共查询到20条相似文献,搜索用时 15 毫秒
1.
The growing necessity to develop more productive agriculture has encouraged the expansion of new irrigated lands. However, water use in agriculture may affect the natural regimes of water systems. This study aims to analyze, for the first time, water use and its dynamics during the creation of a newly irrigated land. Water use was studied through the development of water balances and subsequent application of quality indices for irrigation in two unirrigated years (2004–2005) and three years of gradual implementation of irrigation (2006, 2007 and 2008) in the Lerma basin (752 ha, Spain). Increases in evapotranspiration, drainage and water content in the aquifer were verified during the gradual transformation into irrigated land. Water balances closed adequately, giving consistency to the results and enabling the application of quality indices for irrigation. Irrigation quality analysis showed a use of available water resources equal to 84%. However, the estimated irrigation efficiency presented lower values, mainly due to irrigation drainage (15%) and combined losses by both evaporation and wind drift of sprinkler irrigation systems (13%). The results indicate that the use of water in the Lerma basin is at the same management level of other modern irrigation systems in the Ebro basin, although there is still margin for improvement in irrigation management, such as reducing the irrigation drainage fraction and the evaporation and wind drift losses of sprinkler irrigation systems. 相似文献
2.
Irrigation performance assessments are required for hydrological planning and as a first step to improve water management. The objective of this work was to assess seasonal on-farm irrigation performance in the Ebro basin of Spain (0.8 million ha of irrigated land). The study was designed to address the differences between crops and irrigation systems using irrigation district data. Information was only available in districts located in large irrigation projects, accounting for 58% of the irrigated area in the basin. A total of 1617 records of plot water application (covering 10,475 ha) were obtained in the basin. Average net irrigation requirements (IR n) ranged from 2683 m 3 ha −1 in regulated deficit irrigation (RDI) vineyards to 9517 m 3 ha −1 in rice. Average irrigation water application ranged from 1491 m 3 ha −1 in vineyards to 11,404 m 3 ha −1 in rice. The annual relative irrigation supply index (ARIS) showed an overall average of 1.08. Variability in ARIS was large, with an overall standard deviation of 0.40. Crop ARIS ranged between 0.46 and 1.30. Regarding irrigation systems, surface, solid-set sprinkler and drip irrigated plots presented average ARIS values of 1.41, 1.16 and 0.65, respectively. Technical and economic water productivities were determined for the main crops and irrigation systems in the Aragón region. Rice and sunflower showed the lowest productivities. Under the local technological and economic constraints, farmers use water cautiously and obtain reasonable (yet very variable) productivities. 相似文献
3.
Irrigation return flows may induce salt and nitrate pollution of receiving water bodies. The objectives of this study were to perform a salt and nitrogen mass balance at the hydrological basin level and to quantify the salt and nitrate loads exported in the drainage waters of three basins located in a 15,500 ha irrigation district of the Ebro River Basin (Spain). The main salt and nitrogen inputs and outputs were measured or estimated in these basins along the 2001 hydrological year. Groundwater inflows in the three basins and groundwater outflow in one basin were significant components of the measured mass balances. Thus, the off-site impact ascribed solely to irrigation in these basins was estimated in the soil drainage water. Salt concentrations in soil drainage were low (TDS of around 400–700 mg/l, depending on basins) due to the low TDS of irrigation water and the low presence of salts in the geologic materials, and were inversely related to the drainage fractions (DF = 37–57%). However, due to these high DF, salt loads in soil drainage were relatively high (between 3.4 and 4.7 Mg/ha), although moderate compared to other areas with more saline geological materials. Nitrate concentrations and nitrogen loads in soil drainage were highest (77 mg NO 3−/l and 195 kg N/ha) in basin III, heavily fertilized (357 kg N/ha), with the highest percentage of corn and with shallow, low water retention flood-irrigated soils. In contrast, the lowest nitrate concentrations and nitrogen loads (21 mg NO 3−/l and 23 kg N/ha) were found in basin II, fertilized with 203 kg N/ha and preponderant in deep, alluvial valley soils, crops with low N requirements (alfalfa and pasture), the highest non-cropped area (26% of total) and with fertigation practices in the sprinkler-irrigated fields (36% of the irrigated area). Thus, 56% of the N applied by fertilization was lost in soil drainage in basin III, as compared to only 16% in basin II. In summary, a low irrigation efficiency coupled to an inadequate management of nitrogen fertilization are responsible for the low-salt, high-nitrate concentrations in soil and surface drainage outflows from the studied basins. In consequence, higher irrigation efficiencies, optimized nitrogen fertilization and the reuse for irrigation of the low-salt, high-nitrate drainage waters are key management strategies for a better control of the off-site pollution from the studied irrigation district. 相似文献
4.
Irrigated agriculture may negatively affect groundwater quality and increase off-site salt and nitrate contamination. Management alternatives aimed at reducing these potential problems were analysed in the 15498 ha CR-V Irrigation District (Spain) by monitoring 49 wells and modelling the hydrological regime in a representative well of the Miralbueno Aquifer. Groundwaters presented low to moderate electrical conductivity (EC) (mean = 0.89 dS/m) and high [NO 3−] (mean = 94 mg/L). The groundwater depth (GWD) during the 2001 hydrological year responded to the annual cycles of precipitation and irrigation as well as to the secondary cycles derived from irrigation scheduling. GWD were consistently simulated by the groundwater BAS-A model. Model results indicate that an increase in irrigation efficiency and the pumping of groundwater for irrigation will decrease GWD and aquifer's discharge by 56–70%, depending on scenarios. These recommendations will save good-quality water in the reservoir, will be beneficially economical to farmers, and will minimize off-site salt and nitrogen contamination. 相似文献
5.
Diagnosis of water management at the irrigation district level is required for the rational modernisation of the irrigation schemes and the subsequent increase in the efficiency of water allocation and application. Our objectives were to: (i) evaluate the global irrigation performance in the 5282 ha La Violada surface-irrigated district (Ebro River Basin, northeast Spain), and (ii) estimate the water that could potentially be conserved under two scenarios of modernisation and three increased irrigation efficiencies. The main district’s water inputs and outputs were measured (irrigation, precipitation, and outflow surface drainage) or estimated (canal releases, lateral surface runoff, municipal wastewaters, and actual evapotranspiration of crops) during the 1995–1998 hydrological years. The annual average water outputs were 23% higher than the corresponding water inputs, presumably due to canal seepage and lateral groundwater inflows from the 14 355 ha dry-land watershed. The district-level irrigation performance was poor (mean 1995–1998 seasonal irrigation consumptive use coefficient (ICUC)=48%), due to the low distribution (DE) and on-farm (ICUCf) efficiencies (i.e., mean estimates of 83% (DE) and 61% (ICUCf) for the 1995–1996 irrigation seasons). Thus, despite the high volume of applied irrigation water, the actual district ET was 16% lower than the maximum achievable ET, indicating that the water-stressed crops yielded below their maximums. Potential reductions in water allocation were estimated for three ICUC values (65, 75 and 85%) and two scenarios of modernisation (I and II). In scenario I, where the aim was to achieve maximum ET and crop yields, water allocation could be reduced from 8 to 30% of the current allocation. In scenario II, where the aim was to achieve the maximum conservation of water under the actual ET and crop yields, reductions in water allocation would be much higher (from 26 to 43% of current allocation). Thus, significant volumes of water could be conserved in the rehabilitation of this 50-year-old district by increasing the distribution efficiency and, in particular, the on-farm irrigation efficiency. 相似文献
6.
Actual evapotranspiration (ETc) of three mature sweet orange orchards (cv. Salustiana and Washington Navel on sour orange), under border irrigation and typical cultural practices was measured by the water balance method during 1981 to 1984. Soil water content was measured at 7 to 10 day intervals using a neutron meter and soil sampling of the 0–10 cm surface layer. Zero flux plane was calculated by measurements with mercury tensiometers. Irrigation water in these and other 5 similar orchards was measured by broad crested weirs. Rainfall and other climatic data for calculation of reference evapotranspiration by FAO's methods (ETo) were collected in a nearby meteorological station. Average yearly ETc ranged from 750 to 660 mm and mean monthly maximum was 3.7 and 3.2 mm/day in July for Salustiana and W. Navel orchards, respectively.ETo estimates for the different methods used were highly correlated ( r
20.94). Monthly crop coefficients (Kc) based on pan evaporation ranged from 0.5–0.6 in spring and summer to 0.8 in autumn and were about 10% higher than those for Penman or radiation methods. Average annual Kc for the three plots studied was 0.64, 0.61 and 0.51, respectively, and correlated well ( r
2=0.99) with tree ground cover. Irrigation efficiency was about 50% for orchards with soils with less water holding capacity and more applied water per irrigation and 70–80% in orchards with deeper soils or with a higher water holding capacity. Increasing irrigation frequency and applying smaller amounts of water per irrigation with good uniformity can improve on-farm irrigation efficiency. 相似文献
7.
This article is concerned with the management of the Guadiana River high basin's water resources. The region of Castilla-La Mancha in general, and Western La Mancha and the Campo de Montiel in particular, are areas where agriculture has great economic importance. This activity is the principal water consumer, but it is necessary to take account of ecological and social considerations if two important objectives are to be achieved. Firstly, to keep wetlands and biodiversity. Secondly, to maintain natural resources which are vital if the area's future is to be assured. The paper criticizes the mechanical and partial methodological focus which has been used by conventional economics and agriculture. Thus, it supports an integrated and multidisciplinary view that recognises the region's biophysical and social characteristics in such a way that policies applied respect it. 相似文献
8.
In the last decade irrigation districts in the Ebro Valley of Spain have started to use database applications to enhance their management operations. Such applications often put more emphasis on administrative issues than on water management issues. A new irrigation district management software called “Ador” is presented in this paper. This database application has been designed to overcome limitations identified in an analysis of the software used in the study area. Ador can be used in irrigation districts independently of the type of irrigation system (surface, sprinkler or trickle) and the type of irrigation distribution network (open channel or pressurised). It can even be used in irrigation districts combining different types of irrigation systems and different types of irrigation distribution networks. The software can be used with minimum district information. The goals are to manage detailed information about district water management and to promote better on-farm irrigation practices. Ador is currently used to enhance management of 62 irrigation districts accounting for some 173,000 hectares in the Ebro Valley. 相似文献
9.
The analysis of long-term irrigation performance series is a valuable tool to improve irrigation management and efficiency. This work focuses in the assessment of irrigation performance indices along years 1995-2008, and the cause-effect relationships with irrigation modernization works taking place in the 4000 ha surface-irrigated La Violada Irrigation District (VID). Irrigation management was poor, as shown by the low mean seasonal irrigation consumptive use coefficient (ICUC = 51%) and the high relative water deficit (RWD = 20%) and drainage fraction (DRF = 54%). April had the poorest irrigation performance because corn (with low water demand in this month) was irrigated to promote its emergence, whereas winter grains (with high water demands in this month) were not fully irrigated in water-scarce years. Corn, highly sensitive to water stress, was the crop with best irrigation performance because it was preferentially irrigated to minimize yield losses. The construction of a new elevated canal that decreased seepage and drainage fractions, the entrance in operation of six internal reservoirs that would increase irrigation scheduling flexibility, and the on-going transformation from surface to sprinkler irrigation systems are critical changes in VID that should lead to improved ICUC, lower RWD and lower DRF. The implications of these modernization works on the conservation of water quantity and quality within and outside VID is further discussed. 相似文献
10.
The analysis of irrigation and drainage management and their effects on the loading of salts is important for the control of on-site and off-site salinity effects of irrigated agriculture in semi-arid areas. We evaluated the irrigation management and performed the hydrosalinity balance in the D-XI hydrological basin of the Monegros II system (Aragón, Spain) by measuring or estimating the volume, salt concentration and salt mass in the water inputs (irrigation, precipitation and Canal seepage) and outputs (evapotranspiration and drainage) during the period June 1997–September 1998. This area is irrigated by solid-set sprinklers and center pivots, and corn and alfalfa account for 90% of the 470 ha irrigated land. The soils are low in salts (only 10% of the irrigated land is salt-affected), but shallow (<2 m) and impervious lutites high in salts (average EC e=10.8 dS m −1) and sodium (average SAR e=20 (meq l −1) 0.5) are present in about 30% of the study area.The global irrigation efficiency was high (Seasonal Irrigation Performance Index=92%), although the precipitation events were not sufficiently incorporated in the scheduling of irrigation and the low irrigation efficiencies (60%) obtained at the beginning of the irrigated season could be improved by minimising the large post-planting irrigation depths given to corn to promote its emergence. The salinity of the irrigation water was low (EC=0.36 dS m −1), but the drainage waters were saline (EC=7.5 dS m −1) and sodic (SAR=10.3 (meq l −1) 0.5) (average values for the 1998 hydrological year) due to the dissolution and transport of the salts present in the lutites. The discharge salt loading was linearly correlated ( P<0.001) with the volume of drainage. The slope of the daily mass of salts in the drainage waters versus the daily volume of drainage increased at a rate 25% higher in 1997 (7.6 kg m −3) than in 1998 (6.1 kg m −3) due to the higher precipitation in 1997 and the subsequent rising of the saline watertables in equilibrium with the saline lutites. Drainage volumes depended ( P<0.001) on irrigation volumes and were very low (194 mm for the 1998 hydrological year), whereas the salt loading was moderate (13.5 Mg ha −1 for the 1998 hydrological year) taking into account the vast amount of salts stored within the lutites. We concluded that the efficient irrigation and the low salinity of the irrigation water in the study area allowed for a reasonable control of the salt loading conveyed by the irrigation return flows without compromising the salinization of the soil’s root-zone. 相似文献
11.
Non-point agrarian contamination makes its allocation to a specific territory difficult. This first part of the study seeks to analyze contamination resulting from water use in 54,438 ha of Bardenas irrigation district included in the Arba basin (BID-Arba). To this end, water balances were carried out in BID-Arba by means of measuring or estimating the main inputs, outputs and water storage between 1 April 2004 and 30 September 2006. Also, the spatial-temporal variability in water use was analyzed.The semester error balances were acceptable (between 11% and −6%), which permits the attribution of the mass of pollutants exported in drainage to the irrigation area evaluated, the objective of the second part of the study. Irrigation efficiency (IE) in BID-Arba was high (90%) despite the fact that Irrigation Sub-District VII (ISD-VII), with considerable flood irrigation drainage (27%), and ISD-XI with considerable losses due to evaporation and wind drift in sprinkler irrigation systems (15%), brought down the average (IE VII = 73%; IE XI = 83%). Irrigation management was inadequate as there was a water deficit (WD) of 9%, partly affected by the 2005 drought (WD Apr-05/Sep-05 = 21%) and the low irrigation doses applied in ISD-XI (WD XI = 12%).To sum up, intense re-use of water caused a water use index (percentage of water used by the crops) of 85% which surpassed 90% in periods of drought. Nevertheless, irrigation management should be improved in order to annul the water deficit and to maximize the productivity of the agrarian system. 相似文献
12.
Long-term analysis of hydrologic series in irrigated areas allows identifying the main water balance components, minimizing closing errors and assessing changes in the hydrologic regime. The main water inputs [irrigation ( I) and precipitation ( P)] and outputs [outflow ( Q) and potential (ET c) crop evapotranspiration] in the 4000-ha La Violada irrigation district (VID) (Ebro River Basin, Spain) were measured or estimated from 1995 to 2008. A first-step, simplified water balance assuming steady state conditions (with error ? = I + P − Q − ET c) showed that inputs were much lower than outputs in all years (average ? = −577 mm yr −1 or −33% closing error). A second-step, improved water balance with the inclusion of other inputs (municipal waste waters, canal releases and lateral surface runoff) and the estimation of crop's actual evapotranspiration (ET a) through a daily soil water balance reduced the average closing error to −13%. Since errors were always higher during the irrigated periods, when canals are full of water, a third-step, final water balance considered canal seepage (CS) as an additional input. The change in water storage in the system (Δ W) was also included in this step. CS and Δ W were estimated through a monthly soil–aquifer water balance, showing that CS was a significant component in VID. With the inclusion of CS and Δ W in the water balance equation, the 1998–2008 annual closing errors were within ±10% of total water outputs. This long-term, sequential water balance analysis in VID was an appropriate approach to accurately identify and quantify the most important water balance components while minimizing water balance closing errors. 相似文献
13.
The approval of the National Irrigation Plan (NIP) in Spain in 2001 accelerated the improvement and modernisation of the irrigated areas. The first step towards the implementation of performance of the actions envisaged in the plan is to analyse water-use in traditional irrigation. Moreover, the social impacts of irrigation on rural areas must be evaluated, and the common irrigation practices must be determined. This paper presents the results of a study conducted in the Lemos Valley irrigation district (NW of Spain). Irrigation evaluations were conducted in nine trial sites, representing the existing soil types. A sample of irrigation users were interviewed to gather information about water-use, land tenure and irrigation socioeconomics. This irrigation district is characterised by low water-use efficiency, significant losses in the distribution network, fragmented land ownership and a poor use of the available infrastructure. Yet, water availability and an important distribution network render the modernisation of this traditional irrigated land a challenging task that must be faced. 相似文献
14.
Irrigated agriculture notably increases crop productivity, but consumes high volumes of water and may induce off-site pollution of receiving water bodies. The objectives of this paper were to diagnose the quality of irrigation and to prescribe recommendations aimed at improving irrigation management and reducing the off-site pollution from a 15,500 ha irrigation district located in the Ebro River Basin (Spain). Three hydrological basins were selected within the district where the main inputs (irrigation, precipitation, and groundwater inflows) and outputs (actual crop's evapotranspiration, surface drainage outflows, and groundwater outflows) of water were measured or estimated during a hydrological year. The highest volume of water ( I = 1400 mm/year) was applied in the basin with highly permeable, low water retention, flood irrigated soils where 81% of the total surface was planted with alfalfa and corn. This basin had the lowest consumptive water use efficiency (CWUE = 45%), the highest water deficit (WD = 5%) and the highest drainage fraction (DF = 57%). In contrast, the lowest I (950 mm/year), the highest CWUE (62%), and the lowest WD (2%) and DF (37%) were obtained in the basin with 60% of the surface covered with deep, high water retention, alluvial valley soils, where 39% of the cultivated surface is sprinkler irrigated and with only 48% of the surface planted with alfalfa and corn. We concluded that the three most important variables determining the quality of irrigation and the volume of irrigation return flows in the studied basins were (i) soil characteristics, (ii) irrigation management and irrigation system, and (iii) crop water requirements. Therefore, the critical recommendations for improving the quality of irrigation are to (i) increase the efficiency of flood-irrigation, (ii) change to pressurized systems in the shallow and highly permeable soils, and (iii) reuse of drainage water for irrigation within the district. These management strategies will conserve water of high quality in the main reservoir and will decrease the crop water deficits and the volume of irrigation return flows, therefore, minimizing the off-site pollution from this irrigation district. 相似文献
15.
Since scarcity of water is a major problem in semi-arid and arid areas of Spain and many other Mediterranean regions, water consumption in irrigated agriculture has to be reduced to a sustainable level that is also adapted to the environment. This goal can be reached by applying the highly effective and resource preserving techniques of micro-irrigation. In order to improve these techniques, a new subsurface irrigation system was developed by modification of conventional subsurface systems through the following innovative elements: a new design of the lateral hoses which prevents the penetration of roots into the external water outlets and the block up by soil particles; an impermeable polyethylene foil placed below the lateral pipes to prevent water loss through deep percolation, especially in sandy substrates; a special installation equipment consisting of a V-shaped device which releases foil and pipe simultaneously into the soil without disturbing the natural soil profile.
After the experience of several years of operation, these elements have proved to be highly effective. Compared to other irrigation methods, the high irrigation efficiency achieved by this system was outstanding. Minimum maintenance requirement and a long life span are additional positive characteristics of the system. The beneficial outcomes of this system give reason for an optimistic appraisal of the strategies involved towards sustainable irrigated agriculture. 相似文献
16.
Water saving in irrigation is a key concern in the Yellow River basin. Excessive water diversions for irrigation waste water and produce waterlogging problems during the crop season and soil salinization in low lands. Supply control and inadequate functionality of the drainage system were identified as main factors for poor water management at farm level. Their improvement condition the adoption of water saving and salinity control practices. Focusing on the farm scale, studies to assess the potential for water savings included: (a) field evaluation of current basin irrigation practices and further use of the simulation models SRFR and SIRMOD to generate alternative improvements for the surface irrigation systems and (b) the use of the ISAREG model to simulate the present and improved irrigation scheduling alternatives taking into consideration salinity control. Models were used interactively to define alternatives for the irrigation systems and scheduling that would minimize percolation and produce water savings. Foreseen improvements refer to basin inflow discharges, land leveling and irrigation scheduling that could result in water savings of 33% relative to actual demand. These improvements would also reduce percolation and maintain water table depths below 1 m thereby reducing soil salinization. 相似文献
17.
It is difficult to quantify non-point contamination caused by irrigated agriculture. As continuation to the evaluation of water use on the scale of large irrigation districts, this second part seeks: (i) to quantify the mass of salt and nitrate exported by Bardenas Irrigation District included in the Arba basin (BID-Arba; 54,438 ha); (ii) to analyze the most influential factors; (iii) to propose agro-environmental contamination indices which can be incorporated into legislation.For this, salt and nitrate balances were carried out, assigning concentration values to each of the components of the water balance between 1 April 2004 and 30 September 2006. Saline and Nitrate Contamination Indices were also quantified which correct the mass of pollutants exported from irrigation return flows by geological and agronomic factors of the irrigation area studied.For the whole period of the study the exported mass of salt was 15 kg/(ha day), of which 65% came from geological materials in the area, 34% from irrigation water and only 1% from precipitation. As for exported nitrate, it was 76 g NO 3−-N/(ha day), only 25% of the quantities measured in other small basins (≈100 ha) of Bardenas district without re-use of drainage water for irrigation, but double the nitrate exported in other modern irrigation districts.Water and saline agro-environmental indices of BID-Arba resemble those of well-managed modern irrigation districts indicating little margin for improvement in water use and saline contamination. But, the nitrate-contamination-index was 1.5 times higher than well-managed modern irrigation districts indicating the necessity to change nitrogenous fertilization practices to minimize nitrate contamination. 相似文献
18.
Benthonic fauna and substrate in three areas of the Itata river (rhithron riffles, rhitron pools, and potamon) and three
irrigation canals at the outtake and about 500 m downstream are analyzed. Benthonic fauna included 56 taxa; of these, 12 were
exclusive of the river, 11 were only found in irrigation canals, and 33 were in both environments. The widest distributions
were found among the Diptera ( Heptagyia annulipes and Orthocladiinae), while Trichoptera ( Smicridea chilensis) and Ephemeroptera (Baetidae) were more abundant in the river. The highest biomass contribution corresponded to Gastropoda
( Chilina dombeyana) in irrigation canals and in the river, although there was also significant Tipulidae family (Diptera) larval biomass in
the latter. Both specific richness and density were higher in the river, while biomass did not show significant statistical
differences. The mineralogical composition of the bottom of the canals and the river was different, the former being soil
of granitic origin, the latter being sediment of a fluviovolcanic origin. Finally, the canal bottoms showed a higher content
of organic matter than in the river.
Received: 6 June 1997 相似文献
19.
Because of the spatial and temporal variabilities of the advance infiltration process, furrow irrigation investigations should not be limited to a single furrow irrigation event when using a modelling approach. The paper deals with the development and application of simulation of furrow irrigation practices (SOFIP), a model used to analyse furrow irrigation practices that take into account spatial and temporal variabilities of the advance infiltration process. SOFIP can be used to compare alternative furrow irrigation management strategies and find options that mitigate local deep-percolation risks while ensuring a crop yield level that is acceptable to the farmer. The model is comprised of three distinct modelling elements. The first element is RAIEOPT, a hydraulic model that predicts the advance infiltration process. Infiltration prediction in RAIEOPT depends on a soil moisture deficit parameter. PILOTE, a crop model, which is designed to simulate soil water balance and predict yield values, updates the soil moisture parameter. This parameter is an input of a parameter generator (PG), the third model component, which in turn provides RAIEOPT with the data required to simulate irrigation at the scale of an N-furrow set. The study of sources of variability and their impact on irrigation advance, based on field observations, allowed us to build a robust PG. Model applications show that irrigation practices must account for inter-furrow advance variability when optimising furrow irrigation systems. The impact of advance variability on deep percolation and crop yield losses depends on both climatic conditions and irrigation practices. 相似文献
20.
Irrigation technologies [i.e., automatic timer, automatic timer with rain sensor, automatic timer with soil water sensor (SWS), and evapotranspiration (ET) controller] were compared in a bahiagrass plot study by measuring irrigation applied, water volumes drained, and NO 3–N and NH 4–N leached. All irrigation technologies were scheduled to irrigate on Sunday and Thursday. Three different irrigation depths were evaluated with the automatic timer: 15, 19, and 32 mm. SWS treatment allowed scheduled irrigation if soil water content was estimated to be below 70 % of water holding capacity, while the ET treatment allowed scheduled irrigation if soil water content was estimated to be below 50 % of plant available water. The rain sensor, SWS, and ET controller treatments applied significantly less water ( p < 0.05) than the automatic timer treatment (which irrigates on specific days and times without regard to system conditions), reducing water by 17–49, 64–75, and 66–70 %, respectively. NO 3–N and NH 4–N were only significantly different after the second fertilizer application, which coincided with the 32 mm per event irrigation rate for the automatic timer treatment. Under these conditions, the automatic timer treatment had significantly greater NO 3–N and NH 4–N leachate than other treatments due to greater occurrence of soil water content exceeding water holding capacity, which resulted in drainage. Findings suggest that water can be saved using rain sensors, SWSs, or ET controllers and that leachate NO 3–N and NH 4–N can be reduced using rain sensors, SWSs, or ET controllers. 相似文献
|