首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen Assimilation in Roots and the Transport of Nitrogen Compounds in the Bleeding Sap of Roots in relation to Manganese Nutrition. The assimilation of nitrogen in the roots of 27 days old pumpkin plants was examined in relation to manganese nutrition. The transport of nitrogen compounds in the xylem was determined in roots and in the bleeding sap of roots using nitrate as the N-source. The maximum NO3 content in the roots was observed in the Mn treatment which resulted in the highest shoot yields (0.05 ppm Mn). The bleeding sap of this treatment was lowest in nitrate concentration, but showed the highest rate of transport of organic nitrogen compounds. In experiments with 15N in the nutrient solution the isotope was found in the roots in organic and in inorganic compounds. The composition of the fraction of free amino acids differed between roots and xylem sap. In the bleeding sap glutamine was especially dominant. In the roots the amino acid composition depended on the extent of Mn-supply. Lowest glutamine concentrations were found in the xylem sap from the treatment with maximum shoot yields. A numerical difference was found in the xylem sap between organic N (N(org)) and the amino acid nitrogen. This difference which account for more than 50 % of the organically bound nitrogen is suggested to be made up in part by low molecular weight peptides, amino sugars and other compounds. In Mn deficiency a general reduction in the intensity of nitrogen metabolism was found. With Mn toxicity the N assimilation activity was more intensive than for the low Mn supply. Simultaneously, however, the transport of organic N compounds from the root was lower.  相似文献   

2.
氮素形态对半夏生长及生物碱和总有机酸累积的影响   总被引:3,自引:2,他引:1  
研究氮素形态对半夏光合特性、相关酶活性、总生物碱及总有机酸累积的影响,为半夏氮肥的合理施用提供依据。采用无土栽培方法栽培半夏,测定同一氮素水平不同氮素形态处理下,半夏叶片叶绿素含量、相关光合参数、硝酸还原酶(NR)活性、硝态氮含量、块茎中总生物碱及总有机酸含量。结果表明:半夏叶片光合色素含量随铵硝比增大呈先升后降趋势;铵硝比为75∶25时,叶绿素a和类胡萝卜素含量最高;铵硝比为25∶75,叶绿素b含量最高,同时,净光合速率、气孔导度和蒸腾速率达最大值;随着NO3--N比例降低,NR活性整体呈现下降趋势;块茎总生物碱含量,全硝营养下含量最高,随着NO3--N比例降低,呈现降低趋势;而随着NH4+-N比例增加,半夏块茎中总有机酸呈现上升的趋势。结论:铵态氮、硝态氮复合施用有利于半夏的生长,较高硝态氮比例有利于总生物碱的积累,较高铵态氮比例有利于总有机酸的累积。  相似文献   

3.
K. OH  T. KATO  H. L. XU 《土壤圈》2008,18(2):222-226
An experiment was carried out to study the transport process of nitrogen (N) assimilation from tea roots by monitoring the dynamic composition of N compounds in xylem sap after 15^N-NO3 and 15^N-NH4 were fed to the root of tea plants (Camellia sinensis L.). Results showed that the main amino acids were glutamine, theanine, axginine, asparic acid and glutamic acid, which accounted for 49%, 17%, 8%, 7%, and 4%, respectively, of the total amino acids in the xylem sap. After the tea plants were fed with 15^N-NO3 and 15^N-NH4 for 48 h, the amount of total amino acids in xylem sap significantly increased and those fed with 15^N-NH4 had higher increment than those with 15^N-NOa. Two hours after 15^N- NO3 and 15^N-NH4 were fed, 15N abundance in glutamine, asparagine, glutamic acid, alanine, and arginine were detected and increased quickly over time. This indicated that it took less than 2 h for NO3-N and NH4-N to be absorbed by tea roots, incorporated into the above amino acids and transported to the xylem sap. Rapid increase in 15^N-NO3 in the xylem sap of tea plants fed with 15^N-NO3 indicated that nitrate could be directly transported to the xylem sap. Glutamine, theanine, and alanine were the main amino acids transported in xylem sap of tea plants fed with both 15^N-NO3 and 15^N-NH4.  相似文献   

4.
不同水稻基因型的根系形态生理特性与高效氮素吸收   总被引:30,自引:0,他引:30  
土培盆栽试验下,采用3个氮素吸收效率(NAE)有显著差异的水稻基因型五优244(低NAE)、R83—12(中NAE)和水源349(高NAE)为材料,研究了水稻拔节期根系形态特征和生理特性的基因型差异及其与高效氮索吸收的关系。结果表明,水源349总根长、根密度、根表面积和根干重极显著高于R83.12和五优244,且根系总吸收面积、活跃吸收面积和活跃吸收面积/总吸收面积最大,为高效氮索吸收提供了条件。水源349具有较强的根系耗能、氧化还原力、硝酸还原酶、谷氨酰胺合成酶、谷氨酸合酶和谷氨酸脱氢酶活性,促进根内碳水化合物的合成及氮吸收和同化,提高了根系伤流强度及可溶性糖和游离氨基酸含量,进而显著提高了地上部氮含量和氮积累量。逐步回归表明,拔节期较高的根密度、根系总吸收面积和地上部氮含量是水稻氮索高效吸收的重要特征,可作为水稻氮素高效管理和遗传改良的可靠指标。  相似文献   

5.
Sap mixtures of the xylem, phloem, and vacuoles from low and high Cd accumulator varieties of Brassica parachinensis L. H. Bailey were analyzed under Cd stress to understand the biochemical mechanisms of Cd accumulation in plants. Low Cd accumulator (‘Teqing-60') and high Cd accumulator (‘Chixin-2') plants were grown in Cd-treated soil in pots in a greenhouse. Percentage of cell wall-bound Cd was estimated, pH level and the concentrations of amino acids, organic acids, anions, and cations in both stem and root saps were determined for the calculation of Cd speciations using the computer program GEOCHEM. The results showed that ‘Teqing-60' had a significantly higher (P ≤ 0.05) percentage of Cd bound to cell walls in roots and a significantly higher (P ≤ 0.05) pH in the root sap. ‘Teqing-60' also contained a higher concentration of total amino acids in both roots and stems compared with the high Cd accumulator variety ‘Chixin- 2'. However, between the two accumulators, for stems and for roots, there were no significant differences in non-amino organic acids. GEOCHEM calculations showed that Cd in the root sap of ‘Teqing-60' mainly combined with amino acids, especially alanine. Compared with ‘Chixin-2', in the root sap of ‘Teqing-60', much lower levels of Cd as free ions or bound to simple ligands were found, indicating that less ‘Teqing-60' is transferred to stems and leaves. Cadmium activity in the shoot sap of ‘Teqing-60' was much lower than that in ‘Chixin-2'; therefore, ‘Teqing-60' exhibited higher Cd resistance. However, direct determination of the Cd complexes from xylem and phloem sap is needed to verify these results.  相似文献   

6.
Attempts have long been made to study the effect of mineral nutrition on the metabolic substances in excised roots from a numcer of plant species, but very little attention has teen given to an approach to the problem by using the bleeding sap from crop plants. Recently, however, an increasing number of reports about the occurrence of organic substances in bleeding sap from crop plants has completely revised an old view that xylem sap was essentially a rather dilute aqueous solution of inorganic salts. Evidence has already been obtained which suggests a significant role for the root system as a centre of metabolism and an upward transport of metabolites from the root via the xylem to the leaf. Although analyses of the nitrogenous compounds present in bleeding sap from herbaceous plants have shown glutamine and asparagine to be the most important constituents, in some species of plants nitrate nitrogen may be a predominant nitrogenous compound. Besides ami des and nitrate, the presence of amino acids in bleeding sap has ceen shown by Kulayeva, Silina, and Kursanov 1) for pumpkins, Wieringa and Bakhuis 21 for Lupins, and DIE3) for cucumbers and tomatoes.  相似文献   

7.
Hydroponic culture technique is an alternative way of studying nitrogen metabolism. In this study, the response of six wheat genotypes (PBW 621, PBW 636, GLU 1356, BW 8989, GLU 700, and PBW 343) with respect to nitrogen-metabolizing enzymes in relation to accumulation of soluble proteins and amino acids at two concentrations of nitrogen (2 and 6 mM) was studied. Activities of nitrate reductase (NR) and glutamine synthetase as well as soluble proteins, amino acids, and nitrogen content increased in all six genotypes with increasing concentration of nitrogen in roots as well as shoots. Shoots maintained higher activities of NR and glutamine synthetase; apparently contents of soluble protein, amino acid, and nitrogen were also higher. The upregulation of NR and glutamine synthetase activities with increased concentration of nitrogen possibly contributes to higher nitrogen assimilation efficiency of three genotypes (PBW 621, PBW 636, and GLU 1356) compared to other genotypes.  相似文献   

8.
水 、氮供应对玉米伤流及其养分含量的影响   总被引:11,自引:2,他引:11  
以玉米为供试作物, 在遮雨棚内进行了微区田间试验, 研究了不同水、氮供应玉米的伤流量, 伤流液中的硝态 氮、铵态氮、游离氨基酸及磷、钾含量, 以及对植株氮、磷、钾等养分含量和吸收量的影响。 结果表明, 供水明显增加 伤流量和伤流液中硝态氮、铵态氮、游离氨基酸及磷、钾含量。 水分充足或水分胁迫较轻时, 伤流量及其养分含量 随施氮增加而增加;水分胁迫严重时, 则减少。 在不同水、氮供应条件下, 植株氮、磷、钾养分含量及吸收量具有相 同的变化趋势。  相似文献   

9.
不同氮肥用量对蔬菜硝态氮累积的影响   总被引:113,自引:13,他引:113  
利用盆栽试验,研究了氮肥用量对蔬菜硝态氮累积的影响。结果表明,施用氮肥使蔬菜的生长量提高1.1~6.1倍,但增长并不与氮肥用量同步。氮肥用量较高时,蔬菜生长受到抑制,生长量有降低趋势;硝态氮含量却随氮肥用量增加而不断升高,两者呈显著正相关(r=0.933~0.957)。蔬菜各器官、部位的硝态氮含量存在明显差异。不施氮肥时,根的硝态氮含量大于茎叶,茎又大于叶;施氮后根的含量小于茎叶,茎小于叶;无论施氮与否,叶柄的含量均高于叶片。把蔬菜的生长、硝态氮吸收及还原转化联系起来分析,可以看出,增加氮肥用量虽然提高了硝酸还原酶活性,但硝态氮的还原作用仍小于吸收,从而导致蔬菜体内出现硝态氮累积。而且,随氮肥用量增加,硝态氮累积量的增加远超过了生长量的提高,使硝态氮含量迅速升高。  相似文献   

10.
The effects of calcium (Ca) deficiency on cation uptake and concentration of xylem sap from tomato roots after excision of the aerial parts, were studied. The measurements were made on tomato plants grown on nutrient solutions with +Ca or without‐Ca, over a period of 48 hours. Calcium deficiency entailed a significant increase of the flux of xylem sap between the 6th and 14th hour on the first day after excision. In spite of the lack of Ca in the nutrient solution, the Ca concentration in xylem sap was unaffected in regard to that of excised roots with +Ca. The maintenance of the Ca concentration in xylem sap of plants grown on a Ca deficient solution was related to a reuse of the Ca from the apoplastic root stores. So, this regulation indicates a possible translocation of the Ca available in the root supply and a mobility of this element out of the roots only during the early stages of exposure to a Ca deficiency. The presence of NH4 + in xylem sap with both +Ca and‐Ca treatments confirms the nitrogenous reduction activity of tomato roots. The accumulation of free ammonium 24 h after excision in both xylem saps (+Ca and‐Ca) is likely to be evidence of an alteration process of protein synthesis which is related to the depletion of the root water soluble carbohydrate supply.  相似文献   

11.
Two Elsholtzia haichowensis S. populations, copper-tolerant (TLS) and non-tolerant (HA) ones were studied in hydroponic experiment for the nitrogen assimilation and plant growth under excess Cu conditions. The results demonstrated that there were surely the differences in nitrogen assimilation and plant growth between the two populations. Excess Cu caused evident decreases in the shoot and root biomass and root/shoot biomass ratio in HA population while no significant changes happened in TLS population. In addition, in HA population, excess Cu also induced apparent declines in activities of nitrate reductase (NR, EC 1.6.6.1) and glutamine synthetase (GS, EC 6.3.1.2) in the leaves and roots as well as the contents of nitrate, ammonium and amino acids in the roots. In TLS population, excess Cu did not significantly affect the NR activities in the leaves and roots and the nitrate content in the roots, and apparently elevated the root ammonium and amino acids contents, although it also clearly reduced the GS activities in the leaves and roots. Besides, with the addition of Cu in the culture solution, the Cu contents in the leaves and roots of the two populations markedly increased. But this increase was significantly lower in TLS population than that in HA population; the fact might be partly responsible for the relative stabilization of nitrogen assimilation in TLS population compared to that in HA population.  相似文献   

12.
不同水、氮条件对水稻苗生长及伤流液的影响   总被引:14,自引:2,他引:12  
为探明不同水分供应和氮素形态对水稻根苗及伤流液的影响,设正常水分及50 g/L PEG模拟水分胁迫和3种不同质量比例的NH4+-N/NO3--N(9/1,5/5,1/9)氮素营养处理,测定了水稻幼苗生物量,根系形态指标,根系活力及根基伤流量。结果表明,正常水分条件下,NH4+-N促进水稻根系平均直径增大,有利于水稻地上部物质累积;NO3--N则使水稻根系总吸收面积增大,促进根系物质累积;NH4+-N/NO3--N为5/5处理的水稻活跃吸收面积最大,活跃吸收面积比亦最高。水分胁迫条件下,NH4+-N/NO3--N为5/5的处理更有利于水稻地上部分的生长,NO3--N有利于水稻鲜重和干重增加,促进根系平均直径增大,水稻的根系总吸收面积、活跃吸收面积均随NO3--N供应比例的增加呈上升趋势。正常水分条件下,水稻幼苗白天的耗水量随NH4+-N/ NO3--N比例降低呈下降趋势,水分胁迫条件降低了水稻对水分的吸收。水分胁迫显著降低各处理水稻伤流量,正常水分条件下,NH4+-N/NO3--N为5/5处理的水稻伤流量最大;水分胁迫后,9/1处理的水稻伤流量相对较多。  相似文献   

13.
The previous work (1) with bleeding sap from taro plants grown in solution culture at varying ammonium sulphate application under aerobic condition revealed that a potassium deficiency led to a contradictory relationship of the variation in amino-N content in bleeding sap to the exudation rhythm; in the earlier period of bleeding experiment a deficient K-application decreased the amino-N content but accelerated the exudation rate. In this connection, there are good reasons for believing that the passage of water and salts into the xylem ducts is largely controlled by the metabolic conditions in adjacent living cells, especially their rate of aerobic respiration (2). Therefore, the effects of potassium nutrition on the exudation phenomenon were reexamined with taro plants grown in solution culture under nitrate nutrition and correlated with information about the effect of aeration through culture medium during bleeding experiment on the rate of exudation and contents of nitrogenous constituents of bleeding sap. Arsenite- or DNP-treatment was also carried out in vivo with the roots in order to elucidate a possible relationship between the respiration in roots and the exudation process of xylem sap.  相似文献   

14.
小白菜适当增铵下硝酸盐累积机理研究   总被引:14,自引:6,他引:14  
利用NO3--N/NH44+-N为100∶0和75∶25的营养液对两个硝酸盐累积能力显著不同的小白菜品种(上海青和亮白叶1号)进行培养,测定了小白菜叶片、叶柄及根系硝酸盐含量、硝态氮和铵态氮吸收量及各部位硝酸还原酶活性,以探讨适当增铵降低小白菜硝酸盐含量以及小白菜不同品种和不同器官累积硝酸盐能力差异的机理。结果表明,适当增铵使叶片、叶柄和根系硝酸盐含量分别降低了22%、15%和22%,而硝态氮吸收量则降低了7.5%。小白菜各器官硝酸盐含量为叶柄叶片根系。叶片硝酸还原酶活性分别是叶柄和根系的27和9倍,呈现叶片根系叶柄,叶片是硝态氮的主要还原器官。亮白叶1号叶片、叶柄及根系硝酸盐含量分别较上海青高3%、38%和34%,硝态氮吸收量仅较上海青高11%;而叶片、叶柄及根系硝酸还原酶活性则分别较后者降低44%、56%和38%。适当增铵减少硝态氮吸收量是增铵降低硝酸盐含量的主要原因。不同器官的功能与结构的不同决定其累积硝酸盐能力的不同;不同品种硝酸盐累积的差异取决于还原硝态氮能力的差异。  相似文献   

15.
The significance of straw content for the rentention of nitrogen during the composting of cattle manure A mixture of cattle manure (low in straw content) and straw were held at room temperature in perforated cubic containers for a 5 month's composting period. The influence of the availability of carbon on the formation of organically bound nitrogen was examined. For this purpose the added straw was reduced in size to varying degrees. The prepared mixtures all contained the same C/N-ratio. Nutrient losses in liquid form could be avoided by careful addition of water. During the first 6 weeks the content of organically bound nitrogen increased, in the sequence of increasing proportions of milled straw, from 6 to 23 %. This was attributed to the increased availability of carbon. At the end of the experiment the content of organically bound nitrogen, in all mixtures, decreased again to the initial level. This was attributed to an extensive mineralisation into nitrate in the mixtures with straw chaff. It is assumed that the low nitrate content of the variant containing only powdered straw is caused by temporary anaerobic conditions, which may be have induced a denitrification.  相似文献   

16.
In nodulated young Inga edulis plants, nodule and plant growth, nitrogen (N) in xylem sap and tissues total contents of amino acid, ureide, and nitrate were determined in response to nutrition with nitrate, ammonium, or no mineral N. Additionally, the amount of soluble sugars in the different plant tissues was quantified. It was found that mineral N improved plant growth in height and diameter especially with ammonium. However, nitrate dramatically reduced nodule dry weight on a root dry weight basis and impaired N organic transport by xylem sap. Additionally, a higher amount of amino acids was observed in the roots and nodules of plants fed with mineral N but sugar levels remained constant. Although nitrate inhibited symbiosis, data support the idea that I. edulis is able to use both molecular and mineral nitrogen during the life cycle.  相似文献   

17.
玉米硝酸盐累积及其在适应持续低氮胁迫中的作用   总被引:3,自引:1,他引:2  
旱地作物吸收氮素的主要形态是硝酸盐,硝酸盐的积累与再利用对植物适应低氮土壤环境具有重要意义。本试验利用两个硝酸盐累积能力不同的玉米自交系478(硝酸盐积累低)和W312(硝酸盐积累高)为研究材料,研究玉米的硝酸盐累积及其在适应持续低氮胁迫中的作用。结果表明,W312的硝酸还原酶活性和NR基因的表达都弱于478,而体内氨基酸含量显著较低。对一个可能与液泡膜硝酸盐转运有关的氯离子通道蛋白基因(ZmCLC)的表达分析发现,478的ZmCLC表达显著强于W312。说明W312硝酸盐积累能力强主要是由于其较弱的氮同化能力,而不是硝酸盐向液泡的运输能力强。在砂培体系并持续缺氮条件下,W312叶绿素含量(SPAD值)显著高于478,表明植株体内较高硝酸盐累积有助于W312适应持续缺氮的土壤环境。  相似文献   

18.
不同硼效率棉花品种根系参数和伤流液组分的差异   总被引:4,自引:0,他引:4  
溶液培养条件下研究硼对不同硼效率棉花品种根系参数、伤流量及伤流液组分的影响。结果表明,缺硼抑制棉花根系生长,根重、根体积、根长、活跃吸收面积、总吸收面积、活跃吸收面积占总吸收面积的比例以及伤流量均显著降低,高效品种降低幅度比低效品种小;缺硼还使高效品种根系比表面积升高,而低效品种无显著变化。缺硼显著影响不同棉花品种伤流液各组分含量,与低效品种相比,高效品种伤流液中有较多的NO3-、K+、无机磷、可溶性糖和游离氨基酸。说明缺硼条件下高效品种根系比低效品种具有更强的吸收、代谢活力,可能是其硼效率较高的主要原因之一。  相似文献   

19.
The aim of this work was to study the effect of arbuscular mycorrhizal fungus Glomus mosseae on growth and nitrogen (N) metabolism of durum wheat (Tritcum durum) under various P soil contents. The analyses were extended to macro and micronutrient tissue concentrations, nitrate reductase and glutamine synthetase activities, as well as protein, aminoacids, pyridine dinucleotides and adenine nucleotides. Arbuscular mycorrhiza increased wheat growth in soil in which P availability was low and nitrate was the dominant N form. The root colonization occurred at the highest level in plants grown in limiting soil P and was inversely related to soil P content. The micorrhizal wheat plants contained also the highest concentrations of macro (P, K, Ca, N) and micronutrients (Fe, Zn, Mn) as well as free amino acids, protein, NAD, NADP, AMP, ADP, ATP in roots and leaves. In particular, the micronutrient tissue concentrations (Zn, Mn) supported that mycorrhiza actively modulated their uptake limiting interferences and optimizing growth better than the plant roots, like a very efficient “rootstock”. Control plants grown at the highest soil P did not reach the same concentration as the mycorrhizal plants. Nitrate reductase activities in the roots of mycorrhizal plants were higher than in the control ones, while glutamine synthetase activities were highest in the leaves. Protein and amino acids concentrations, as well as AMP, ADP, ATP, NAD(P), and NAD(P)H were also higher than in the control. Among the free amino acids in the roots, the high levels of glutamine, asparagine, arginine, support the view that ammonium was transferred through the arbuscules to the root cells where it was re‐assimilated in the cortical cells, forming high N : C ratio‐amino acids. They were transferred to the leaves where all the other N compounds could be largely synthesized using the carbon skeletons supplied by photosynthesis.  相似文献   

20.
The effect of variable levels of B supply on the content of total N, nitrate and nitrate reductase activities in roots and shoots of young sunflower (Helianthus annuus L.) plants was investigated. It was found that both a deficiency and high toxic levels of B decreased the total N content and the activity of nitrate reductase and increased the content of nitrates in roots and shoots of the plants. The treatment of the excised segments of roots and leaves of plants supplied with insuficient levels of B and adequate levels of glucose significantly increased the activity of nitrate reductase. The study concluded that one of the factors influencing the primary assimilation of N is B supply to plants. Supported by these findings and corroborated by literature data, the possible effect of B on nitrate reductase activity via the metabolisms of nucleic acids and proteins and on energy turnover is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号