首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
South-eastern Spain, and in particular the coastal areas of Granada and Malaga, feature a large area under subtropical crops, with orchards established on terraces built along the slopes of the mountainous areas. The climate, characterized by periodically heavy rainfall, variable in space and time, and with the common agricultural practice of leaving the taluses with bare soil, are the main factors encouraging soil erosion, runoff, and subsequent transport of pollutants. Over a two-year period, six plant covers were applied [(Thymus mastichina (Th), Lavandula dentata (La), native spontaneous vegetation (Sv), Anthyllis cytisoides (An), Satureja obovata (Sa), Rosmarinus officinalis (Ro)] in comparison to a control of bare soil (Bs) to determine the effectiveness of the covers in reducing soil erosion, runoff, and potential pollution risk by agricultural nutrients (N, P, and K) and heavy metals. Also, carbon losses were monitored in the transported sediments by runoff and in eroded soils. For this purpose, 16 m2 erosion plots (4 m × 4 m) were laid out in the taluses of the terraces. When the yearly data were compared, the control plot (Bs) showed significantly higher soil erosion and runoff rates (26.4 t ha? 1 yr? 1 and 55.7 mm yr? 1, respectively) than the treatments with plant covers. The plant covers studied registered the following results in runoff: Ro > Sa > An > Th  La > Sv (41.7, 38.2, 35.5, 16.9, 16.1, and 12.4 mm yr? 1, respectively) while annual soil erosion gave the following results: Sa > An > Ro > Th > Sv > La (18.0, 13.5, 13.4, 5.5, 4.4, and 3.2 Mg ha? 1 yr? 1, respectively). This means that Sv reduced runoff and soil-erosion rates compared to Bs by not less than 78 and 83%, respectively. Nevertheless, La and Th plots were also very effective plant covers in reducing runoff and soil erosion (71.2 and 87.8; 69.5 and 79.2%, respectively) in comparison with the Bs plot. The heaviest nutrient losses in runoff and eroded soils were found in Bs and the lowest in the La, Th, and Sv plots. Bs and Ro plots registered the highest carbon losses (829.9 and 652.1 kg ha? 1, respectively), the lowest carbon-loss rates being measured in La, Sv, and Th plots (145.2, 140.3, and 109.3 kg ha? 1, respectively). The results indicate that heavy metals (Mn, Cr, Co, Ni, Cu, Zn, Mo, Cd, and Pb) in these types of agroecosystems may also be a potential pollutant due to transport by agricultural runoff. There was a major reduction of heavy-metal transport by plant covers in relation to the control of bare soil. The results of this research support the recommendation of using plant covers with multiple purposes (aromatic–medicinal–culinary) on the taluses of subtropical-crop terraces in order to reduce erosion and pollution risk.  相似文献   

2.
《Soil & Tillage Research》2007,92(1-2):96-103
Soil loss due to crop harvesting (SLCH) has been established as an important soil erosion process that has significantly contributed to soil degradation in highly mechanised agriculture. This has stimulated the need to investigate the importance of this process of erosion under low input agriculture where, until now, only water and tillage erosion are known as important phenomena causing soil degradation. This study was conducted in Eastern Uganda with the following objectives: (1) to assess the amount of soil lost due to the harvesting of cassava roots and sweet potato tubers under low input agriculture, (2) to look into the factors that influence variations in these soil losses, and (3) to estimate the amount of plant nutrients lost due to SLCH for cassava and sweet potato. Soil sticking to roots and tubers was washed and the soil suspension oven dried to estimate the amount of soil lost after harvesting. Mean annual soil loss for cassava was 3.4 tonnes ha−1 and for sweet potato was 0.2 tonnes ha−1. Ammonium acetate lactate extractable soil nutrient losses for cassava were N = 1.71 kg ha−1 harvest−1, P = 0.16 kg ha−1 harvest−1, K = 1.08 kg ha−1 harvest−1 and for sweet potato were N = 0.14, P = 0.01 kg ha−1 harvest−1, K = 0.15 kg ha−1 harvest−1. Difference in soil loss due to crop harvesting for cassava and sweet potato could be due to: (1) smaller yields of sweet potato leading to smaller soil losses on an area basis, (2) smoother skin and less kinked morphology of sweet potato that allowed less soil to adhere, and (3) the fact that sweet potato is planted in mounds which dry out faster compared to the soil under cassava. Soil moisture content at harvesting time and crop age were significant factors that explained the variations in the soil lost at cassava harvesting. Soil loss under cassava justifies the need to conduct further investigations on this process of soil erosion under low input agriculture.  相似文献   

3.
We studied a semi-natural forest in Northern Italy that was set aside more than 50 years ago, in order to better understand the soil carbon cycle and in particular the partitioning of soil respiration between autotrophic and heterotrophic respiration. Here we report on soil organic carbon, root density, and estimates of annual fluxes of soil CO2 as measured with a mobile chamber system at 16 permanent collars about monthly during the course of a year. We partitioned between autotrophic and heterotrophic respiration by the indirect regression method, which enabled us to obtain the seasonal pattern of single components.The soil pool of organic carbon, with 15.8 (±4.5) kg m?2, was very high over the entire depth of 45 cm. The annual respiration rates ranged from 0.6 to 6.9 μmol CO2 m?2 s?1 with an average value of 3.4 (±2.3) μmol CO2 m?2 s?1, and a cumulative flux of 1.1 kg C m?2 yr?1. The heterotrophic component accounted for 66% of annual CO2 efflux. Soil temperature largely controlled the heterotrophic respiration (R2 = 0.93), while the autotrophic component followed irradiation, pointing to the role of photosynthesis in modulating the annual course of soil respiration.Most studies on soil respiration partitioning indicate autotrophic root respiration as a first control of the spatial variability of the overall respiration, which originates mainly from the uppermost soil layers. Instead, in our forest the spatial variability of soil respiration was mainly linked to soil carbon, and deeper layers seemed to provide a significant contribution to soil respiration, a feature that may be typical for an undisturbed, naturally maturing ecosystem with well developed pedobiological processes and high carbon stocks.  相似文献   

4.
Suhua Fu  Baoyuan Liu  Heping Liu  Li Xu 《CATENA》2011,84(1-2):29-34
Slope gradient is an important factor that affects soil erosion. This study was conducted to investigate the effect of slope gradient on soil erosion and determine the splash contribution to interrill erosion at short steep slopes. An experimental device was used to make simultaneous measurements of interrill splash and wash at 9, 18, 27, 36, 47, 58, 70, 84, and 100% slopes under a constant rainfall intensity of 67 mm h? 1 in a laboratory setting. The specially designed runoff and sediment collection system provided a means of partitioning total splash into four directional components and interrill sediment transport into wash and splash components. The results revealed that the total splash loss, net downslope splash loss and wash loss all increased with slope, and then decreased after a maximum value was reached. The slope factor equation of short slopes in RUSLE matched the wash loss from this study very well when the slope gradient was less than or equal to 58%. The ratio of net downslope splash loss to wash loss increased from 0.21 to 1.33 as the slope gradient increased from 9% to 100%. Taken together, these results indicate that upslope splash loss was a very important component of the total splash loss on gentle slopes and may be neglected on slopes greater than 36%. Splash transport was a significant part of interrill sediment delivery at short steep slopes.  相似文献   

5.
The relationship between the two radiant fluxes is studied from almost a 3-year data archive of hourly photosynthetically active photon flux (QP) and global solar irradiance (RS) performed at Athalassa, Cyprus. These data are used to determine temporal variability of the ratio (QP/RS) and its dependence on sky conditions. The seasonal variation of the ratio obtained from daily data ranges from 1.942 E MJ−1 (summer) to 1.892 E MJ−1 (winter) with an annual mean value of 1.919 E MJ−1. The ratio increased from 1.865 to 2.01 E MJ−1 (daily values) or from 1.878 to 2.197 μE J−1 (hourly values), as sky conditions changed from clear to overcast. Effective atmospheric parameters such as sky clearness, brightness and path length were found to cause substantial changes to the PAR fraction.  相似文献   

6.
The Souar lithologic formation in semi-arid Tunisia is undergoing severe gully erosion which is threatening soil and water resources. Soil conservation strategies have focused more on terracing than on gully control techniques, since the contribution of gully sediment yield in the overall soil loss from watersheds is unknown. The paper reports investigations into the sediment yield provided by head-cut as well as sidewall–floor erosion of first order gullies on gentle and steep slope catchments underlined by the Souar lithologic formation. We measured mean field sediment volumes evacuated by different headward reaches of 10 and 9 gullies located on gentle and steep slope catchments, respectively. Two equations between the length of the gully head cutting and the corresponding volume of evacuated sediment were established. The treatment with a Geographic Information System (Arc View) of air photographs of six flights from 1952 to 2000 allowed the calculation of the volume of sediment provided both by head cutting and gully sidewalls–floor erosion through the following up of gully extension in eight catchments during the five periods separating the dates of these flights. Total gully erosion was on average 1.66 m3 ha− 1 year− 1 for the gentle slopes and 5.603 m3 ha− 1 year− 1 for the steep slopes. Sidewalls–floor contribution in total erosion was on average 81.5% for the gentle slopes and 77.8% for the steep slopes. We found out that the mean annual rainfall resulting from 40 mm daily rainfall threshold explained better the variation of annual head cutting sediment yield for these five periods than any other annual rainfall resulting from lower daily rainfall thresholds. Two equations between these two variables were established both for gentle and steep slope catchments.  相似文献   

7.
8.
Tropical deforestation and land use change is often perceived as the major cause of soil loss by water erosion and of sediment load in rivers that has a negative impact on the functioning of hydropower storage reservoirs. The Sumberjaya area in Sumatra, Indonesia is representative for conflicts and evictions arising from this perception. The purpose of this study as part of a Negotiation Support System approach was to assess sediment yield both at plot and catchment scale and to relate it to a variety of possible clarifying factors i.e. land use, geology, soil and topography. Sediment yield at catchment scale per unit area, was found to be 3–10 times higher than soil loss measured in erosion plots. A stepwise regression showed that the dominant factors explaining sediment yield differences at catchment scale in this volcanic landscape were a particular lithology (Old Andesites) and slope angle followed by the silt fraction of the top soil. In lithologically sensitive areas soil loss at the plot scale under monoculture coffee gardens decreases over time from on average 7–11 Mg ha? 1 yr? 1 to 4–6 Mg ha? 1 yr? 1, mainly because of the development of surface litter layers as filters and top soil compaction in the areas without litter, but remains higher than under shade coffee systems or forest. The runoff coefficient under monoculture coffee remains on average significantly higher (10–15%) than under forest (4%) or under shade coffee systems (4–7%). In lithologically stable areas soil loss remained below 1.8 Mg ha? 1 yr? 1 and the runoff coefficient below 2.5% under all land use types, even bare soil plots or monoculture coffee gardens. Less than 20% of the catchment area produces almost 60% of the sediment yield. The reduction of negative off-site effects on e.g. the life time of a storage reservoir would benefit greatly from an improved assessment of the lithologies in volcanic landscapes and the consideration of potential sediment source and sink areas. In lithologically sensitive areas, a shift from sun to shade coffee systems may result in reducing surface runoff and soil loss, although water erosion at the plot scale is not the main contributor to sediment yield at the catchment scale. The quantification of land use effects on dominant erosive processes such as river bank and river bed erosion, landslides and the concentrated flow erosion on footpaths and roads can contribute to more targeted efforts and relevant incentives to reduce (or live with) sediment load of the rivers.  相似文献   

9.
《Soil biology & biochemistry》2001,33(7-8):1103-1111
Biologically active fractions of soil organic matter are important in understanding decomposition potential of organic materials, nutrient cycling dynamics, and biophysical manipulation of soil structure. We evaluated the quantitative relationships among potential C and net N mineralization, soil microbial biomass C (SMBC), and soil organic C (SOC) under four contrasting climatic conditions. Mean SOC values were 28±11 mg g−1 (n=24) in a frigid–dry region (Alberta/British Columbia), 25±5 mg g−1 (n=12) in a frigid–wet region (Maine), 11±4 mg g−1 (n=117) in a thermic–dry region (Texas), and 12±5 mg g−1 (n=131) in a thermic–wet region (Georgia). Higher mean annual temperature resulted in consistently greater basal soil respiration (1.7 vs 0.8 mg CO2–C g−1 SOC d−1 in the thermic compared with the frigid regions, P<0.001), greater net N mineralization (2.8 vs 1.3 mg inorganic N g−1 SOC 24 d−1, P<0.001), and greater SMBC (53 vs 21 mg SMBC g−1 SOC, P<0.001). Specific respiratory activity of SMBC was, however, consistently lower in the thermic than in the frigid regions (29 vs 34 mg CO2–C g−1 SMBC d−1, P<0.01). Higher mean annual precipitation resulted in consistently lower basal soil respiration (1.1 vs 1.3 mg CO2–C g−1 SOC d−1 in the wet compared with the dry regions, P<0.01) and lower SMBC (31 vs 43 mg SMBC g−1 SOC, P<0.001), but had inconsistent effects on net N mineralization that depended upon temperature regime. Specific respiratory activity of SMBC was consistently greater in the wet than the dry regions (≈33 vs 29 mg CO2–C g−1 SMBC d−1, P<0.01). Although the thermic regions were not able to retain as high a level of SOC as the frigid regions, due likely to high annual decomposition rates, biologically active soil fractions were as high per mass of soil and even 2–3-times greater per unit of SOC in the thermic compared with the frigid regions. These results suggest that macroclimate has a large impact on the portion of soil organic matter that is potentially active, but a relatively small impact on the specific respiratory activity of SMBC.  相似文献   

10.
The use of organic residues as soil amendments or fertilisers may represent a valuable recycling strategy. In this study, a series of laboratory assays was performed to study the effects of the application of organic residues on C and N mineralization and biochemical properties in a Mediterranean agricultural soil. Two crop residues (straw and cotton) and two animal by-products (meat bone meal and blood meal) were added at three rates (5, 10 and 20 mg g?1 on dry weight basis) to a moist (40% water holding capacity) sandy soil and incubated at 20 °C for 28 days. Each residue underwent a different mineralization pattern depending on the nature and complexity of its chemical constituents. In all cases, the addition of the waste produced, after a short lag-phase, an exponential increase in the soil respiration rate, reflecting the growth of microbial biomass. The amount of total extra CO2-C evolved after 28 days, expressed as % in respect to added C, differed significantly (P < 0.005) among application doses: 5 > 10 > 20 mg g?1 and residue type: meat bone meal > blood meal > cotton cardings > wheat straw. Plant residues led to a rapid immobilisation of N that affected microbial size and activity and further mineralization. Animal by-products produced an immediate and remarkable increase of mineral N in the soil. However, the large amounts of NH4+ released in the soil at high rates of animal residues led, in some cases, to temporary adverse effects on microbial biomass growth and nitrification. All residues produced a significant increase in soil microbial biomass size and activity, being the intensity of the response related to their chemical properties.  相似文献   

11.
《Soil biology & biochemistry》2001,33(12-13):1797-1804
Sulphur transformations were monitored in a unique set of arable, grassland and woodland soils from the Broadbalk Classical Experiment, which started in 1843. In an open incubation experiment with periodic leaching, 14–35 mg SO42−-S kg−1 was mineralised in 28 weeks at 25°C, equivalent to 4.4–8.3% soil organic S. Cumulative amounts of S mineralised increased linearly during the 28 weeks, indicating constant rates of mineralisation. The rate of mineralisation was the greatest in the woodland soil (170 μg SO4-S kg−1 day−1), followed by the grassland (120 μg SO4-S kg−1 day−1) and the arable soil from the farmyard manure (FYM) plot (110 μg SO4-S kg−1 day−1). Three soils from arable plots receiving different inorganic fertiliser treatments but no FYM had similar rates of S mineralisation (~70 μg SO4-S kg−1 day−1). In an incubation experiment with 35SO42−, addition of glucose greatly enhanced S immobilisation. In 132 days, the woodland and grassland soils immobilised more S than the arable soils, with or without glucose amendment. Immobilisation and mineralisation of S occurred concurrently, and both were stimulated by glucose addition. The results show that S mineralisation and immobilisation were influenced strongly by the type of land-use and long-term organic manuring, whereas annual application of sulphate-containing fertilisers for over 150 years had few effects on short-term S transformations.  相似文献   

12.
《CATENA》2010,80(3):243-250
In association with a major initiative aimed at identifying policy packages for inclusion in the Programmes of Measures (POM's) comprising EU Water Framework Directive (WFD) River Basin Management Plans (RBMP's), recent work has evaluated the gap between current and compliant suspended sediment losses due to farming across England and Wales. The work required national scale sediment source apportionment to assess the current contributions of diffuse agricultural and urban sector losses, channel bank erosion and point source discharges to the total suspended sediment loads delivered to all rivers. Results suggested that the agricultural sector dominates present day (year 2000) sediment inputs to rivers (1929 kt = 76%) compared to eroding channel banks (394 kt = 15%), diffuse urban sources (147 kt = 6%) and point source discharges (76 kt = 3%). Projected change in farming by 2015, represented by the Business as Usual forecast of structural developments and predicted uptake of sediment mitigation methods, suggested an overall 9% reduction in sediment loss from the agricultural sector across England and Wales. The projected reduction is unlikely to deliver sediment compliance in all catchments. Key limitations of the integrated modelling approach are discussed.  相似文献   

13.
《CATENA》2005,63(1):85-108
Soil erosion potential of a 58 km2 watershed in the coffee growing region of the Colombian Andes was assessed using the Revised Universal Soil Loss Equation (RUSLE) in a GIS environment. The RUSLE factors were developed from local rainfall, topographic, soil and land use data. Seasonal erosivity factors (R) were calculated for six pluviographic stations (1987–1997) located within 22 km of the basin. Two regression models, one for the wet and one for the dry seasons, were created and used to estimate seasonal erosivity for 10 additional stations with pluviometric data. Erosivity was on average higher in the wet seasons (4686 MJ mm ha 1 h 1 season 1) than the dry ones (2599 MJ mm ha 1 h 1 season 1). Seasonal erosivity surfaces were generated using the local polynomial interpolation method, and showed increases from west to east in accordance with regional elevation. Soil erodibility was calculated from field measurements of water stable aggregates (> 2 mm) and infiltration, which were influenced by land use. Three erodibility scenarios were considered (high, average and low) to represent the variability in infiltration measurements within each land use. The topographic and land cover factors were developed from existing contour and land use data. Model results indicated that in the dry seasons, and under the average erodibility scenario, 534 ha (11%) of the basin's rural area were within the extreme erosion potential category (above 3.5 t ha 1 season 1). During the wet seasons, this area increased to 1348 ha (28%). In general, areas under forest and shrub had low erosion potential values, while those under coffee and pasture varied according to topography. Modeling of probable land use change scenarios indicated that the erosion potential of the basin would decrease as a result of coffee conversion to pasture.  相似文献   

14.
In slopes of Mediterranean mid-mountain areas, land use and land cover changes linked to the abandonment of cropland activity affect soil quality and degradation and soil redistribution; however, limited attention has been paid to this issue at catchment scale. This paper evaluates the effects of cropland abandonment and post-land abandonment management (through natural revegetation and afforestation) on soil redistribution rates using fallout 137Cs measurements in the Araguás catchment (0.45 km2, Central Spanish Pyrenees). A total of 52 soil core samples, distributed in a regular grid, from the first 30–40 cm and 9 sectioned reference samples were collected across the catchment and soil properties were analysed. Fallout 137Cs was measured in a 5 cm sectioned references samples and in bulk grid samples. 137Cs inventories were used to estimate soil erosion and deposition rates across the catchment. Results show that the highest erosion rates were recorded under sparsely vegetated sites in the badland area, while the lowest rates were found in the afforested area, but no significant differences were observed between the different uses and covers in soil redistribution rates likely due to a long history of human intervention through cultivation in steep slopes and afforestation practices. However, the recovery of the soil organic matter in afforested areas suggest that afforestation can reduce soil degradation at long-term scale. The information gained achieve a better understanding of soil redistribution dynamics and provide knowledge for effective land management after cropland abandonment of agroecosystems in Mediterranean mountain areas.  相似文献   

15.
《CATENA》2007,69(2-3):177-185
Land preparation for mechanisation in vineyards of the Anoia–Alt Penedès region, NE Spain, has required major soil movements, which has enormous environmental implications not only due to changes in the landscape morphology but also due to soil degradation. The resulting cultivated soils are very poor in organic matter and highly susceptible to erosion, which reduces the possibilities of water intake as most of the rain is lost as runoff. In order to improve soil conditions, the application of organic wastes has been generalised in the area, not only before plantation but also every 3–4 years at rates of 30–50 Mg ha 1 mixed in the upper 30 cm.These organic materials are important sources of nutrients (N and P) and other elements, which could reduce further fertilisation cost. However, due to the high susceptibility to sealing of these soils, erosion rates are relatively high, so a higher nutrient concentration on the soil surface increases non-point pollution sources due to runoff.The aim of this study is to analyse the influence of applied composted cattle manure on infiltration, runoff and soil losses and on nutrients transported by runoff in vineyards of the Alt Penedès–Anoia region, NE Spain. In the two plots selected for the analysis, composted cattle manure had been applied in alternate rows 1 year previous to the study. In each plot soil surface samples (0–25 cm) were taken and compared to those of plots without manure application. The study was carried out at laboratory scale using simulated rainfall. Infiltration rates were calculated from the difference between rainfall intensity and runoff rates, and the sediment and total nitrogen and phosphorus were measured for each simulation. In addition, the influence of compost was investigated in the field under natural rainfall conditions by analysing the nutrient concentration in runoff samples collected in the field (in the same plots) after seven rainfall events, which amount different total precipitation and had different erosive character.Compost application increases infiltration rates by up to 26% and also increases the time when runoff starts. Sediment concentration in runoff was lower in treated (13.4 on average mg L 1) than in untreated soils (ranging from 16.8 to 23.4 mg L 1). However, the higher nutrient concentration in soils produces a higher mobilisation of N (7–17 mg L 1 in untreated soils and 20–26 mg L 1 in treated soils) and P (6–7 mg L 1 in untreated soils and 13–19 mg L 1 in treated soils). A major part of the P mobilised was attached to soil particles (about 90% on average) and only 10% was dissolved. Under natural conditions, higher nutrient concentrations were always recorded in treated vs. untreated soils in both plots, and the total amount of N and P mobilised by runoff was higher in treated soils, although without significant differences. Nutrient concentrations in runoff depend on rainfall erosivity but the average value in treated soils was twice that in untreated soils for both plots.  相似文献   

16.
V.O. Polyakov  R. Lal 《Geoderma》2008,143(1-2):216-222
Soil organic carbon (SOC) is an important component of the global carbon cycle. Its dynamics depends upon various natural and anthropogenic factors including soil erosion. A study on Miamian silty clay loam soil in central Ohio was conducted to investigate the effect of soil erosion on SOC transport and mineralization. Runoff plots 10, 20 and 30 m long on a 7% slope under natural rainfall were used. Total soil loss, evolution of CO2 from the displaced aggregates of various fractions, and total SOC concentrations were determined. It was shown that the primary ways of SOC loss resulted from two processes: 1) mechanical preferential removal of SOC by overland flow and 2) erosion-induced mineralization. Significant amounts of SOC mobilized by erosion at the upper part of the slope during the season (358 kg ha? 1) could be lost to the atmosphere within 100 days (15%) and transported off site (44%). Breakup of initial soil aggregates by erosive forces was responsible for increased CO2 emission. During the initial 20 days of incubation the amount of CO2 released from coarse size sediment fractions (0.282 g C kg? 1 soil d? 1) was 9 times greater than that in fine fractions (0.032 g C kg? 1 soil d? 1) due to the greater initial amount of SOC and its exposure to the environment. Sediment size distribution as well as its residence time on the site was the primary controllers of CO2 loss from eroded soil.  相似文献   

17.
In recent years alternative farming practices have received considerable attention from Canadian producers as a means to improve their net return from grain and oilseed production. Enhancing the efficiency of nitrogen fertilizer use, including a pulse crop in the rotation, reducing tillage and pesticide use are seen as viable options to reduce reliance on fossil fuel, lower input costs and decrease the risk of soil, air and water degradation. The objective of this study was to determine the effects of 16 alternative management practices for a 2-year spring wheat (Triticum aestivum L.)–field pea (Pisum sativum L.) rotation on economic returns, non-renewable energy use efficiency, and greenhouse gas emissions. The alternative management methods for wheat consisted of a factorial combination of high vs. low soil disturbance one pass seeding, four nitrogen (N) fertilizer rates (20 kg N ha?1, 40 kg N ha?1, 60 kg N ha?1 and 80 kg N ha?1), and recommended vs. reduced rates of in-crop herbicide application. Alternative management practices for field pea were high vs. low soil disturbance one pass seeding. The resulting 16 cropping systems were evaluated at the whole farm level based on 4 years (two rotation cycles) of data from field experiments conducted on two Orthic Black Chernozem soils (clay loam and loam textures) in Manitoba, Canada. The highest net returns on the clay loam soil were for the high disturbance system with 60 kg N ha?1 applied to wheat and the recommended rates of in-crop herbicides. The lowest application rate of N, together with low disturbance seeding, provided the highest economic returns on the loam soil. Energy use efficiency was highest for the lowest rate of N application for both tillage systems. The highest rate of N fertilizer and recommended rates of in-crop herbicide produced little additional yield response, lower net returns, and higher GHG emissions. An increase in N fertilizer application from 20 kg ha?1 to 80 kg ha?1 increased whole farm energy requirements by about 40%, while reducing herbicide rates had negligible effects on grain yields and total energy input. Overall, as N fertilizer rate increased, the associated GHG emissions were not offset by an increase in carbon retained in the above-ground crop biomass. Moderate to high soil test NO3-N levels at experimental sites reduced the potential for positive yield responses to N fertilizer in this study, thus minimizing the economic benefits derived from N fertilizer application.  相似文献   

18.
Old-growth forests are often assumed to exhibit no net carbon assimilation over time periods of several years. This generalization has not been typically supported by the few whole-ecosystem, stand-scale eddy-covariance measurements of carbon dioxide exchange in old-growth forests. An eddy-flux tower installed in a >300-year-old hemlock–hardwood forest near the Sylvania Wilderness, Ottawa National Forest, MI, USA, observed a small annual carbon sink of CO2 of −72 ± 36 g C m−2 year−1 in 2002 and −147 ± 42 g C m−2 year−1 in 2003. This carbon sink was much smaller than carbon sinks of −438 ± 49 g C m−2 year−1 in 2002 and −490 ± 48 g C m−2 year−1 in 2003 observed by a nearby flux tower in a 70-year-old mature hardwood forest (Willow Creek, WI). The mature forest had vegetation similar to the old-growth site prior to European settlement. Both sites had slightly larger carbon sinks in 2003, which was a drier and cooler year than 2002. However, the difference in sink strength between the two years was smaller than the uncertainty in the results arising from missing and screened data. Both sites also had significant systematic errors due to non-representative fluxes during certain micrometeorological conditions, which required careful screening. The difference in sink strength between the two sites was driven mainly by greater ER at the old-growth site (965 ± 35 g C m−2 year−1 in 2002 and 883 ± 69 g C m−2 year−1 in 2003) compared to the mature site (668 ± 21 g C m−2 year−1 in 2002 and 703 ± 17 g C m−2 year−1 in 2003). GEP was lower at the old-growth site (1037 ± 47 g C m−2 year−1 in 2002 and 1030 ± 41 g C m−2 year−1 in 2003) compared to the mature site (1106 ± 47 g C m−2 year−1 in 2002 and 1192 ± 51 g C m−2 year−1 in 2003), especially in 2003. Observations also suggested that growing season ER had greater interannual variability at the old-growth site. These results imply that old-growth forests in the region may be carbon sinks, though these sinks are smaller than mature forests, mostly likely due to greater ER.  相似文献   

19.
Nitrogen mineralization and nitrification in the soil of sub-alpine ruderal community of Mount Uludağ, Bursa, Turkey was measured for 1 year, under field conditions with Verbascum olympicum and Rumex olympicus being the dominant pioneer species under dry and wet sites, respectively. Seasonal fluctuations were observed in N mineralization and nitrification. The net N mineralization and nitrification were high in early summer and winter, due to high moisture. The annual net N mineralization rate (for the 0–15 cm soil layer) was higher under R. olympicus (188 kg N ha−1 yr−1) than under V. olympicum (96 kg N ha−1 yr−1). A significant positive correlation between net N mineralization and soil organic C (r2 = 0.166), total N (r2 = 0.141) and water content (r2 = 0.211) was found. Our results indicate that N mineralization rate is high in soils of ruderal communities on disturbed sites and varies with dominant species and, a difference in net N mineralization rate can be attributed to organic C, total N and moisture content of soils.  相似文献   

20.
《Applied soil ecology》2007,35(2-3):258-265
We examined the relationship between soil respiration rate and environmental determinants in three types of tropical forest ecosystem—primary forest, secondary forest, and an oil palm plantation in the Pasoh Forest Reserve on the Malaysian Peninsula. In August 2000, the soil respiration rate and environmental factors (soil temperature, soil water content, soil C and N contents, biomass of fine roots, and microbes) were measured at 12–16 points in research quadrats. Soil respiration rates were 831 ± 480, 1104 ± 995, 838 ± 143, 576 ± 374, and 966 ± 578 (mean ± S.D.) mg CO2 m−2 h−1 in the primary forest canopy and gap site, secondary forest canopy and gap site, and oil palm plantation, respectively. Although the mean soil respiration rates in the three forest ecosystems did not differ significantly, differences were evident in the environmental factors affecting the soil respiration. The major causes of spatial variation in soil respiration were fine root biomass, soil water content, and soil C content in the primary and secondary forests and oil palm plantation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号