首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective— To study the kinematics of cervical spine segment C4–C5 and its association with disc dimensions and the coupled motion (CM) in relation to primary motion (PM).
Study Design— Cadaveric biomechanical study.
Animals— Cadavers of large breed dogs (>20 kg; n=11).
Methods— Spines were freed from muscles. Radiographs were taken orthogonal to the C4–C5 disc space and disc thickness, endplate width, and height were measured. Spines were mounted on a simulator for 3-dimensional motion analysis. Data were recorded with an optoelectronic motion analysis system. Range of motion (ROM) and neutral zone (NZ) were determined in the direction of flexion/extension, left/right lateral bending, and left/right axial rotation, as well as the ROM of CM.
Results— ROM in flexion and extension was similar; there was no CM in flexion/extension. Left/right axial rotation and left/right lateral bending were coupled to the same side. CM was 1.72 and 3.56 times the ROM of the PM in lateral bending and axial rotation, respectively. Disc dimensions were positively correlated with body weight. Flexion/extension magnitude was significantly reduced for larger endplates, but axial rotation was not influenced. Lateral bending had no correlation with weight or disc dimensions.
Conclusion— Left/right lateral bending and left/right axial rotation are coupled differently in the C4–C5 segment in dogs compared with humans.
Clinical Relevance— The canine C4–C5 spinal segment has unique motion coupling patterns that should be considered for dynamic implant designs.  相似文献   

2.
At least three types of movement, dorsoventral flexion and extension, axial rotation and lateral bending, were shown to occur at each of the intervertebral joints in the cervical spine. Between the first two cervical vertebrae the mean axial rotation was 107.5 degrees, which was 73 per cent of the total axial rotation of the cervical spine. The atlantooccipital joint rotated through a mean of 27 degrees, whereas the remaining cervical joints each had less than 3 degrees of rotatory movement. Dorsoventral flexion and extension were maximal at the atlantooccipital joint, which had an amplitude of 86.4 degrees and accounted for 32 per cent of the total dorsoventral movement of the cervical spine. Lateral bending was relatively more uniform along the length of the neck, with mean values ranging from 25 to 45 degrees for each joint except that between the first two cervical vertebrae, which had a mean of only 3.9 degrees of lateral bending.  相似文献   

3.
Six dogs were used for a radiological investigation of movement of the cervical vertebrae for comparison of range of motion, instantaneous centers of motion and patterns of flexion and extension with those determined for man. Five dogs were embalmed and one live dog was investigated under the influence of general anesthesia. All animals were adult with the exception of one of the embalmed animals. None of the animals exhibited any abnormalities of cervical vertebrae or intervertebral discs. It was demonstrated that range of motion of the dog cervical spine exceeds that of man, largely due to a greater flexion-extension range of the atlanto-occipital joint and of lateral flexion of the cranial and caudal cervical spine. Patterns of flexion and extension of the cranial and caudal cervical spine of the dog are similar to that of man with no differences in the location of centers for these movements. Other differences were primarily due to the organization of intervertebral articulations.
These relationships are discussed in regard to the significance of individual groups of cervical muscles, joint functions and influence of movement on the spinal cord.  相似文献   

4.
Kinematics of the equine thoracolumbar spine   总被引:2,自引:0,他引:2  
At least three types of movement take place in the joint complexes of the equine thoracolumbar spine: dorsoventral flexion and extension, axial rotation and lateral bending. Using the standard right-handed Cartesian coordinate system, these movements may be defined as rotation about the x, y and z axes respectively. Except in cases of intervertebral fusion, all three types of movement occur in each joint complex of the equine back. The greatest amount of dorsoventral movement takes place at the lumbosacral and the first thoracic intervertebral joints. The greatest amount of axial rotation and lateral bending was measured in the mid-thoracolumbar spine at the level of the 11th or 12th thoracic intervertebral joints. The caudal thoracic and the lumbar spine is the least mobile region of the equine back. In the mid-thoracic spine, lateral bending was always accompanied by a "coupled" axial rotation. The presence of the rib cage stabilised the cranial thoracic vertebrae against axial rotation.  相似文献   

5.
A photographic method was used to measure axial rotation, dorsoventral flexion and extension and lateral bending at each intervertebral joint complex from the occiput to the first thoracic vertebra in spinal segments from 19 foals under 12 months of age and 14 horses over three years of age. Comparisons between the two groups showed that there was a general reduction in cervical spinal mobility with age. For the three types of movement at the eight joints tested, adults' mobility exceeded that of foals in only three cases (axial rotation and lateral bending at the A-O joint, and lateral bending at C7-T1). These differences were not significant (P greater than 0.05). In the remaining 21 cases the amplitude of movement was greater in the foals, the differences being significant (P less than 0.05) in 16 cases. With regard to overall mobility of the cervical spine the foals exceeded the adults by 17.3 per cent for axial rotation, 22.0 per cent for dorsoventral flexion and extension and 18.7 per cent for lateral bending.  相似文献   

6.
Vertebral and inter-vertebral parameters obtained in large breeds (n = 74), small breeds (n = 35), and Dachshunds (n = 30) were compared to reveal potential differences in the range of motion of the cervical spine between these three groups of breeds. Body size normalized dimensions of vertebral and inter-vertebral parameters and correlations between these indicate large canine breeds to have a tendency towards higher range of motion in sagittal rotation and lateral bending compared with Dachshunds and small breeds. Higher mobility in large breeds is based on significantly (P < 0.05) lower vertebral endplate heights and widths, shorter vertebral bodies and longer inter-vertebral discs, wider but shorter cranial and caudal articular surfaces, larger differences in width between caudal and cranial joining facets (compared with Dachshunds from C3/4 to C6/7, compared with small breeds from C4/5 to C5/6), and larger differences in length between caudal and cranial joining facets. Large differences in width between caudal and cranial joining facets were associated with small distances between the most medial (C3/4 to C6/7) and lateral (C3/4 to C5/6) aspects of the articular surfaces as well as with small differences in length between caudal and cranial joining facets (C3/4 to C5/6). This suggests that from C3/4 to C5/6 a higher range of motion in lateral bending is coupled to a lower range of motion in sagittal rotation. The present findings contribute also to explain the higher incidence of degenerative lesions of the cervical spine in large dogs.  相似文献   

7.
Objective— To compare the biomechanical properties of cervical arthroplasty to a ventral slot procedure and pin‐polymethylmethacrylate (pin‐PMMA) fixation. Sample Population— Fresh cadaveric cervical (C2–T1) spines from 6 large dogs. Methods— Four spinal conditions were studied in each spinal specimen: intact, disk arthroplasty, ventral slot, and fixation with smooth pin‐PMMA at C5–C6 intervertebral space. Axial compression, torsion, flexion–extension, and lateral bending moments were sequentially tested on each specimen for the 4 spinal conditions. Data from the C3–C4, C4–C5, C5–C6, and C6–C7 vertebral motion units (VMUs) were compared among treatments. Results— In axial compression and torsion, the ventral slot procedure allowed significantly less motion than intact, pin‐PMMA, and arthroplasty groups at C5–C6. In lateral bending and flexion–extension, pin‐PMMA had the least motion of C5–C6, followed by the arthroplasty group, intact spine, and ventral slot, all of which were significantly different from each other. Overall, the artificial disk was better able to mimic the behavior of the intact specimens compared with the ventral slot and pin‐PMMA, producing similar displacements in axial compression and rotation in torsion, but more limited motion than intact in flexion–extension and in lateral bending. Conclusion— Cervical spine specimens with an implanted prosthesis have biomechanical behaviors more similar to an intact spine compared with spinal specimens with ventral slot and pin‐PMMA procedures. Cervical arthroplasty may then preserve some of the motion in the affected area after neural decompression while providing distraction. Clinical Relevance— Cervical arthroplasty should be further investigated in vivo to determine if it is a viable alternative to the ventral slot or pin‐PMMA procedures for surgical treatment of cervical diseases in dogs and in particular for treatment of disk‐associated caudal cervical spondylomyelopathy.  相似文献   

8.
OBJECTIVE: To determine kinematic movements of the vertebral column of horses during normal locomotion. ANIMALS: 5 Dutch Warmblood horses without apparent lameness or problems associated with the vertebral column. PROCEDURE: Kinematics of 8 vertebrae (T6, T10, T13, T17, L1, L3, L5, and S3) and both tuber coxae were determined, using bone-fixated markers. Horses were recorded while walking on a treadmill at a constant speed of 1.6 m/s. RESULTS: Flexion-extension was characterized by 2 periods of extension and flexion during 1 stride cycle, whereas lateral bending and axial rotation were characterized by 1 peak and 1 trough. The range of motion for flexion-extension was fairly constant for vertebrae caudal to T10 (approximately 7 degrees). For lateral bending, the cranial thoracic vertebrae and segments in the pelvic region had the maximal amount of motion, with values of up to 5.6 degrees. For vertebrae between T17 and L5, the amount of lateral bending decreased to <4 degrees The amount of axial rotation increased gradually from 4 degrees for T6 to 13 degrees for the tuber coxae. CONCLUSIONS: This direct measurement method provides 3-dimensional kinematic data for flexion-extension, lateral bending, and axial rotation of the thoracolumbar portion of the vertebral column of horses walking on a treadmill. Regional differences were observed in the magnitude and pattern of the rotations. Understanding of the normal kinematics of the vertebral column in healthy horses is a prerequisite for a better understanding of abnormal function.  相似文献   

9.
Reason for performing study: By study of the translocation and deformation of equine menisci throughout the range of motion, it may be possible to identify potential mechanical factors in the pathogenesis of injury to the cranial horn of the medial meniscus. Objective: To quantitatively document meniscal translocation and deformation using radiographic and MR imaging, and to evaluate for potential variation between the medial and lateral menisci. Methods: Radiographic markers were embedded in the periphery of the menisci in 6 cadaver stifles. Proximal‐distal radiographs were taken at 15° intervals ranging from full flexion (30°) to full extension (160°). Magnetic resonance imaging sequences of 3 additional cadaver stifles were obtained in axial and sagittal planes at the predetermined stifle angles. Results: A significantly greater overall mean cranial‐caudal translocation (1.6 times) of the lateral meniscus relative to the medial was seen from full extension to full flexion (P = 0.002). The cranial horn of the medial meniscus was the least mobile of the 4 horns, yet a significant cranial displacement relative to the cranial horn of the lateral meniscus was seen in the terminal 10° of extension. MRI images revealed a significantly greater axial compressive strain in the cranial horn of the medial meniscus relative to the cranial horn of the lateral meniscus in the terminal 10° of extension (P = 0.017). Conclusion: The equine menisci exhibit a cranial‐caudal translocation over the tibia throughout the range of motion. While the cranial horn of the medial meniscus is the least mobile of the 4 horns, it undergoes significant cranial translocation and axial compression in the terminal 10° of extension. Potential relevance: Hyperextension of the stifle may place the cranial horn of the medial meniscus at risk of injury and thus explain the higher prevalence of meniscal tears at this location.  相似文献   

10.
Objective: To evaluate the use of a locking compression plate (LCP) with monocortical screw purchase for stabilization of the canine cervical spine. Study Design: Experimental study. Animals: Cadaveric canine cervical spine specimens (n=7). Methods: Flexion and extension bending moments were applied to canine cadaveric specimens (C3–C6) in 4‐point bending, before and after creation of a ventral slot at C4–C5, and after fixation with a 5 hole, 3.5 mm LCP with monocortical screw placement. Screw placement and penetration into the vertebral canal were determined by radiography. Range of motion, stiffness, and energy for passive physiologic loads were determined for the C3–C4, C4–C5, and C5–C6 vertebral motion units (VMU). Monotonic failure properties were determined for cervical extension. Effects of treatments on biomechanical variables were assessed using repeated measures analysis of variance and least square means (P≤.05). Results: The ventral slot procedure increased range of motion at the treated VMU. Plate fixation decreased range of motion, increased stiffness, and decreased energy at the treated VMU. No changes were observed at adjacent VMUs. None of the screws penetrated the vertebral canal. Mean (± SD) yield bending moment of plate stabilized, slotted spines was 15.6 ± 4.6 N m. Conclusion: LCP fixation with monocortical screws stabilized the canine cervical spine.  相似文献   

11.
The axial skeleton of orange rumped agouti, Dasyprocta leporina, was studied for better understanding of its locomotor behaviour. The bones from eight adult agoutis of both sexes were observed for their anatomical features and functional significance. The vertebral formula was found to be C7T12L7S5Cy5–6. The well-developed occipital crest, caudally oriented prominent axis spine and well-developed transverse processes from C3–C7 indicated a highly flexible neck with greater sagittal mobility. Articular facets were horizontal in anterior series while oblique in the posterior series, which enabled them to perform both lateral and sagittal movements during locomotion. The caudally directed thoracic spines, T12 as anticlinal vertebra and prominent mamillary process in the posterior series were suggestive of strong dorso-ventral flexion/extension and rotation. The robust lumbar vertebrae, well-developed transverse processes with cranio-ventral extension, were the feature for powerful sagittal/dorsoventral movement. The presence of spinous processes and well-developed transverse processes in all caudal vertebrae was an indication of a highly movable tail. The ribs were 13 pairs with first seven as sternal and six as asternal. They were laterally compressed in the anterior series as a cursorial adaptation. A strong muscular attachment to vertebrae provides this rodent speed, agility, dexterity and strength suitable for survival in food chain.  相似文献   

12.
Cervical spine motion: radiographic study   总被引:1,自引:0,他引:1  
Knowledge of the acceptable range of motion of the cervical spine of the dog is used in the radiographic diagnosis of both developmental and degenerative diseases. A series of radiographs of mature Beagle dogs was used to identify motion within sagittal and transverse planes. Positioning of the dog's head and neck was standardized, using a restraining board, and mimicked those thought to be of value in diagnostic radiology. The range of motion was greatest between C2 and C5. Reports of severe disk degeneration in the cervical spine of the Beagle describe the most severely involved disks to be C4 through C7. Thus, a high range of motion between vertebral segments does not seem to be the cause for the severe degenerative disk disease. Dorsoventral slippage between vertebral segments was seen, but was not accurately measured. Wedging of disks was clearly identified. At the atlantoaxio-occipital region, there was a high degree of motion within the sagittal plane at the atlantoaxial and atlanto-occipital joints; the measurement can be a guideline in the radiographic diagnosis of instability due to developmental anomalies in this region. Lateral motion within the transverse plane was detected at the 2 joints; however, motion was minimal, and the measurements seemed to be less accurate because of rotation of the cervical spine. Height of the vertebral canal was consistently noted to be greater at the caudal orifice, giving some warning to the possibility of overdiagnosis in suspected instances of cervical spondylopathy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Objective: Evaluate the effect of marker placement on kinematics of the canine stifle in 3 distinct hindlimb models. Study Design: In vivo biomechanical study. Animals: Normal adult mixed‐breed dogs (n=5). Methods: Ten retroreflective markers were affixed to the skin on the right rear leg of each dog to establish normal stifle kinematics. Four additional markers were placed around the greater trochanter (GT), 2 cm cranial, caudal, dorsal, and ventral to evaluate single marker placement variability on kinematic model data. Dogs were walked and trotted 5 times through the calibrated space. Sagittal flexion and extension angle waveforms were acquired during each trial with 3 models that were produced simultaneously during each gait. The GT marker was reassigned to 1 of the 4 additional locations (cranial, caudal, dorsal, and ventral) to alter the kinematic model. Comparison of sagittal flexion and extension angle waveforms was performed with Generalized Indicator Function Analysis. Results: Each model provided consistent equivalent sagittal flexion–extension data. Analysis revealed statistically significant differences between all GT locations. The differences were greatest in the cranial and caudal locations for all models. Conclusions: Deviation of the GT marker in the cranial/caudal direction from an anatomically normal position produces a greater degree of difference than deviation in a dorsal/ventral direction.  相似文献   

14.
OBJECTIVE: To determine the effect that ventral intervertebral disk fenestration has on the sagittal range of motion about the C5-C6 intervertebral space. STUDY DESIGN: A repeated measures in vitro mechanical study of spinal range of motion under controlled loading conditions before and after fenestration. SAMPLE POPULATION: A total of 10 canine cervical vertebral specimens (C4-C7) collected from clinically normal animals within 12 hours of euthanasia. METHODS: Specimens were loaded as cantilever beams fixed at C7. Weights (1 to 5 kg) were progressively applied to C4 to produce flexion or extension in the sagittal plane. Radiographs were taken at each load, 3 times before and 3 times after fenestration of the C5-C6 disk. The positions of radiodense markers embedded in the vertebrae were used to calculate flexion and extension angles and range of motion. RESULTS: Range of motion (difference between flexion and extension) and flexion and extension angles (individually) significantly increased after fenestration (P < .0001). CONCLUSION: Ventral fenestration produces sagittal instability of the C5-C6 disk space. CLINICAL RELEVANCE: In surgical fusion of caudal cervical intervertebral spaces in dogs, radiographically normal disks adjacent to the affected space are often fenestrated to facilitate distraction before surgical stabilization. This study shows that ventral fenestration produces instability of a caudal cervical intervertebral space in the model used. Such instability may contribute to the development of the secondary instability ("domino lesions") seen in some surgically treated dogs.  相似文献   

15.
Objective— To determine biomechanical flexion–extension forces in cadaveric canine lumbosacral specimens, before and after dorsal laminectomy with partial discectomy, and after dorsal pedicle screw–rod fixation of L7 and S1.
Study Design— Biomechanical cadaver study.
Animals— Cadaveric spine specimens without lumbosacral pathology from mature, intact Labrador retrievers (n=12).
Methods— Lumbosacral spine segments were subjected to a constant bending moment from L6 to S1 in a hydraulic 4-point bending materials testing machine. Force and displacement were recorded during each loading cycle constituting 1 complete flexion–extension cycle of the spine. Each spine segment had 3 series of recordings of 5 loading cycles each: (1) intact spine, (2) after surgical destabilization by dorsal laminectomy and partial discectomy, and (3) after surgical stabilization using dorsal pedicle screw–rod fixation.
Results— After dorsal laminectomy and partial discectomy, the neutral zone and range of motion were not different from those in the native spine specimen. After pedicle screw–rod fixation, the neutral zone and range of motion of the instrumented specimen significantly ( P <.0001) decreased compared with the native specimen and the specimen after dorsal laminectomy.
Conclusion— Dorsal laminectomy and partial discectomy does not lead to significant spinal instability in flexion and extension whereas pedicle screw and rod fixation effectively stabilizes the lumbosacral spine.
Clinical Relevance— Dorsal laminectomy and partial discectomy does not lead to significant spinal instability. Pedicle screw–rod fixation of L7 and S1 may be used to stabilize an unstable L7–S1 junction in dogs with degenerative lumbosacral stenosis.  相似文献   

16.
Reasons for performing study: Sacroiliac joint injuries can cause poor performance; however, the interaction between pelvic mechanics and the sacroiliac joint is poorly understood. Objective: To measure pelvic displacement during 3D sacroiliac joint loading. Methods: Nine reflective triads were attached rigidly to bony prominences in sacropelvic specimens harvested from 14 horses for stereophotogrammetric analysis of triad displacements and joint kinematics. The sacrum was coupled to a load cell and mounted vertically within a material testing system (MTS). A pneumatic actuator was used to apply 90 Nm moments to the ischial arch to simulate nutation‐counternutation and left and right lateral bending of the sacroiliac joints. Axial rotation of the sacrum was induced by torsion of the upper MTS fixture. Vectors of marker displacement within orthogonal planes of motion were measured during loading of the sacropelvic specimens. Comparisons in the magnitude and direction of triad displacements were made between paired left‐right markers and paired loading conditions. Results: Nutation‐counternutation of the sacroiliac joint caused vertical displacement of the ischial tuberosities and cranial‐caudal displacement of the wings of the ilium. Lateral bending induced rotational displacement within the horizontal plane of all pelvic landmarks, relative to the sacrum. Axial rotation of the sacrum caused elevation of the wing of the ilium ipsilateral to the direction of sacral rotation and depression of the contralateral ilial wing. Significant paired left‐right differences occurred during most sacroiliac joint loading conditions. Comparable magnitudes of pelvic displacement were measured during nutation‐counternutation, left and right lateral bending, and left and right axial rotation. Conclusions: The equine pelvis is not a rigid structure and asymmetric pelvic deformation occurs during most sacroiliac joint movements. Clinical relevance: Bony pelvic deformation should be considered a normal response to any sacroiliac joint movement.  相似文献   

17.
OBJECTIVE: To evaluate the effect of tibial plateau leveling on joint motion in canine stifle joints in which the cranial cruciate ligament (CCL) had been severed. STUDY DESIGN: In vitro cadaver study. ANIMALS: Six canine cadaver hind legs. METHODS: Radiographs of the stifle joints were made to evaluate the tibial plateau angle with respect to the long axis of the tibia. The specimens were mounted in a custom-made testing device to measure cranio-caudal translation of the tibia with respect to the femur. An axial load was applied to the tibia, and its position was recorded in the normal stifle, after transection of the CCL, and after tibial plateau leveling. Further, the amount of caudal tibial thrust was measured in the tibial plateau leveled specimen while series of eight linearly increasing axial tibial loads were applied. RESULTS: Transection of the CCL resulted in cranial tibial translation when axial tibial load was applied. After tibial plateau leveling, axial loading resulted in caudal translation of the tibia. Increasing axial tibial load caused a linear increase in caudal tibial thrust in all tibial plateau-leveled specimens. CONCLUSIONS: After tibial plateau leveling, axial tibial load generates caudal tibial thrust, which increases if additional axial load is applied. CLINICAL RELEVANCE: Tibial plateau leveling osteotomy may prevent cranial translation during weight bearing in dogs with CCL rupture by converting axial load into caudal tibial thrust. The amount of caudal tibial thrust seems to be proportional to the amount of weight bearing.  相似文献   

18.
OBJECTIVE: To compare the mechanical properties of two types of external skeletal fixation of the lumbar spine with polymethylmethacrylate (PMMA)/Steinmann pin fixation in a canine unstable spine model. STUDY DESIGN: Cadaver study. SAMPLE POPULATION: Lumbar spines of 17 mature large-breed dogs. METHODS: Spine stiffness (N-m/deg) in flexion, extension, and rotation under physiological loading conditions and spine strength (N-m) in flexion were determined. Spines were destabilized at L3-L4, instrumented and retested. Fixation techniques included four-pin PMMA (PMMA4), eight-pin PMMA (PMMA8), eight-pin biplanar type I external skeletal fixator (ESF) (SK), and eight-pin spinal arch ESF (ARCHES). RESULTS: All fixation groups were as stiff as intact spines in extension and rotation and were significantly stiffer in flexion. In flexion, both PMMA8 and ARCHES were significantly stiffer than SK, and PMMA8 was significantly stiffer than PMMA4. In rotation, PMMA8 and ARCHES were significantly stiffer than SK, and in flexion to failure, PMMA8 and ARCHES were significantly stiffer than PMMA4. CONCLUSIONS: External skeletal spinal fixation (ESSF) has mechanical properties comparable to more commonly used PMMA/pin internal fixation techniques. CLINICAL RELEVANCE: External fixation of the canine spine has several potential advantages over internal fixation including minimal dissection for pin placement, the ability to span affected vertebrae with placement of implants distant from the site of injury, postoperative adjustability, and complete removal of implants after healing. This study supports the biomechanical stability ESSF of the canine lumbar spine. Further studies are indicated to evaluate zones of consistently safe and secure placement of pins and clinical efficacy.  相似文献   

19.
OBJECTIVE: To quantify the effect on gap stiffness and cranial to caudal bending stiffness of conversion of the 6 distal clamps of planar bilateral fixator models to sliding clamps and the effect of attachment of composite beams to the sliding clamp models. STUDY DESIGN: Mdash;Mechanical testing performed on models. SAMPLE POPULATION: Five models using birch dowels and a commercially available external skeletal fixator system. METHODS: A segmentally comminuted, middiaphyseal fracture was simulated with the use of wooden dowels, and a bilateral 6-pin fixator was applied to create each of 5 models. The models were mechanically tested with all fixed clamps, with the 6 distal clamps converted to sliding clamps and with composite beams attached to the sliding clamp models. Testing was carried out in axial loading with physiologically relevant loads for a canine model, and in bending in the cranial to caudal plane. RESULTS: Sliding clamp fixators with composite beams attached exhibited a nonlinear increase in axial loading gap stiffness as load increased. The composite beam group also exhibited an increase in cranial to caudal bending stiffness as compared with fixed clamp and sliding clamp models. CONCLUSIONS: Using composite beam elements, planar bilateral external fixators can be constructed such that the fracture site would undergo controlled amounts of displacement at low loads and lessening displacement at higher loads. CLINICAL RELEVANCE: The nonlinear stiffness profile attained by the addition of composite beam elements to a planar external fixator allows controlled axial micromotion at the fracture site. Because controlled axial micromotion appears to stimulate fracture healing, a nonlinear stiffness profile of this type should enhance fracture healing.  相似文献   

20.
Effects of decompressive procedures or dorsal injuries on flexion-extension, 4-point bending properties of the L-3 and L-4 motion segment in dogs were quantitated and compared. Hemilaminectomy did not significantly (P less than 0.05) affect mechanical properties of the spine. Bilateral facetectomy caused a small increase in the range of motion and a 56% decrease in ultimate bending strength. Excision of the supraspinous and interspinous ligaments decreased the flexural stiffness of the spine, increased the range of motion of the interspace, and decreased ultimate flexion bending strength 62%. Dorsal laminectomy caused a marked decrease in spine stiffness in all phases of flexion and extension, increased the range of motion, and decreased ultimate flexion bending strength 75%. Seemingly, a hemilaminectomy was preferable to the dorsal laminectomy if adequate decompression and exploration were achieved with the hemilaminectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号