首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effects of leptin on the release of luteinizing hormone (LH), growth hormone (GH) and prolactin (PRL) were studied in cultured bovine anterior pituitary (AP) cells in vitro. The AP cells were obtained from fully‐fed Japanese Black steers and were incubated for 3 h with 10?13 to 10?7 mol/L of leptin after incubating in Dulbecco's modified Eagle's Medium for 3 days. Leptin significantly increased the concentration of LH in the culture medium by 45 and 44% at doses of 10?8 and 10?7 mol/L, respectively, compared with the controls (P < 0.05). Leptin significantly increased the concentration of GH in the culture medium by 14 and 12% at doses of 10?8 and 10?7 mol/L, respectively (P < 0.05). Leptin also significantly increased the concentration of PRL in the culture medium by 26% compared with the controls at a dose of 10?7 mol/L (P < 0.05). These results show that leptin stimulates the release of LH, GH and PRL by acting directly on bovine AP cells from fully‐fed steers.  相似文献   

2.
The present study was carried out to determine whether leptin or leptin (116–130) peptide amide (lep (116–130)), an active fragment of the native protein in rats, is able to stimulate the release of luteinizing hormone (LH), growth hormone (GH) or prolactin (PRL) from cultured porcine anterior pituitary (AP) cells in vitro. The AP cells were obtained from 6 month‐old pigs and were incubated for 3 h with 10?11?10?7 mol/L leptin or lep (116–130) after being cultured in Dulbecco's modified Eagle's medium for 3–4 days. Leptin significantly increased the concentration of LH and GH in the culture medium at concentrations of 10?8 and 10?7 mol/L, respectively, compared with the controls (P < 0.05). Leptin did not increase the concentration of PRL in the culture medium. In contrast to these results, no effects of lep (116–130) on the release of LH, GH or PRL were seen in the cultured cells. These results suggest that leptin stimulates the release of LH and GH by acting directly on porcine AP cells, and that a fragment of leptin protein comprising amino acids 116–130 is not associated with the secretion of hormones in pigs.  相似文献   

3.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH‐releasing response to an intravenous (i.v.) injection of GH‐releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L‐dopa (1 mg/kg BW) in male and female goats under a 16‐h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L‐dopa treatments completely suppressed GH‐releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)‐releasing response to an i.v. injection of thyrotropin‐releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L‐dopa significantly reduced TRH‐induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.  相似文献   

4.
The effects of amino acids on growth hormone (GH) release and cytosolic calcium concentration ([Ca2+]i) were investigated in caprine anterior pituitary cells cultured for 3 d in Dulbecco modified Eagle medium. The addition of an amino acid mixture consisting of seven nonessential amino acids (NEAA: l-Asp, Gly, l-Ala, l-Ser, l-Pro, l-Asn, and l-Glu; concentration of each 12.5–200 μmol/l) in the medium significantly raised GH release from the cultured cells in a concentration-dependent manner with the maximum release at 200 μmol/l NEAA. Although an addition of l-Asp (0.1–100 μmol/l) caused a significant rise in GH release in a concentration-dependent manner, neither the individual amino acids contained in NEAA except l-Asp nor others (l-Leu, l-Phe, l-Gln, l-Met, and l-Arg) caused a rise in GH release when added alone to the medium. The rise in GH release induced by NEAA (200 μmol/l) and GH-releasing hormone (GHRH, 10 nmol/l) was significantly reduced by the addition of EGTA (l.8 mmol/l) and nifedipine (1 μmol/l) to the medium, respectively. The addition of NEAA (200 μmol/l) caused a rapid and transient [Ca2+]i increase, followed thereafter by a steady increase. The prior addition of nifedipine (1 μmol/l), which itself significantly reduced the basal [Ca2+]i, completely abolished the response induced by NEAA or GHRH. From these findings, we conclude that: 1) NEAA raises GH release and [Ca2+]i in cultured caprine anterior pituitary cells, and 2) Ca2+ influx from the medium may be responsible for the cellular action of NEAA.  相似文献   

5.
This study was designed to examine the effects of the proportion of concentrate in the diet on the secretion of growth hormone (GH), insulin and insulin‐like growth factor‐I (IGF‐I) secretion and the GH‐releasing hormone (GHRH)‐induced GH response in adult sheep fed once daily. Dietary treatments were roughage and concentrate at ratios of 100:0 (0% concentrate diet), 60:40 (40% concentrate diet), and 20:80 (80% concentrate diet) on a dry matter basis. Mean plasma concentrations of GH before daily feeding (10.00–14.00 hours) were 11.4 ± 0.4, 10.1 ± 0.5 and 7.5 ± 0.3 ng/mL on the 0, 40 and 80% concentrate diet treatments, respectively. A significant decrease in plasma GH concentration was observed after daily feeding of any of the dietary treatments and these decreased levels were maintained for 8 h (0%), 12 h (40%) and 12 h (80%), respectively (P < 0.05). Plasma IGF‐I concentrations were significantly decreased 8–12 h and 4–16 h after the end of feeding compared with the prefeeding level in the 40 and 80% concentrate diet treatments, respectively (P < 0.05). GHRH injection brought an abrupt increase in the plasma GH concentrations, reaching a peak 10 min after each injection, but, after the meal, the peak plasma GH values for animals fed 40% (P < 0.05) and 80% (P < 0.01) concentrate diet were lower than that for roughage fed animals. The concentrate content of a diet affects the anterior pituitary function of sheep resulting in reduced baseline concentrations of GH and prolonged GH reduction after feeding once daily.  相似文献   

6.
The aim of the present study was to clarify the effect of photoperiod on the secretion of growth hormone (GH) in goats. Adult female goats were kept at 20°C with an 8‐h or 16‐h photoperiod, and secretory patterns of GH for 4 h (12.00 to 16.00 hours) were compared. In addition, the goats were kept under a 16‐h photoperiod and orally administered saline (controls) or melatonin, and the effects of melatonin on the secretion of GH were examined. GH was secreted in a pulsatile manner. There were no significant differences in pulse frequency between the 8‐ and 16‐h photoperiods; however, GH pulse amplitude tended to be greater in the group with the 16‐h photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the 16‐h photoperiod (P < 0.05). The GH‐releasing response to GH‐releasing hormone (GHRH) was also significantly greater for the 16‐h photoperiod (P < 0.05). There were no significant differences in GH pulse frequency between the saline‐ and melatonin‐treated groups. However, GH pulse amplitude and mean GH concentrations were significantly greater in the saline‐treated group (P < 0.05). The present results show that a long photoperiod enhances the secretion of GH, and melatonin modifies GH secretion in female goats.  相似文献   

7.
To clarify the direct effects of Ghrelin on growth hormone (GH) release from anterior pituitary (AP) cells in pigs, GH-releasing effects of human Ghrelin (hGhrelin) and rat Ghrelin (rGhrelin) on porcine AP cells were compared with GHRH in vitro. The AP cells were obtained from 6-month-old pigs and the cells (2 x 10(5) cells per well) were incubated for 2 h with the peptides after incubating in DMEM for 3 days. hGhrelin and rGhrelin significantly stimulated GH release from the cultured cells at doses of 10(-8) and 10(-7)M (P < 0.05). The rates of increase in GH at 10(-8) and 10(-7)M of hGhrelin were 82.7 and 131.9%, while those with rGhrelin were 43.9 and 79.5%, respectively. GHRH significantly stimulated GH release from the cells at a dose as low as 10(-11)M (P < 0.05), and the response to GHRH was greater than that induced by Ghrelins. In time-course experiments, GHRH continued to increase GH concentrations in media until 120 min after incubation; however, those in media treated with hGhrelin reached a plateau 60 min after incubation, and the maximal value was approximately one third that obtained with GHRH. When hGhrelin (10(-8)M) and GHRH (10(-8)M) were added together, additive effects of both peptides on the release of GH were observed (P < 0.05). Somatostatin (SS, 10(-7)M) significantly blunted GH release induced by hGhrelin (10(-8)M) and GHRH (10(-8)M) (P < 0.05). In the presence of SS, additive effects of hGhrelin and GHRH on the release of GH were observed (P < 0.05). These results show that Ghrelin directly stimulates GH release from anterior pituitary cells in pigs; however, the GH-releasing effect is weaker than that of GHRH in vitro. The present results also show that Ghrelin interacts with GHRH and SS to in the release of GH from porcine adenohypophysial cells.  相似文献   

8.
The purposes of the present study were to examine the effect of naloxone, a mu‐opioid receptor (MOR) antagonist, on porcine oocyte maturation and embryo development. MOR gene was expressed in germinal vesicle (GV) and metaphase II (M‐II) porcine oocytes, one‐, four‐cell stage embryos and blastocysts. In blastocysts, MOR gene was mainly expressed in inner cell mass (ICM) cells. Supplementation of 10?8 mol/L naloxone in in vitro maturation (IVM) medium increased the maturation rate (P < 0.05). However, 10?4 mol/L naloxone reduced the maturation rate (P < 0.05) compared with the control. The presence of naloxone during IVM had no effects on fertilization status and subsequent embryonic development after in vitro culture (IVC). The addition of 10?3 mol/L dibutyryl cyclic adenosine monophosphate (dbcAMP), and 10?8 mol/L naloxone together into IVM medium increased nuclear maturation (P < 0.05) compared with the addition of either dbcAMP or naloxone alone. Supplementation with naloxone in IVC medium did not improve embryonic development. However, at the concentrations of 10?6 mol/L and 10?8 mol/L, naloxone increased the ratio of ICM to total cells in blastocysts (P < 0.05). In conclusion, at low concentration, naloxone increases maturation rate and the ratio of ICM to total cells in blastocysts. Naloxone and cAMP have a synergistic effect on oocyte maturation.  相似文献   

9.
The aim of the present study was to clarify the effect of photoperiod on secretory patterns of growth hormone (GH) in male goats. Adult male goats were kept at 20°C with an 8‐h or 16‐h light photoperiod, and secretory patterns of GH secretion were compared. In addition, plasma profiles of prolactin (PRL), insulin‐like growth factor‐I (IGF‐I) and testosterone (T) were also examined to characterize GH secretion. GH was secreted in a pulsatile manner. There was no significant difference in pulse frequency between the 8‐h and 16‐h photoperiods. However, GH pulse amplitude tended to be greater in the group with the 16‐h photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the 16‐h photoperiod (P < 0.05). The GH‐releasing response to GH releasing hormone was greater in the 16‐h than 8‐h photoperiod (P < 0.05). Plasma PRL and IGF‐I levels were higher in the 16‐h than 8‐h photoperiod (P < 0.05). In contrast, plasma T levels were lower in the 16‐h photoperiod (P < 0.05). These results show that a long light photoperiod enhances the secretion of GH as well as PRL and IGF‐I, but reduces plasma T concentrations in male goats.  相似文献   

10.
Bovine growth hormone (bGH) gene polymorphism of leucine (Leu)-threonine (Thr) (allele A), valine (Val)-Thr (allele B), and Val-methionine (Met) (allele C) at codons 127 and 172 was shown to relate with carcass trait variations in Japanese Black cattle. In this study, 10-mo-old Japanese Black heifers with growth hormone (GH) genotypes AA, AB, BB, AC, BC, and CC (N = 141) were compared for basal GH, insulin-like growth factor-1 (IGF-1), insulin, ghrelin, glucose, and nonesterified fatty acid (NEFA) concentrations. Growth hormone release was also measured as response to growth hormone–releasing hormone (GHRH) (0.4 μg/kg body weight [BW]) using 18 heifers with GH genotypes AA, BB, and CC (n = 6 for each group). The genotype AA heifers showed the greatest BW among genotypes (P < 0.05). Genotype AC, BC, and CC heifers showed greater GH concentrations than genotype AA, AB, or BB heifers, in which genotype CC heifers had the highest concentrations (P < 0.05). However, IGF-1 concentrations did not significantly differ. The genotype AA and BB heifers had a greater GH release at 60 min following GHRH injection than did the genotype CC heifers. The area under the curve (AUC; P < 0.07) and incremental area (IA; P < 0.08) of GH responses to the GHRH challenge tended to be the highest in the genotype AA heifers and the lowest in the genotype CC heifers. In conclusion, GH gene polymorphism altered GH, which may have contributed to differences in BW and carcass traits among genotypes.  相似文献   

11.
The aims of the present study were to clarify the effect of kisspeptin‐10 (Kp10) on the secretion of luteinizing hormone (LH) and testosterone (T) in pre‐pubertal and post‐pubertal male ruminants. Four male goats (Shiba goats) were given an intravenous (i.v.) injection of Kp10 (5 µg/kg body weight (b.w.)), gonadotoropin‐releasing hormone (GnRH, 1 µg/kg b.w.), or 2 mL of saline as a control at the ages of 3 (pre‐pubertal) and 6 (post‐pubertal) months. A single i.v. injection of Kp10 significantly stimulated the release of LH and T in both groups. The area under the response curve (AUC) of LH for a 60‐min period after the i.v. injection of Kp10 was significantly greater in the pre‐pubertal goats (P < 0.05). The AUC of T for a 120 min period post‐injection did not differ between the two age groups. A single i.v. injection of GnRH also significantly stimulated the release of LH and T in both groups (P < 0.05). The secretory pattern of LH and T in response to GnRH resembled that in response to Kp10. These results show that the LH‐releasing response to Kp10 is greater in pre‐pubertal than post‐pubertal male goats. They also show that Kp10, as well as GnRH, is able to stimulate the release of T in male goats.  相似文献   

12.
Growth hormone (GH) secretion regularity and the effects of lighting condition and GH‐releasing hormone (GHRH) on GH release were determined in steers. First, steers were kept under 12:12 L : D conditions (light: 06.00–18.00 hours). The animals were then subjected to a 1‐h advancement in lighting on/off conditions (05.00 and 17.00 hours, respectively). Blood was sampled for 24 h at 1‐h interval on the seventh day of each condition. Second, GHRH was injected intravenously (IV) at 12.00 and 00.00 hours under 12:12 L : D and blood was sampled at 15‐min interval for 4‐h (1 h before and 3 h after the injection). Plasma GH concentrations were measured by a radioimmunoassay. Periodicity of GH secretory profile was calculated by power spectrum analysis using the maximum entropy method. Plasma GH concentrations showed a characteristic pattern consisting of four distinct peaks. Mean periodicity of GH secretory profile was 5.7 h, and it was not altered by any change in lighting conditions. IV injection of GHRH increased GH secretion during the day and night. The increase in GH secretory volume after GHRH injection during the night was equal to that during the day. The present results suggest that GH secreted from the anterior pituitary have regularity in steers.  相似文献   

13.
Molecular biology techniques are of help in genetic improvement since they permit the identification, mapping and analysis of polymorphisms of genes encoding proteins that act on metabolic pathways involved in economically interesting traits. The somatotrophic axis, which essentially consists of growth hormone releasing hormone (GHRH), growth hormone (GH), insulin-like growth factors I and II (IGF-I and IGF-II), and their associated binding proteins and receptors (GHRHR, GHR, IGF-IR and IGF-IIR), plays a key role in the metabolism and physiology of mammalian growth. The objectives of the present study were to estimate the allele and genotype frequencies of the IGF-I/SnaBI, IGF-IR/TaqI and GHRH/HaeIII gene polymorphisms in different genetic groups of beef cattle and to determine associations between these polymorphisms and growth and carcass traits. For this purpose, genotyping was performed on 79 Nellore animals, 30 Canchim (5/8 Charolais+3/8 Zebu) animals and 275 crossbred cattle originating from the crosses of Simmental (n=30) and Angus (n=245) sires with Nellore females. In the association studies, traits of interest were analyzed using the GLM procedure of SAS and least square means of the genotypes were compared by the Tukey test. Associations of IGF-I/SnaBI genotypes with body weight and subcutaneous backfat were significant (p<0.05), and nearly significant for longissimus dorsi area (p=0.06), with the BB genotype being favorable compared to the AB genotype. No significant associations were observed between this polymorphism and weight gain or carcass yield (P>0.05). The IGF-IR/TaqI and GHRH/HaeIII polymorphisms showed no association with production traits.  相似文献   

14.
Kisspeptin (Kp) is synthesized in the arcuate nucleus and preoptic area of the hypothalamus and is a regulator of gonadotropin releasing hormone in the hypothalamus. In addition, Kp may regulate additional functions such as increased neuropeptide Y gene expression and reduced proopiomelanocortin (POMC) gene expression in sheep. Other studies have found a role for Kp to release growth hormone (GH), prolactin and luteinizing hormone (LH) from cattle, rat and monkey pituitary cells. Intravenous injection of Kp stimulated release LH, GH, prolactin and follicle stimulating hormone in some experiments in cattle and sheep, but other studies have failed to find an effect of peripheral injection of Kp on GH release. Recent studies indicate that Kp can stimulate GH release after intracerebroventricular injection in sheep at doses that do not release GH after intravenous injection. These studies suggest that Kp may have a role in regulation of both reproduction and metabolism in sheep. Since GH plays a role in luteal development, it is tempting to speculate that the ability of Kp to release GH and LH is related to normal control of reproduction.  相似文献   

15.
Kisspeptin(Kp) is synthesized in the arcuate nucleus and preoptic area of the hypothalamus and is a regulator of gonadotropin releasing hormone in the hypothalamus.In addition,Kp may regulate additional functions such as increased neuropeptide Y gene expression and reduced proopiomelanocortin(POMC) gene expression in sheep.Other studies have found a role for Kp to release growth hormone(GH),prolactin and luteinizing hormone(LH)from cattle,rat and monkey pituitary cells.Intravenous injection of Kp stimulated release LH,GH,prolactin and follicle stimulating hormone in some experiments in cattle and sheep,but other studies have failed to find an effect of peripheral injection of Kp on GH release.Recent studies indicate that Kp can stimulate GH release after intracerebroventricular injection in sheep at doses that do not release GH after intravenous injection.These studies suggest that Kp may have a role in regulation of both reproduction and metabolism in sheep.Since GH plays a role in luteal development,it is tempting to speculate that the ability of Kp to release GH and LH is related to normal control of reproduction.  相似文献   

16.
We have previously demonstrated that a constant intravenous infusion of kisspeptin (Kp) for 48 h in anestrous ewes induces a preovulatory luteinizing hormone (LH) surge followed by ovulation in approximately 75% of animals. The mechanisms underlying this effect are unknown. In this study, we investigated whether Kp-induced preovulatory LH surges in anestrous ewes were the result of the general activation of the whole gonadotropic axis or of the direct activation of central GnRH neurons required for the GnRH/LH surge. In the first experiment, a constant iv infusion of ovine kisspeptin 10 (Kp; 15.2 nmol/h) was given to 11 seasonally acyclic ewes over 43 h. Blood samples were taken every 10 min for 15 h, starting 5 h before the infusion, and then hourly until the end of the infusion. We found that the infusion of Kp induced a well-synchronized LH surge (around 22 h after the start of the Kp infusion) in 82% of the animals. In all ewes with an LH surge, there was an immediate but transient increase in the plasma concentrations of LH, follicle-stimulating hormone (FSH), and growth hormone (GH) at the start of the Kp infusion. Mean (± SEM) concentrations for the 5-h periods preceding and following the start of the Kp infusion were, respectively, 0.33 ± 0.09 vs 2.83 ± 0.49 ng/mL (P = 0.004) for LH, 0.43 ± 0.05 vs 0.55 ± 0.03 ng/mL (P = 0.015) for FSH, and 9.34 ± 1.01 vs 11.51 ± 0.92 ng/mL (P = 0.004) for GH. In the first experiment, surges of LH were observed only in ewes that also had a sustained rise in plasma concentrations of estradiol (E2) in response to Kp. Therefore, a second experiment was undertaken to determine the minimum duration of Kp infusion necessary to induce such a pronounced and prolonged increase in plasma E2 concentration. Kisspeptin (15.2 nmol/h) was infused for 6, 12, or 24 h in seasonally acyclic ewes (N = 8), and blood samples were collected hourly for 28 h (beginning 5 h before the start of infusion), then every 2 h for the following 22 h. Kisspeptin infused for 24 h induced LH surges in 75% of animals, and this percentage decreased with the duration of the infusion (12 h = 50%; 6 h = 12.5%). The plasma concentration of E2 was greater in ewes with an LH surge compared to those without LH surges; mean (± SEM) concentrations for the 5-h period following the Kp infusion were, respectively, 2.23 ± 0.16 vs 1.27 ± 0.13 pg/mL (P < 0.001). Collectively, our results strongly suggest that the systemic delivery of Kp induced LH surges by activating E2-positive feedback on gonadotropin secretion in acyclic ewes.  相似文献   

17.
The growth hormone (GH) and growth hormone releasing hormone (GHRH) contents in serum of 3 weights (90,110 and 130 kg) of Chuanzang Black swine hybrid and DLY pigs were detected by enzyme-linked immune sorbent assay (ELISA),their relationship with cross sectional area of muscle fiber (CSA) and intramuscular fat (IMF) content were also analyzed.The results showed that the GH contents of Chuanzang Black swine hybrid and DLY pigs of 3 weights were 14.25,14.61,14.11 and 17.86,16.98,16.77 μg/L,respectively,while the GHRH contents of which were 22.88,23.98,24.33 and 27.72,27.47,28.39 μg/L,respectively.There was no significant difference in different weight of the same breeds (P >0.05) except the significant difference between 90 and 130 kg of DLY pigs (P<0.05).The GH and GHRH contents of Chuanzang Black swine hybrid were both significant lower than DLY pigs of the same bodyweight (P< 0.05) except GHRH content of 110 kg weight (P >0.05).Relevance analysis showed that GH and GHRH contents had a significant positive correlation with CSA (P< 0.05),and an extremely significant negative correlation with IMF content (P< 0.01),which prompted that GH and GHRH might regulate the growth of muscle fiber and IMF deposition through blood.  相似文献   

18.
Growing porcine oocytes from early antral follicles can acquire meiotic and developmental competence under suitable culture conditions, but at lower rates compared to full‐grown oocytes. We postulated that estradiol‐17β (E2) supported the acquisition of meiotic and developmental competence as well as cumulus‐expansion ability during growth culture. Growing oocytes from early antral follicles (1.2 to 1.5 mm in diameter) were grown in vitro for 5 days in a medium containing 0, 10?7, 10?6, 10?5 or 10?4 mol/L E2; after in vitro maturation, 35, 58, 47, 74 and 49% of oocytes matured to metaphase II, 25, 79, 77, 90 and 97% acquired cumulus‐expansion ability, and 23, 54, 63, 89 and 64% were fully surrounded by cumulus cells, respectively. Following maturation, electro‐stimulation was applied to the oocytes grown with 10?5 mol/L E2. After 6 days of culture, in vitro‐grown oocytes developed to the blastocyst stage at a rate similar to that for full‐grown oocytes (31% and 40%, respectively). Therefore, we suggest that the use of E2 during growth culture improves the meiotic and developmental competence of oocytes, cumulus‐expansion ability, and cumulus cell attachment to the oocytes.  相似文献   

19.
In this study, we examined the effects of several egg white proteins (ovalbumin, ovomucoid, ovotransferrin and lysozyme) on proliferation and myotube growth in C2C12 murine myoblast cells. Cell proliferation was measured using a water‐soluble tetrazolium salt (WST‐8)‐based assay and then validated using Giemsa staining. Significant proliferative activities of C2C12 cells were observed in response to the addition of 10?5–10?4 mol/L ovalbumin or ovomucoid. Ovotransferrin decreased C2C12 cell proliferation and lysozyme showed no significant effects on the proliferation of C2C12 cells. In contrast, the proliferative effects of ovalbumin and ovomucoid were not observed in 3T3‐L1 murine preadipocyte cells. We also measured the effects of ovalbumin and ovomucoid on C2C12 myotube diameters by using histological analysis. In comparison to control cells, myotube diameters were significantly increased in cells cultured in 10?6–10?4 mol/L ovalbumin or ovomucoid, suggesting that ovalbumin and ovomucoid stimulate the growth of myotubes. Thus, our results clearly demonstrated that ovalbumin or ovomucoid stimulated the proliferation of myoblasts and growth of myotubes.  相似文献   

20.
The aim of the present study was to clarify the effect of photoperiod on nighttime secretion of growth hormone (GH) in goats. Adult female goats were kept at 20°C with an 8 h or 16 h dark photoperiod, and secretory patterns of GH for 8 h in the dark period were examined with the profile of prolactin (PRL) secretion. GH was secreted in a pulsatile manner in the dark period. There were no significant differences in pulse frequency between the 8‐ and 16‐h dark photoperiods; however, pulse amplitude tended to be greater in the group with the 16‐h dark photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the same photoperiod (P < 0.05). PRL secretion increased quickly after lights off under both photoperiods. The PRL‐releasing responses were weaker in the 8‐h than 16‐h dark photoperiod. The secretory response to photoperiod was more obvious for PRL than GH. The present results show that a long dark photoperiod enhances the nighttime secretion of GH in female goats, although the response is not as obvious as that for PRL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号