首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determining what factors explain the distribution of non-native invasive plants that can spread in forest-dominated landscapes could advance understanding of the invasion process and identify forest areas most susceptible to invasion. We conducted roadside surveys to determine the presence and abundance of 15 non-native plant species known to invade forests in western North Carolina, USA. Generalized linear models were used to examine how contemporary and historic land use, landscape context, and topography influenced presence and abundance of the species at local and regional scales. The most commonly encountered species were Microstegium vimineum, Rosa multiflora, Lonicera japonica, Celastrus orbiculatus, Ligustrum sinense, and Dioscorea oppositifolia. At the regional scale, distance to city center was the most important explanatory variable, with species more likely present and more abundant in watersheds closer to Asheville, NC. Many focal species were also more common in watersheds at lower elevation and with less forest cover. At the local scale, elevation was important for explaining the species’ presence, but forest cover and land-use history were more important for explaining their abundance. In general, species were more common in plots with less forest cover and more area reforested since the 1940s. Our results underscore the importance of considering both the contemporary landscape and historic land use to understand plant invasion in forest-dominated landscapes.  相似文献   

2.
Effects of changing spatial scale on the analysis of landscape pattern   总被引:68,自引:6,他引:62  
The purpose of this study was to observe the effects of changing the grain (the first level of spatial resolution possible with a given data set) and extent (the total area of the study) of landscape data on observed spatial patterns and to identify some general rules for comparing measures obtained at different scales. Simple random maps, maps with contagion (i.e., clusters of the same land cover type), and actual landscape data from USGS land use (LUDA) data maps were used in the analyses. Landscape patterns were compared using indices measuring diversity (H), dominance (D) and contagion (C). Rare land cover types were lost as grain became coarser. This loss could be predicted analytically for random maps with two land cover types, and it was observed in actual landscapes as grain was increased experimentally. However, the rate of loss was influenced by the spatial pattern. Land cover types that were clumped disappeared slowly or were retained with increasing grain, whereas cover types that were dispersed were lost rapidly. The diversity index decreased linearly with increasing grain size, but dominance and contagion did not show a linear relationship. The indices D and C increased with increasing extent, but H exhibited a variable response. The indices were sensitive to the number (m) of cover types observed in the data set and the fraction of the landscape occupied by each cover type (P k); both m and P kvaried with grain and extent. Qualitative and quantitative changes in measurements across spatial scales will differ depending on how scale is defined. Characterizing the relationships between ecological measurements and the grain or extent of the data may make it possible to predict or correct for the loss of information with changes in spatial scale.  相似文献   

3.

Background  

The Agrobacterium vacuum (Bechtold et al 1993) and floral-dip (Clough and Bent 1998) are very efficient methods for generating transgenic Arabidopsis plants. These methods allow plant transformation without the need for tissue culture. Large volumes of bacterial cultures grown in liquid media are necessary for both of these transformation methods. This limits the number of transformations that can be done at a given time due to the need for expensive large shakers and limited space on them. Additionally, the bacterial colonies derived from solid media necessary for starting these liquid cultures often fail to grow in such large volumes. Therefore the optimum stage of plant material for transformation is often missed and new plant material needs to be grown.  相似文献   

4.
Factors with variation at broad (e.g., climate) and fine scales (e.g., soil texture) that influence local processes at the plant scale (e.g., competition) have often been used to infer controls on spatial patterns and temporal trends in vegetation. However, these factors can be insufficient to explain spatial and temporal variation in grass cover for arid and semiarid grasslands during an extreme drought that promotes woody plant encroachment. Transport of materials among patches may also be important to this variation. We used long-term cover data (1915–2001) combined with recently collected field data and spatial databases from a site in the northern Chihuahuan Desert to assess temporal trends in cover and the relative importance of factors at three scales (plant, patch, landscape unit) in explaining spatial variation in grass cover. We examined cover of five important grass species from two topographic positions before, during, and after the extreme drought of the 1950s. Our results show that dynamics before, during, and after the drought varied by species rather than by topographic position. Different factors were related to cover of each species in each time period. Factors at the landscape unit scale (rainfall, stocking rate) were related to grass cover in the pre- and post-drought periods whereas only the plant-scale factor of soil texture was significantly related to cover of two upland species during the drought. Patch-scale factors associated with the redistribution of water (microtopography) were important for different species in the pre- and post-drought period. Another patch-scale factor, distance from historic shrub populations, was important to the persistence of the dominant grass in uplands (Bouteloua eriopoda) through time. Our results suggest the importance of local processes during the drought, and transport processes before and after the drought with different relationships for different species. Disentangling the relative importance of factors at different spatial scales to spatial patterns and long-term trends in grass cover can provide new insights into the key processes driving these historic patterns, and can be used to improve forecasts of vegetation change in arid and semiarid areas.  相似文献   

5.
The most common technique for establishment of thin extensive green roofs in Sweden has been using prefabricated vegetation mats. Our study investigated (1) how the establishment of green roofs in Sweden was influenced by the establishment method (prefabricated vegetation mat, plug-plant, shoot), substrate composition and species mixture, and (2) whether on-site construction was a possible alternative. The establishment of the vegetation, which in all cases consisted of succulent species, was recorded using the quadrate point intercept method in fixed plots and the success measured as frequency cover.Prefabricated vegetation mats had higher succulent plant cover than on-site constructed roofs. There was no difference in succulent plant cover between plots established using plug-plants compared to shoots. Shoot-established plots had more moss than the other establishment methods. The commercial substrate ‘Roof soil’ had significantly higher succulent plant cover than the other substrates, which might be related to a higher nutrient content. The organic content of the non-commercial substrates was rapidly decomposed. The standard species mixture produced a higher cover than both the mix developed for northern conditions and the mix with an increased proportion of big leaved species. The total cover of the plots was mainly dependent on the cover of two species: Sedum album (L.) and Sedum acre (L.). Few species managed to establish spontaneously but the establishment of woody species highlighted the need for proper maintenance.  相似文献   

6.
Determination of ecological scale   总被引:4,自引:0,他引:4  
We suggest that ecological processes and physical characteristics possess an inherent scale at which the processes or characteristics occur over the landscape. We propose a conceptual spatial response model that describes the nature of this ecological scale. Based on the proposed spatial model, we suggest methods for estimating the size of study plots or transects and the distance between replicate plots needed to approach statistical independence. Using data on percent cover for Agropyron spicatum, a common arid-land bunchgrass, we demonstrated four relationships that should hold if the spatial response model is appropriate. These relationships are sample variance increases as functions of (1) transect segment length and (2) intersegment length (transect segment dispersal), and correlation decreases as functions of (3) intersegment length and (4) transect segment length. Based on evaluation of these four relationships, cover for A. spicatum is correlated over the landscape on a scale of 400 to 700 m, and a segment length of 64 to 128 m is most appropriate for measuring cover for this species.  相似文献   

7.
We hypothesized that the spatial configuration and dynamics of periurban forest patches in Barcelona (NE of Spain) played a minor role in determining plant species richness and assemblage compared to site conditions, and particularly to both direct (measured at plot level) and potential (inferred from landscape metrics) human-associated site disturbance. The presence of all understory vascular plants was recorded on 252 plots of 100 m2 randomly selected within forest patches ranging in size from 0.25 ha to 218 ha. Species were divided into 6 groups, according to their ecology and conservation status. Site condition was assessed at plot level and included physical attributes, human-induced disturbance and Quercus spp. tree cover. Landscape structure and dynamics were assessed from patch metrics and patch history. We also calculated a set of landscape metrics related to potential human accessibility to forests. Results of multiple linear regressions indicated that the variance explained for non-forest species groups was higher than for forest species richness. Most of the main correlates corresponded to site disturbance variables related to direct human alteration, or to landscape variables associated to indirect human effects on forests: Quercus tree cover (a proxy for successional status) was the most important correlate of non-forest species richness, which decreased when Quercus tree cover increased. Human-induced disturbance was an important correlate of synanthropic and total species richness, which were higher in recently managed and in highly frequented forests. Potential human accessibility also affected the richness of most species groups. In contrast, patch size, patch shape and connectivity played a minor role, as did patch history. We conclude that human influence on species richness in periurban forests takes place on a small scale, whereas large-scale effects attributable to landscape structure and fragmentation are comparatively less important. Implications of these results for the conservation of plant species in periurban forests are discussed.  相似文献   

8.
Spatial patterns of fire occurrence in Catalonia,NE, Spain   总被引:2,自引:0,他引:2  
In this paper, we analyse spatial patterns of fire occurrence in Catalonia (NE Spain) during 1975–98. Fire scar maps, discriminated by means of 30–60 m resolution remote sensing imagery, have been used as a source of fire occurrence. We employ several visual or analytical approaches to interpret fire occurrence in this region, such as those of Minnich and Chou (1997), Ricotta et al. (2001) or Krummel et al. (1987). Crucial spatial patterns such as fire size distribution, fire frequency distribution, spots and residual vegetation islands are documented. In addition, several geographical layers were overlaid with burned area maps in order to determine interactions between fire occurrence and environmental parameters such as altitude, slope, solar radiation, and burned land cover. Assuming that fire occurrence is well determined by such a posteriori empirical factors we detect areas most prone to fire in this region and aim to enhance the local forest management and conservation plans.  相似文献   

9.
The modifiable areal unit problem has significant implications for ecological research that involve investigating and analyzing the spatial heterogeneity of plant community. In this paper, semivariance analysis was used to evaluate the spatial characteristics of plant community in the␣transitional zone between oasis and desert. The spatial structures of the plant community were characterized using exponent model variogram parameters, including nugget (C 0) range (A 0) and sill (C 0+C). Two methods were employed to determine the scale effect of spatial heterogeneity. (1) A constant grain size (10×10 m2) and variational plot areas have been used to analyze spatial heterogeneity of the plant community. (2) The grain size was only changed to analyze spatial heterogeneity. In addition, the plot of 500×500 m2 was clustered into nested units of different shapes and different directions to analyze zoning effect. Finally, using semivariance analysis, we obtained a suitable plot area and zoning approach to weaken the scale and zoning effects. The results showed that the effects of scale on different variogram parameters had significant difference. For example, C 0 and C 0+C were very sensitive at small scales, A 0 was influenced significantly by plot area at larger scales, and C 0 and A 0 were relatively sensitive to different zoning approaches. In order to get more representative characteristic of spatial heterogeneity of the plant community, the sampling area should be more than 200×200 m2 for Nitraria sphaerocarpa populations, 100×100 m2 for Reaumuria soongorica populations, and a grain size from 20×20 m2 to 30×30 m2 for both populations.  相似文献   

10.
Disturbed habitats are often swiftly colonized by alien plant species. Human inhabited areas may act as sources from which such aliens disperse, while road verges have been suggested as corridors facilitating their dispersal. We therefore hypothesized that (i) houses and urban areas are propagule sources from which aliens disperse, and that (ii) road verges act as corridors for their dispersal. We sampled presence and cover of aliens in 20 plots (6 × 25 m) per road at 5-km intervals for four roads, nested within three localities around cities (n = 240). Plots consisted of three adjacent nested transects. Houses (n = 3,349) were mapped within a 5-km radius from plots using topographical maps. Environmental processes as predictors of alien composition differed across spatial levels. At the broadest scale road-surface type, soil type, and competition from indigenous plants were the strongest predictors of alien composition. Within localities disturbance-related variables such as distance from dwellings and urban areas were associated with alien composition, but their effect differed between localities. Within roads, density and proximity of houses was related to higher alien species richness. Plot distance from urban areas, however, was not a significant predictor of alien richness or cover at any of the spatial levels, refuting the corridor hypothesis. Verges hosted but did not facilitate the spread of alien species. The scale dependence and multiplicity of mechanisms explaining alien plant communities found here highlight the importance of considering regional climatic gradients, landscape context and road-verge properties themselves when managing verges. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Green roofs are “nature-based solutions” that provide numerous ecosystem services in the context of urban green infrastructures. Plant species diversity and the associated vegetation communities, in strong interactions with green roof substrate, play a central role in the green infrastructure functioning. In order to better understand the influence of vegetation in relation with the co-benefits provided by green roofs as well as to select suitable species for these usually harsh environments, it is essential to be able to achieve accurate and long-term monitoring of plant communities. In this short communication, two free plugins recently developed for the open-source image analysis software Fiji (a distribution of the freely available ImageJ platform, initially dedicated to biological image analysis) were investigated for their capacity to rapidly and efficiently perform supervised machine-learning for the classification of green roof vegetation photographs, with the aim of estimating individual plant species abundance. Two simple methods are thus described using the Trainable Weka Pixel Segmentation (Arganda-Carreras et al., 2017) or the Trainable Superpixel Segmentation (Salinas Colina et al., 2018), which allowed for rapid, efficient and reproducible classification and estimation of multispecies colonized green roof regardless the color or shape similarities among species or ground cover materials. Finally, recommendations are made for the use of the Trainable Superpixel Segmentation which is particularly convenient for quick and efficient green roof image analysis.  相似文献   

12.
Anthracnose caused by the fungus Apiognomonia veneta (Sacc. et Speg.) Höhnel., is the most important and frequent disease affecting mature ornamental plane trees (Platanus×hybrida Brot.=P.×acerifolia (Ait.)Willd.) of central Spain. Symptoms of the disease are: leaf vein and petiole necrosis, bud death, defoliation, proliferation of shoots growing in whorls, short internodes, cankers, necrotic lesions and twigs and branches growing in angles. Based on our previous experience, a disease severity rating scale (DSRS) has been established, consisting of six levels: 0=healthy, 1=initial, 2=low, 3=medium, 4=high and 5=dead. In order to achieve a better and more efficient measure of disease intensity we tried to quantify this visual scale using mathematical criteria. In 2000, 610 mature trees up to 200 years old, divided into 4 age classes, were selected and systematically evaluated using a visual estimation based method. The trees were located in central Spain, mainly in two periurban areas of the town of Aranjuez (south of Madrid) and in three urban areas of Madrid city. Trees were observed in late spring, summer and winter. We recorded visual estimation of disease severity, foliage cover, healthy new shoots, dead branches, shoot growth in whorls and branch growth in angles. The statistical relationship between the parameters, disease severity and all the variables recorded (defoliation, healthy new shoots, etc.) has been evaluated. “Leaf density”, “dead branches” and “healthy shoots” were the variables that help to discriminate better between the different levels of the DSRS. A clearer definition of the different phases of disease severity will facilitate the application of possible control methods and the prediction of the behaviour of other Platanus spp.  相似文献   

13.
The establishment of woody plants following agricultural abandonment in the Mediterranean region is a very widespread process which underlines the extent of the rural exodus. The installation windows in space and time were studied in the French Mediterranean region for two common woody plants, Buxus sempervirens and Fraxinus angustifolia and for a group of common woody fleshy-fruited species. These plants differ in their principal modes of dispersal which are respectively, barochory, anemochory and ornithochory. Their installation was analyzed in relation to the seed shadows, the spatial patterns and the age structures of the seedlings. The majority of the seeds were dispersed over short distances, although some animal vectors may promote a limited amount of long distance dispersal. Hence, whatever the mode of dispersal, a few seeds are often dispersed far from the maternal plant. The combination of several dispersal types in one plant species is a frequently observed feature, one being dominant at a small scale, and related to successional processes, the other being dominant at a larger scale and related to invasive processes. In the old fields the spatial pattern of seedlings closely follow the observed seed shadows. However, competition with the maternal plants may lead to, in some cases, a recruitment deficit close to the seed-bearers. Age structures show that woody plants often install very early after the abandonment of cultivation and that the installation window in time is shortened by the development of a dense herbaceous cover. It is concluded that the installation of woody plants in Mediterranean old fields cannot be reduced to a general rule. The rate and extent of installation depends mainly on the spatial distribution of the seed-bearers, therefore of the spatial patterns of the landscape.  相似文献   

14.
To determine how vegetation pattern in early successional forests may be related to plant traits and types of disturbance, we measured percent cover of individual taxa annually in a South Carolina Pinus elliottii forest, starting one year before, and ending four years after harvest and tree girdling disturbances were applied. The 17 most important taxa surveyed were grouped into four regeneration strategies chosen a priori, and the spatial patterns of these groups and of the soil were investigated using global variability, semivariograms and kriged maps. We also examined spatial correlations across years, across taxa, and between species and soil disturbance. Seed bank taxa represented by Dichanthelium spp. increased rapidly and formed large patches, and then quickly declined. Taxa that regenerate by newly dispersed seeds, represented by Rhus copallina and Rubus spp. occurred at first in a few patches, and became widespread later. Stump sprouters, represented by Quercus spp. and Myrica cerifera, had rapid increases in cover, but their spatial patterns were largely determined by their pre-disturbance patterns. Prunus serotina, which relies on both sprouting and dispersed seed, had moderate cover and a random distribution. Within-species temporal correlation of spatial pattern was lower in girdled than in harvested plots, and was not clearly related to regeneration strategy. Forest floor disturbance was patchy and affected the pattern of Dichanthelium spp. in the harvested plots. Negative correlations between herbs and woody plants in harvested plots reflected the role of biotic (i.e., successional) filters on vegetation pattern. Surprisingly, no spatial correlations were detected between the nitrogen fixer, Myrica cerifera and other taxa in this N-limited system. In comparing the spatial and temporal patterns, we found kriged maps more informative than analysis of semivariograms alone. The maps and correlation statistics demonstrated that regeneration traits, spatial patterns of soil disturbances, and interactions among taxa influence dynamics of the spatial patterns of the plants. We also demonstrated that disturbance types affected the importance and interactions among these three factors, and caused different spatial patterns of the plant taxa.  相似文献   

15.
Selection of scale for Everglades landscape models   总被引:3,自引:0,他引:3  
This article addresses the problem of determining the optimal “Model Grain” or spatial resolution (scale) for landscape modeling in the Everglades. Selecting an appropriate scale for landscape modeling is a critical task that is necessary before using spatial data for model development. How the landscape is viewed in a simulation model is dependent on the scale (cell size) in which it is created. Given that different processes usually have different rates of fluctuations (frequencies), the question of selection of an appropriate modeling scale is a difficult one and most relevant to developing spatial ecosystem models. The question of choosing the appropriate scale for modeling is addressed using the landscape indices (e.g., cover fraction, diversity index, fractal dimension, and transition probabilities) recently developed for quantifying overall characteristics of spatial patterns. A vegetation map of an Everglades impoundment area developed from SPOT satellite data was used in the analyses. The data from this original 20 × 20 m data set was spatially aggregated to a 40 × 40 m resolution and incremented by 40 meters on up to 1000 × 1000 m (i.e., 40, 80, 120, 160 … 1000) scale. The primary focus was on the loss of information and the variation of spatial indices as a function of broadening “Model Grain” or scale. Cover fraction and diversity indices with broadening scale indicate important features, such as tree islands and brush mixture communities in the landscape, nearly disappear at or beyond the 700 m scale. The fractal analyses indicate that the area perimeter relationship changes quite rapidly after about 100 m scale. These results and others reported in the paper should be useful for setting appropriate objectives and expectations for Everglades landscape models built to varying spatial scales.  相似文献   

16.
As an Open Access journal dedicated to promoting technological innovation in plant biology, Plant Methods occupies a unique niche amongst plant journals. To fund its open access policy, and to enable it to continue to serve the plant sciences community, Plant Methods will be introducing an article processing charge (APC) from March 1st 2006. This charge will cover the costs of making the article freely and universally accessible online and the costs involved in its inclusion in PubMed and its archiving in public repositories. In some circumstances, waivers of the APC may be granted and authors whose institutions are BioMed Central members will incur no, or reduced, charges.  相似文献   

17.
Forest loss has been invoked as a cause for changes in the reproductive success of animal-pollinated woodland plants, associated with changes in their pollinators. To analyze such effects, it is important to include all of the three key players: landscapes, pollinators and a plant. We investigated effects of forest loss on an insect-pollinated plant through landscapes in forested ecosystems to pollinator communities and plant populations. Then we questioned if abundance and species richness in pollinator communities decrease as forest loss increases, and this in turn leads to a decrease in reproductive output of an insect-pollinated plant. We made a study with 12 populations of the bee pollinated herb, Erythronium americanum, in a landscape characterized by scattered fragments of deciduous forest within intensively managed agricultural fields. We also sampled bees as the potential pollinators by pan traps. We quantified the study landscapes using the amount of forest cover and the length of forest edge within each of the six radii (250, 500, 750, 1,000, 1,250 and 1,500 m). Regression analyses showed that the abundance and species richness of all collected bees were positively related to only the forest cover at the radius of 750 m. We also found the positive relationships for the seed set of E. americanum when the forest cover at the same radius and abundance of all collected bees were used as the predictor variables. These results indicate that forest loss causes negative impacts on potential pollinator communities and seed sets of some woodland herbs.  相似文献   

18.
Urban trees provide numerous ecosystem goods and services by providing shade, habitat for wildlife, removal of air pollutants and the removal and storage of atmospheric CO2. Carbon removal services provided by Canadian urban trees have previously been assessed using an IPCC 2006 guidelines approach based on the percentage of urban area covered by tree canopy (UTC) for the 2012 time period (Pasher et al., 2014). That work however provided only a single point in time assessment of the national scale UTC and carbon removal services. The research undertaken for this study was a continuation of this earlier work focusing on a 1990 national scale UTC assessment and carbon sequestration estimates for 1990. UTC estimates for 1990 were developed using a point sampling approach with circa 1990 air photos covering a large portion of Canadian urban areas. In total almost 179,000 points were sampled for the 1990 time period, reassessing 83% of the points used for the previous 2012 assessment. Based on the urban area boundary layers for 1991 and 2011, Canada’s urban areas grew by an estimated 6% for this time period. Most of this growth occurred through conversion of agricultural and forested lands to urban. At the national scale the UTC for 1990 was estimated to be 27.6%, as compared to the 2012 UTC estimate of 26.1%, the difference between estimates for the two time periods fell within the uncertainty range. Carbon removal estimates based on the UTC estimates were also very similar for the two dates with 660.2 kt C removed in 1990 and 662.8 kt C removed in 2012. It was noted that urban development in the Prairie regions resulted in an increase in tree cover as compared to the pre-conversion agricultural and natural landscapes and also that in most urban areas across the country UTC increases through time as tree cover matured in newly developed urban areas. These two assessments provide a time series of urban trees for 22 year time period, which will be useful for further studies and analysis.  相似文献   

19.
Burrowing mammals create disturbances that increase the ecological heterogeneity of landscapes. In desert systems, banner-tailed kangaroo rats (Dipodomys spectabilis) construct large mounds that greatly influence the spatial patterning of soils, plants, and animals. The overall effects of the patches generated by D. spectabilis depend on the dispersion patterns of the mounds; these patterns may be sensitive to scale and landscape position. We examined the distribution of D. spectabilis mounds across multiple scales in four 40-ha grassland plots in New Mexico, USA. We used Ripley's K-function for our point-pattern analysis. The dispersion patterns of mounds were generally scale-sensitive but depended somewhat on plot-level densities, which were related to topographic position and grazing history. Mound spacing was either regular or random at small scales (0–50 m), random or aggregated at intermediate scales (50–300 m), and aggregated at large scales (300–3000 m). This scale-dependency of pattern reflected spatial domains in which different biotic (territoriality, dispersal, grazing) and abiotic (soil texture and drainage) factors exerted strong influences. How other organisms perceive the spatial patterning of mounds will depend on the extent of their movements. Patches may appear regular to one species but aggregated to another. The dispersion of D. spectabilis mounds also has implications for the spatial structuring of desert rodent communities. D. spectabilis excludes smaller species of kangaroo rats from areas around their mounds; they create spatial heterogeneity in behavioral dominance that may influence the distribution of subordinate species at multiple scales.  相似文献   

20.
Previous attempts to quantify topographic controls on vegetation have often been frustrated by issues concerning the number of variables of interest and the tendency of classification methods to create discrete classes though species have overlapping property sets (niches). Methods of fuzzy k-means classification have been used to address class overlap in ecological and geographical data but previously their usefulness has been limited when data sets are large or include artefacts that may occur through the derivation of topo-climatic attributes from gridded digital elevation models. This paper presents ways to overcome these limitations using GIS, spatial sampling methods, fuzzy k-means classification, and statistical modelling of the derived stream topology. Using data from a ca. 3600 km2 forested site in the Greater Yellowstone Area, we demonstrate the creation of meaningful, spatially coherent topo-climatic classes through a fuzzy k-means classification of topo-climatic data derived from 100 m gridded digital elevation models (DEMs); these classes were successfully extrapolated to adjacent areas covering a total of ca. 10000 km2. Independently derived land cover data and middle infrared corrected Landsat TM derived estimates of Normalised Difference Vegetation Index (M_NDVI) at 575 independently sampled sites were used to evaluate the topo-climatic classes and test their extrapolation to the larger area. Relations between topo-climatic classes and land cover were tested by 2 analysis which demonstrated strong associations between topo-climatic class and 11 of the 15 cover classes. Relations between M_NDVI and topo-climatic classes proved to be stronger than relations between M_NDVI and the independent cover classes. We conclude that the fuzzy k-means procedure yields sensible and stable topo-climatic classes that can be used for the rapid mapping of large areas. The value of these methods for quantifying topographic controls on biodiversity and the strength of their relations with computed NDVI values warrant further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号