首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The effects of inorganic N and organic manure, applied to a loamy arable soil, on CH4 oxidation were investigated in laboratory incubation experiments. Applications (40 mg N kg–1) of NH4Cl, (NH4)2SO4, and urea caused strong instantaneous inhibition of CH4 oxidation by 96%, 80%, and 84%, respectively. After nitrification of the added N the inhibitory effect was not fully reversible, resulting in an residual inhibition of 21%, 16%, and 25% in the NH4Cl, (NH4)2SO4, and urea treatments, respectively. With large NH4 + applications [240 mg N kg–1 as (NH4)2SO4] the residual inhibition was as high as 64%. Exogenous NO2 (40 mg NO2 -N kg–1) initially inhibited CH4 oxidation by 84%, decreasing to 41% after its oxidation. Therefore, applied NO2 was a more effective inhibitor of CH4 consumption than NH4 +. Temporary accumulation of NO2 during nitrification of added N was small (maximum: 1.9 mg NO2 -N kg–1) and thus of minor importance with respect to the persistent inhibition after NH4 + or urea application. CH4 oxidation after NaNO3 (40 mg N kg–1) and NaCl addition did not differ to that of the untreated soil. The effect of organic manures on CH4 oxidation depended on their C/N ratio: fresh sugar beet leaves enhanced mineralization, which caused an instantaneous 20% inhibition, whereas after wheat straw application available soil N was rapidly immobilized and no effect on CH4 oxidation was found. The 28% increase in CH4 oxidation after biowaste compost application was not related to its C/N ratio and was probably the result of an inoculation with methanotrophic bacteria. Only with high NH4 + application rates (240 mg N kg–1) could the persistent inhibitory effect partly be attributed to a pH decrease during nitrification. The exact reason for the observed persistent inhibition after a single, moderate NH4 + or urea application is still unknown and merits further study. Received: 31 October 1997  相似文献   

2.
Laboratory incubation study showed that iron pyrites retarded nitrification of urea-derived ammonium (NH4 +), the effect being greatest at the highest level (10000 mg kg–1 soil). Nitrification inhibition with 10000 mg pyrite kg–1 soil, at the end of 30 days, was 40.3% compared to 55.9% for dicyandiamide (DCD). The inhibitory effect with lower rates of pyrite (100–500 mg kg–1) lasted only up to 9 days. Urea+pyrite treatment was also found to have higher exchangeable NH4 +-N compared to urea alone. DCD-amended soils had the highest NH4 +-N content throughout. Pyrite-treated soils had about 7–86% lower ammonia volatilization losses than urea alone. Total NH3 loss was the most with urea+DCD (7.9% of applied N), about 9% more than with urea alone. Received: 11 November 1995  相似文献   

3.
 Nitrification inhibition of soil and applied fertilizer N is desirable as the accumulation of nitrates in soils in excess of plant needs leads to enhanced N losses and reduced fertilizer N-use efficiency. In a growth chamber experiment, we studied the effects of two commercial nitrification inhibitors (NIs), 4-amino 1,2,4-triazole (ATC) and dicyandiamide (DCD), and a commonly available and economical material, encapsulated calcium carbide (CaC2) (ECC) on the nitrification of soil and applied NH4 +-N in a semiarid subtropical Tolewal sandy loam soil under upland [60% water-filled pore space (WFPS)] and flooded conditions (120% WFPS). Nitrification of the applied 100 mg NH4 +-N kg–1 soil under upland conditions was retarded most effectively (93%) by ECC for up to 10 days of incubation, whereas for longer periods, ATC was more effective. After 20 days, only 16% of applied NH4 +-N was nitrified with ATC as compared to 37% with DCD and 98% with ECC. Under flooded soil conditions, nitrates resulting from nitrification quickly disappeared due to denitrification, resulting in a tremendous loss of fertilizer N (up to 70% of N applied without a NI). Based on four indicators of inhibitor effectiveness, namely, concentration of NH4 +-N and NO3 -N, percent nitrification inhibition, ratio of NH4 +-N/NO3 -N, and total mineral N, ECC showed the highest relative efficiency throughout the 20-day incubation under flooded soil conditions. At the end of the 20-day incubation, 96%, 58% and 38% of applied NH4 +-N was still present in the soil where ECC, ATC and DCD were used, respectively. Consequently, nitrification inhibition of applied fertilizer N in both arable crops and flooded rice systems could tremendously minimize N losses and help enhance fertilizer N-use efficiency. These results suggest that for reducing the nitrification rate and resultant N losses in flooded soil systems (e.g. rice lowlands), ECC is more effective than costly commercial NIs. Received: 25 May 2000  相似文献   

4.
Simeng LI  Gang CHEN 《土壤圈》2020,30(3):352-362
Overuse of nitrogen (N) fertilizers may lead to many environmental issues via N leaching into groundwater and agricultural runoff into surface water. Biochar, a sustainable soil amendment agent, has been widely studied because of its potential to retain moisture and nutrients. However, recent studies have shown that biochar has a very limited ability to improve the retention of negatively charged nitrite (NO2-) or nitrate (NO3-). Although positively charged ammonium (NH4+) can be better held by biochar, it is usually susceptible to nitrification and can be easily transformed into highly mobile NO2-and/or NO3-. In practice, dicyandiamide (DCD) has been used to inhibit nitrification, preserving N in its relatively immobile form as NH4+. Therefore, it is likely that the effects of DCD and biochar in soils would be synergistic. In this study, the influences of biochar on the effectiveness of DCD as a nitrification inhibitor in a biochar-amended soil were investigated by combining the experimental results of incubation, adsorption isotherm, and column transport with the simulated results of different mathematical models. Biochar was found to stimulate the degradation of DCD, as the maximum degradation rate slightly increased from 1.237 to 1.276 mg kg-1 d-1 but the half-saturation coefficient significantly increased from 5.766 to 9.834 mg kg-1. Considering the fact that the availability of DCD for nitrification inhibition was continuously decreasing because of its degradation, a novel model assuming non-competitive inhibition was developed to simulate nitrification in the presence of a decreasing amount of DCD. Depending on the environmental conditions, if the degradation of DCD and NH4+ in biochar-amended soil is not significant, improved contact due to the mitigated spatial separation between NH4+ and DCD could possibly enhance the effectiveness of DCD.  相似文献   

5.
 High molecular weight, anionic polyacrylamide (PAM) is currently being used as an irrigation water additive to significantly reduce soil erosion associated with furrow irrigation. PAM contains amide-N, and PAM application to soils has been correlated with increased activity of soil enzymes, such as urease and amidase, involved in N cycling. Therefore we investigated potential impacts of PAM treatment on the rate at which fertilizer N is transformed into NH4 + and NO3 in soil. PAM-treated and untreated soil microcosms were amended with a variety of fertilizers, ranging from common rapid-release forms, such as ammonium sulfate [(NH4)2SO4] and urea, to a variety of slow-release formulations, including polymerized urea and polymer-encapsulated urea. Ammonium sulfate was also tested together with the nitrification inhibitor dicyandiamide (DCD). The fertilizers were applied at a concentration of 1.0 mg g–1, which is comparable to 100 lb acre–l, or 112 kg ha–1. Potassium chloride-extractable NH4 +-N and NO3 -N were quantified periodically during 2–4 week incubations. PAM treatment had no significant effect on NH4 + release rates for any of the fertilizers tested and did not alter the efficacy of DCD as a nitrification inhibitor. However, the nitrification rate of urea and encapsulated urea-derived NH4 +-N was slightly accelerated in the PAM-treated soil. Received: 16 January 1998  相似文献   

6.
Summary Dicyandiamide (DCD) and neem cake were evaluated for their efficiency in inhibiting nitrification of prilled urea-derived NH 4 + –N in a wheat field. Prilled urea was blended with 10% and 20% DCD-N or 10% and 20% neem cake and incorporated into the soil just before the wheat was sown. Both DCD and neem cake partially inhibited nitrification of prilled urea-derived NH 4 + ; DCD was better than neem cake. The nitrification-inhibiting effects of DCD lasted for 45 days, while that of neem cake lasted for only 30 days. Blending the prilled urea with DCD (20% on N basis) was most effective in inhibiting the nitrification of urea-derived NH 4 + , both in terms of intensity and duration, and maintained substantially more NH 4 + –N than the prilled urea alone and 20% neem-cake-blended urea for a period of 60 days.  相似文献   

7.
An incubation study investigated the effects of nitrification inhibitors (NIs), dicyandiamide (DCD), and neem oil on the nitrification process in loamy sand soil under different temperatures and fertilizer rates. Results showed that NIs decreased soil nitrification by slowing the conversion of soil ammonium (NH4+)-nitrogen (N) and maintaining soil NH4+-N and nitrate (NO3?)-N throughout the incubation time. DCD and neem oil decreased soil nitrous oxide (N2O) emission by up to 30.9 and 18.8%, respectively. The effectiveness of DCD on reducing cumulative soil N2O emission and retaining soil NH4+-N was inconsistently greater than that of neem oil, but the NI rate was less obvious than temperature. Fertilizer rate had a stronger positive effect on soil nitrification than temperature, indicating that adding N into low-fertility soil had a greater influence on soil nitrification. DCD and neem oil would be a potential tool for slowing N fertilizer loss in a low-fertility soil under warm to hot climatic conditions.  相似文献   

8.
The effects on nitrification and acidification in three subtropical soils to which (NH4)2SO4 or urea had been added at rate of 250 mg N kg−1 was studied using laboratory-based incubations. The results indicated that NH4+ input did not stimulate nitrification in a red forest soil, nor was there any soil acidification. Unlike red forest soil, (NH4)2SO4 enhanced nitrification of an upland soil, whilst urea was more effective in stimulating nitrification, and here the soil was slightly acidified. For another upland soil, NH4+ input greatly enhanced nitrification and as a result, this soil was significantly acidified. We conclude that the effects of NH4+ addition on nitrification and acidification in cultivated soils would be quite different from in forest soils. During the incubation, N isotope fractionation was closely related to the nitrifying capacity of the soils.  相似文献   

9.
Abstract

Dicyandiamide (DCD) is a nitrification inhibitor that has been proposed for use in drill‐seeded rice. Immobilization of fertilizer NH4 +‐N by soil microorganisms under aerobic conditions has been found to be significantly enhanced in the presence of a nitrification inhibitor. The objective of this laboratory study was to determine if DCD significantly delayed nitrification of urea‐derived N, and if this enhanced immobilization of the fertilizer N in the delayed‐flood soil system inherent to dry‐seeded rice culture. Nitrogen‐15‐labeled urea solution, with and without DCD (1: 9 w/w N basis), was applied to a Crowley silt loam (Typic Albaqualf) and the soil was incubated for 10 weeks in the laboratory. The soil was maintained under nonflooded conditions for the first four weeks and then a flood was applied and maintained for the remaining six weeks of incubation. The use of DCD significantly slowed the nitrification of the fertilizer N during the four weeks of nonflooded incubation to cause the (urea + DCD)‐amended soil to have a 2.5 times higher fertilizer‐derived exchangeable NH4+‐N concentration by the end of the fourth week. However, the higher exchangeable NH4+‐N concentration had no significant effect on the amount of fertilizer N immobilized during this period. Immobilization of the fertilizer N appeared to level off during the nonflood period about the second week after application. After flooding, immobilization of fertilizer N resumed and was much greater in the (urea + DCD)‐amended soil that had the much higher fertilizer‐derived exchangeable NH4 +‐N concentration. Immobilization of fertilizer N appeared to obtain a maximum in the urea‐amended soil (18%) about two weeks after flooding and for the (urea + DCD)‐amended soil (28%) about four weeks after flooding.  相似文献   

10.
A laboratory experiment was conducted to investigate the relative mobility of dicyandiamide (DCD) and jointly applied ammoniacal salts or urea in three different soils of lower Egypt, and to determine the extent to which DCD separates from N-fertilizer in unsaturated soil undergoing leaching. The experimental results suggest that, under conditions of water flow, DCD is readily separated from NH4+ but parts from urea to a far lesser extent. The large difference in mobility between DCD and NH4+ should severely limit the effectiveness of DCD as a nitrification inhibitor in the three soils considered when applied in conjunction with ammoniacal salts. In two out of three cases, the situation is similarly unfavorable in the case of joint DCD and urea application. However, the observation that DCD, in a low CEC sandy loam, moves within the soil solution at a slightly lower rate than urea suggests that joint application with urea would keep at least part of the DCD in contact with the NH4+ ions and, therefore, would preserve some of the effectiveness of DCD under leaching conditions in this soil.  相似文献   

11.
Inhibition of nitrification as a mitigation tool to abate nitrogen (N) losses and improve N use efficiency (NUE) is a promising technology. Nitrification inhibitor (dicyandiamide, DCD) was evaluated in two consecutive wheat-maize rotations (2015–2017), with two different N fertilizer levels applied in wheat (160, 220 kg N ha?1) and maize (180, 280 kg N ha?1). More NH4+-N contents (101% and 102% in wheat and 74% and 73% in maize) and less NO3-N contents (37% and 43% in wheat and 46% and 57% in maize) were observed at both N levels treated with DCD compared to without DCD. Higher pH, lower EC and reduced NO3-N accumulation were the other benefits of DCD. The NO3-N accumulation within the 0–200 cm soil profile was significantly less at both N levels with DCD (66 mg kg?1 and 121 mg kg?1) compared to without DCD (96 mg kg?1 and 169 mg kg?1). Application of DCD also improved the growth and yield in both crops. Increase in NUE from 38% to 49% in wheat and 27% to 33% in maize with DCD at higher N level was also observed. Overall, the effectiveness of DCD in retarding the nitrification process was higher in wheat than maize.  相似文献   

12.
Karanjin, a furanoflavonoid (3-methoxy furano –?2 , 3 , 7, 8-flavone), is obtained from the seeds of karanja tree (Pongamia glabra Vent.), which is reported to have nitrification inhibitory properties but has been tested in few soil types. Efficiency of karanjin as a nitrification inhibitor in seven different soils of India was tested in a laboratory incubation study. The soils (800?g) were adjusted to field capacity moisture content, fertilized with urea and urea combined with karanjin at a rate of 20% of applied urea-N (100?mg?kg???1 soil) and incubated at 35°C for a period of 7 weeks, during which urea [CO(NH2)2], ammonium (NH4 ?+?), nitrite (NO2 ???) and nitrate (NO3 ???) content in the soils was measured periodically and nitrification inhibition at different stages was calculated. Urea hydrolysis was almost complete within 72?h of application in all the soils and was not affected by karanjin. Karanjin had conserved ammonium in all the soils at all stages and nitrate formation was effectively minimized. Nitrite in soils was short-lived and low. Nitrification inhibition by karanjin remained high for a period of approximately 6 weeks, decreased with time and ranged from 9?–?76% for all the soils. The study shows that this plant product can be an effective nitrification inhibitor in several types of soil.  相似文献   

13.
In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N2O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N2O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg-1,and N 5.6 g kg-1)sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N2O emissions,N2O derived from fertilizer,soil ammonium(NH4+)and nitrate(NO3-),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH4+content between the UR and UR+NI treatments,probably because of soil mineralization and NO3-produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N2O emissions in UR(0.51±0.12 mg N2O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH4+and NO3-production.Additionally,it was found that N2O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N2O emissions only if a substantial N surplus exists in soils with high organic matter content.  相似文献   

14.
Abstract

Chemical transformations of ammonium nitrate (NH4NO3) and urea‐nitrogen (N), at different rates of application, were studied in a Candler (Typic Quartzipsamment) and Wabasso (sandy, Alfic Haplaquod) sand by incubating fertilized surface soil (from 0 to 15 cm depth) samples at 10% moisture content (by weight) in the laboratory at 25±1°C. During the 7 d incubation, the percentage of transformation of NH4‐N into NO3‐N was 33 to 41 and 37 to 41% in the Candler fine sand and Wabasso sand, respectively, at application rates of 1.00 g N kg1. In a parallel experiment, 85 to 96% of urea applied (equivalent to 0.25 to 1.00 g N kg‐1soil) was hydrolyzed to NH4‐N within 4 d in the Candler soil, whereas it required 7 d to hydrolyze 90 to 95% of the urea applied in the Wabasso soil. No nitrification was evident for 30 days in the Candler fine sand which received urea application equivalent to ≥ 0.50 g N kg‐1. In the urea‐amended Wabasso sand, the formation of NO3 decreased as the rate of urea‐N increased. Possible loss of N from NH3 volatilization or inhibition of activity of nitrifiers due to elevated soil pH (8.7 to 9.2) during the incubation of urea amended soils may have caused very low nitrification.  相似文献   

15.
Abstract

The potential for using dicyandiamide (DCD) to enhance yield of take‐all‐infested winter wheat (Triticum aestivum L.) was evaluated in six field experiments on four acid soils (pH 5.7–6.2). Ammonium and NO3 concentrations and NH4 +: NO3 ratios in 0–10 and 10–20 cm soil depths were measured for ten weeks after spring topdressing 180 kg N/ha as urea with 0, 13, or 27 kg DCD/ha. Nitrification was strongly inhibited for 6 to 10 weeks by either 13 or 27 kg DCD/ha. Averaged over the ten‐week sampling period, NH4 +: N03 ratios in the 0–10 cm depth of soil were 36: 1 for DCD‐treated plots as compared to 2: 1 for plots receiving only urea. Ratios in DCD‐treated plots were considerably wider than ratios associated with take‐all suppression (10: 1 to 3: 1) in earlier studies. Extractable NH4 + + NO3 concentrations in soil were high in DCD‐treated plots after 30 to 40 days, suggested that DCD had reduced crop uptake of N because of the lower mobility of NH4 + as compared to NO3 . In four of the six studies, grain yields tended to be reduced by DCD. Results suggest that lower rates of DCD and/or application of some NO3 will be necessary if DCD is to be used as a tool for suppressing take‐all.  相似文献   

16.
Ammonium salts used as fertilizers may cause soil acidification by two different processes: nitrification in soil and net release of protons from roots. Their influence on soil pH may vary depending on the distance from root surface. The aim of this study was to distinguish between these two processes. For this purpose rape seedlings were grown 10 d in a system which separated roots from soil by a fine-meshed screen. As a function of distance from the plane root layer formed on the screen, pH, titratable and exchangeable acidity and NO3- and NH4-nitrogen were determined. The soil, a luvisol from loess, was supplied with no N or (NH4)2SO4 either with or without a nitrification inhibitor (DCD). The bulk soil pH remained unaffected when no N or 400 mg NH4? N kg?1 soil plus DCD was applied but it decreased from 6.6 to 5.8 without DCD. In contrast, rhizosphere pH decreased in all cases, mainly within a distance of 1 mm from the root plane only, but with gradients extending to between 2 and 4 mm into the soil. The strongest pH decrease, from 6.6 to 4.9, occurred at the root surface of plants treated with both NH4-N and DCD where most of the mineral N remained as ammonium. In this case Al was solubilized in the rhizosphere as indicated by exchangeable acidity. Total soil acidity produced in the NH4 treatment without DCD was mainly derived from nitrification compared to root released protons. However, acidification of the rhizosphere was diminished by nitrification because nitrate ions taken up by the roots counteracted net proton release. It is concluded that nitrification inhibitors may reduce proton input from ammonium fertilizers but enhance acidification at the soil-root interface which may cause Al toxicity to plants.  相似文献   

17.
An incubation experiment was conducted to study N2O emissions from a Typic Ustochrept, alluvial soil, fertilized with urea and urea combined with different levels of two nitrification inhibitors, viz karanjin and dicyandiamide (DCD). Karanjin [a furano-flavonoid, obtained from karanja (Pongamia glabra Vent.) seeds] and DCD were incorporated at rates of 5, 10, 15, 20 and 25% of applied urea-N (100 mg kg-1 soil), to the soil adjusted to field capacity moisture content. The highest N2O flux (366 µg N2O-N kg-1 soil day-1) was obtained on day 1 after incubation from soil fertilized with urea without any inhibitor. The presence of the inhibitors appreciably reduced the mean N2O flux from the urea-treated soils. The application of karanjin resulted in a higher mitigation of total N2O-N emission (92-96%) compared to DCD (60-71%). Rates of N2O flux ranged from 0.9 to 140 µg N2O-N kg-1 soil day-1 from urea combined with different levels of the two inhibitors (coefficient of variation=24-272%). Karanjin (62-75%) was also more effective than DCD (9-42%) in inhibiting nitrification during the 30-day incubation period.  相似文献   

18.
Changes of land-use type (LUT) can affect soil nutrient pools and cycling processes that relate long-term sustainability of ecosystem, and can also affect atmospheric CO2 concentrations and global warming through soil respiration. We conducted a comparative study to determine NH4+ and NO3 concentrations in soil profiles (0–200 cm) and examined the net nitrogen (N) mineralization and net nitrification in soil surface (0–20 cm) of adjacent naturally regenerated secondary forests (NSF), man-made forests (MMF), grasslands and cropland soils from the windy arid and semi-arid Hebei plateau, the sandstorm and water source area of Beijing, China. Cropland and grassland soils showed significantly higher inorganic N concentrations than forest soils. NO3-N accounted for 50–90% of inorganic N in cropland and grassland soils, while NH4+-N was the main form of inorganic N in NSF and MMF soils. Average net N-mineralization rates (mg kg1 d1) were much higher in native ecosystems (1.51 for NSF soils and 1.24 for grassland soils) than in human disturbed LUT (0.15 for cropland soils and 0.85 for MMF soils). Net ammonification was low in all the LUT while net nitrification was the major process of net N mineralization. For more insight in urea transformation, the increase in NH4+ and, NO3 concentrations as well as C mineralization after urea addition was analyzed on whole soils. Urea application stimulated the net soil C mineralization and urea transformation pattern was consistent with net soil N mineralization, except that the rate was slightly slower. Land-use conversion from NSF to MMF, or from grassland to cropland decreased soil net N mineralization, but increased net nitrification after 40 years or 70 years, respectively. The observed higher rates of net nitrification suggested that land-use conversions in the Hebei plateau might lead to N losses in the form of nitrate.  相似文献   

19.
Temporal variations in δ15N of NH4+ and NO3 in water-saturated and unsaturated soils were examined in a laboratory incubation study. Ammonium sulfate (δ15N=−2.6‰) was added to 25 g samples of soil at concentrations of 160 mg N kg−1. Soils were then incubated under unsaturated (50% of water holding capacity at saturation, WHC) or saturated (100% of WHC) water conditions for 7 and 36 d, respectively. During 7 d incubation of unsaturated soil, the NH4+-N concentration decreased from 164.8 to 34.4 mg kg−1, and the δ15N of NH4+ increased from −0.4 to +57.2‰ through nitrification, as evidenced by corresponding increase in NO3-N concentration and lower δ15N of NO3 (product) than that of NH4+ (substrate) at each sampling time. In saturated soil, the concentration of NH4+-N decreased gradually from 162.4 to 24.2 mg kg−1, and the δ15N values increased from +0.8 to +21.0‰ during 36 d incubation. However, increase in NO3 concentration was not observed due to loss of NO3 through concurrent denitrification in anaerobic sites. The apparent isotopic fractionation factors (αs/p) associated with decrease in NH4+ concentration were 1.04 and 1.01 in unsaturated and saturated soils, respectively. Since nitrification is likely to introduce greater isotope fractionation than microbial immobilization, the higher value for unsaturated soil probably reflected faster nitrification under aerobic conditions. The lower value for saturated soil suggests that immobilization and subsequent remineralization of NH4+ were relatively more dominant than nitrification under the anaerobic conditions.  相似文献   

20.
The effects of urea, (NH4)2SO4, KNO3, and NH4NO3 on nitrous oxide (N2O) emission from soil at field capacity and submerged condition were studied during 120 days in the laboratory. Soils in both moisture regimes gave higher emissions in the beginning, which were reduced later. Total emission of N2O was higher at submergence as compared to field capacity regardless of fertilizer type. At field capacity soil fertilized with ureaemitted the highest amount of N2O (1903 μg N2O-N kg-1 soil) during 120 days while at submerged condition, soil with NH4NO3 gave the highest emission (4843 μg N2O-N kg-1 soil). In another study, the efficacy of seven nitrification inhibitors in reducing the emission of N2O-N from soil fertilized with urea was tested in the laboratory. Nitrapyrin, 2-amino-4-chloro-6-methylpyrimidine (AM), and dicyandiamide (DCD) reduced the emission to 12, 24, and 63% that of urea, respectively, whereas sodium thiosulphate, sulphur, acetylene,and thiourea had no effect on emission of N2O. In submerged conditions none of the inhibitors reduced the emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号