Lake Ontario, however, its numbers rapidly declined following colonisation by Europeans and the species was extirpated by 1896. Government agencies surrounding Lake Ontario are currently undertaking a variety of studies to assess the feasibility of reintroducing Atlantic salmon. We released hatchery‐reared adult Atlantic salmon into a Lake Ontario tributary to examine spawning interactions between this species and fall‐spawning exotic salmonids found in the same stream. Chinook salmon, coho salmon and brown trout were observed interacting with spawning Atlantic salmon in nearly one‐quarter of our observation bouts, with chinook salmon interacting most frequently. Whereas a previous investigation found that chinook salmon caused elevated agonistic behaviour and general activity by spawning Atlantic salmon, the present study found that interspecific courtship was the most common form of exotic interaction with spawning Atlantic salmon. In particular, we observed precocial male Chinook salmon courting female Atlantic salmon and defending the female against approach by male Atlantic salmon. We discuss the potential implications of these interactions on the Lake Ontario Atlantic salmon reintroduction programme.  相似文献   

5.
We investigated juvenile brown trout migration and mortality in a headwater tributary of the Motueka River, New Zealand, by tracking 1000 young‐of‐the‐year passive integrated transponder (PIT) tagged fish over autumn to summer to (i) partition total loss into emigration and mortality and (ii) determine the influence of season and flow on emigration. Fish were tracked using mobile and fixed PIT tag readers. Of the 1000 fish tagged, 173 remained within the Rainy River; emigration contributed 60% and mortality 29% to loss. Only 11% of fish tagged in autumn were predicted to remain in the upper reaches of the stream by early summer, and this agreed with density data collected in a parallel study. We identified a two‐phase downstream migration pattern with early movement of large young‐of‐the‐year fish in autumn (mainly during floods). This was followed by another substantial period of movement in spring (during floods and lower flows) by fish that were initially smaller at the time of PIT tagging. The management implications for damming and fish screening in headwater tributaries are discussed.  相似文献   

6.
Wood in streams functions as fish habitat, but relationships between fish abundance (or size) and large wood in streams are not consistent. One possible reason for variable relationships between fish and wood in streams is that the association of fish with wood habitat may depend on ecological context such as large‐scale geomorphology. We studied the relationship between salmonid assemblages and large wood jams (LWJ) in four settings that differed geomorphically at the scale of the stream corridor along a tributary to Lake Superior in old‐growth conifer–hardwood forest in northern Michigan. The focal fish species of this study were brook trout (Salvelinus fontinalis), which were wild in the stream. Relocation efforts for coaster brook trout (an adfluvial life history variant of brook trout) were ongoing in the study stream. We measured fish abundance and length in pairs of pools of similar size and substrate, but varying in the presence of LWJ; this allowed us to evaluate associations of fish simply with the presence of LWJ rather than with other channel or flow‐shaping functions of LWJ. The length of Oncorhynchus spp. and young introduced brook trout was not strongly correlated with LWJ presence; however, the presence of LWJ in pools was positively correlated with larger wild brook trout. We also found that the correspondence of LWJ with the abundance of salmonids appears to be moderated by the presence of alternative habitat in this relatively natural, old‐growth forest stream.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号